The present invention relates to a device for containing compression or crimping energy in bare conductor transmission power lines in full tension joints or dead end joints. The wave griping core sleeve includes a plurality of interlocking members having first and second ends, a groove disposed adjacent at least one of the ends, and a first side with a longitudinally projecting wing and a second side with a receptacle for receiving the wing of an adjacent interlocking member. A biasing means wraps around the interlocking members and is received in the channel formed by the aligned grooves extending around the circumference of the wave gripping core sleeve.
Implosive technology is used for installing transmission connectors by utility contractors to connect overhead high voltage transmission lines. Implosive energy compresses the connectors. In existing implosive technology, a steel sleeve core is disposed around the conductor and implosive energy is harnessed in a precisely engineered manner to produce a carefully controlled compression of the steel core.
Existing steel sleeve cores used in implosion technology have many problems including high stiffness, high requirements for implosive energy, and the possibility of energy loss between the sleeve slots.
A need exists for a wave gripping core sleeve for keeping the assembly together during compression while accommodating a variety of conductor core diameters.
Accordingly, an object of the invention is to provide a wave gripping core sleeve having a plurality of interlocking members held biased together.
Another object of the invention is to provide a wave gripping core sleeve having a plurality of ribs along the interlocking members, wherein first and second interlocking members have a first set of aligned ribs and third and fourth interlocking members have a second set of aligned ribs, and the first set of ribs are axially offset from the second set of ribs.
A further object of the invention is to provide a wave gripping core sleeve having a plurality of laterally sliding members for accommodating a variety of conductor core diameters.
Still another object of the invention is to provide a wave gripping core sleeve with a pre-loading position having a first diameter and a post-loading position having a second diameter smaller than the first diameter.
Yet another object of the invention is to provide a wave gripping core sleeve where the space between the plurality of interlocking members decreases after the conductor is loaded therein.
A further object of the invention is to provide a wave gripping core sleeve for deforming the conductor steel core in a wave shape during connector compression, thereby increasing the friction to more securely grip the conductor and resisting pullout tension.
Still another object of the invention is to provide a wave gripping core sleeve having a cavity formed by the first and second interlocking members that push the conductor steel core in a first direction.
Yet another object of the invention is to include a plurality of stopping ribs along the external surface of the plurality of interlocking members to secure bonding with the aluminum sleeve of the joint assembly.
The foregoing objects are basically attained by providing a wave gripping core sleeve having a cavity formed by the third and fourth interlocking members that push the conductor steel core in a second direction, opposite from the first direction of the first and second interlocking members.
By forming the wave gripping core sleeve in this manner, a conductor steel core is deformed in a wave shape during connector implosion (see e.g., U.S. patent application Ser. No. 12/046,122 to Geibel et al. which is hereby incorporated by reference in its entirety). The biasing means, or garter springs, keep the assembly together as one unit and allow the plurality of interlocking members to slide laterally to each other while accommodating different conductor steel cores.
As used in this application, the terms “top”, “bottom”, and “side” are intended to facilitate the description of the wave gripping core sleeve, and are not intended to limit the description of the wave gripping core sleeve to any particular orientation.
Other objects, advantages, and salient features of the present invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the invention.
The above aspects and features of the present invention will be more apparent from the description of the exemplary embodiments of the present invention taken with reference to the accompanying drawing figures, in which:
Throughout the drawings, like reference numerals will be understood to refer to like parts, components and structures.
A wave gripping core sleeve 10 can be used with bare conductor transmission lines in full tension joints or dead end joints. For purposes of explanation and by way of example only, the wave gripping core sleeve 10 will be described with respect to an implosion dead end joint assembly 100, as shown in
The eyebolt 16 is attached to a main sleeve 20 and can be freely turned to the desired position relative to a T-tap or NEMA pad 18 prior to initiation. The NEMA pad 18 is preferably welded to the main sleeve 20 and connected to an external jumper terminal (not shown). The NEMA pad 18 can be substantially planar, or angled as shown in
The wave gripping core sleeve 10 includes a plurality of steel, forged parts or interlocking members 22, 24, 26, 28, each having a curved body, as shown in
Each of the interlocking members 22, 24, 26, 28 includes a first side wall and a second side wall. The first side wall is defined by a laterally projecting wing 42 extending longitudinally between the first end 34 and the second end 36 of the interlocking members 22, 24, 26, 28. The second side wall is defined by a receptacle 44 extending longitudinally between the first end 34 and the second end 36 of the interlocking members 22, 24, 26, 28. Both the wing 42 and the receptacle 44 are substantially rectangular with their respective longitudinal axes being parallel to the longitudinal axis of each respective interlocking member 22, 24, 26, 28.
When the interlocking members 22, 24, 26, 28 are connected, they are attached such that the first side wall or wing 42 of a first interlocking member 22 engages the second side wall or receptacle 44 of a second interlocking member 24. Subsequently, each wing 42 of one interlocking member is received in the receptacle 44 of the adjacent interlocking member. The second interlocking member 24 is similarly connected to the third interlocking member 26 and the third interlocking member 26 is similarly connected to the fourth interlocking member 28. Also, the wing 42 of the fourth interlocking member 28 is connected to the receptacle 44 of the first interlocking member 28, completing the cylindrical shape of the wave gripping core sleeve 10 to form the main cavity 21.
The structure of the wings 42 and receptacles 44 prevent relative axial movement of the interlocking members 22, 24, 26, 28. The first end 54 and second end 56 of each wing 42 abut the first end 58 and second end 60 of each receptacle 44. The wing ends 54, 56 are parallel to the receptacle ends 58, 60 and are received therebetween. Thus, the receptacle ends 58, 60 prevent the wings 42 from moving laterally once the interlocking members 22, 24, 2628 are connected.
By aligning the interlocking members 22, 24, 26, 28 in this manner, each wing 42 of one interlocking member is received in each receptacle 44 of the adjacent interlocking member. This connection also contributes to the ability of the wave gripping core sleeve 10 to accommodate different diameters of conductor steel cores 15 because, as shown in
Further, the exterior surface of each interlocking member 22, 24, 26, 28 includes a first groove 37 adjacent the first end 34 and a second groove 38 adjacent the second end 36. The grooves 37, 38 extend along the entire width of each interlocking member 22, 24, 26, 28, such that when the interlocking members 22, 24, 26, 28 are connected, the first groove 37 forms a continuous annular channel 39 around the circumference of the wave gripping core sleeve 10 adjacent the first end 34 and the second groove 38 forms a continuous annular channel 39′ around the circumference of the wave gripping core sleeve 10 adjacent the second end 36.
When the interlocking members 22, 24, 26, 28 are connected to form the channels 39, 39′, a biasing means or annular resilient member 40 (
Before the garter springs 40, 41 are loaded into the channels 39, 39′, the interlocking members 22, 24, 26, 28 are spaced apart a distance α1, as shown in
With this configuration, the garter springs 40, 41 allow the interlocking members 22, 24, 26, 28 to slide laterally to each other and move radially, bringing the wings 42 and receptacles 44 together while accommodating conductor steel cores 15 of varying diameters. The distance between the wings 42 and receptacles 44 decreases when the garter springs 40, 41 are received in the channels 39, 39′. The distance between the wings 42 and receptacles 44 also changes depending on the diameter of the conductor steel cores 15 received by the interlocking members 22, 24, 26, 28.
As shown in
When the interlocking members 22, 24, 26, 28 are connected to each other, the first interlocking member 22 and the second interlocking member 24 form a first semi-cylindrical member 30 and the third interlocking member 26 and the fourth interlocking member 28 form the second semi-cylindrical member 32. The interlocking members 22, 24 of the first semi-cylindrical member 30 include a plurality of semi-annular ribs 50 along their interior surface. The interlocking members 26, 28 of the second semi-cylindrical member 32 include a plurality of semi-annular ribs 52 along their interior surface. When the wave gripping core sleeve 10 is assembled and the interlocking members 22, 24, 26, 28 are connected, the ribs 50 of the first semi-cylindrical member 30 are offset from the ribs 52 of the second semi-cylindrical member 52 along the longitudinal axis of the wave gripping core sleeve 10.
The first semi-annular ribs 50 are offset from the second semi-annular ribs 52. As shown in
By forming the interlocking members in this manner, the ribs of the first semi-cylindrical member push the conductor steel core 15 downwardly while the ribs of the second semi-cylindrical member 32 push the conductor steel core 15 upwardly. This causes the conductor steel core 15 to deform in a wave shape during connector implosion. As shown in
In an alternative embodiment shown in
In another exemplary embodiment, as shown in
Another exemplary embodiment of an interlocking member 322 for a wave gripping core sleeve is shown in
In another exemplary embodiment shown in
First and second ribs 452 and 453 are formed on an inner surface 451 of each interlocking member 422. The first ribs 452 are disposed on a section of the inner surface 451 over which the first steel core 415 extends, as shown in
The second ribs 453 are disposed on a section of the inner surface 451 over which the second steel core 416 extends, as shown in
In another exemplary embodiment, as shown in
First and second ribs 552 and 553 are disposed on an inner surface 551 of each interlocking member 522. The first ribs 552 have a sloped surface 561 facing the end of the wave gripping core sleeve through which the steel core 515 is inserted. The insertion direction of the steel core 515 is indicated by the arrow 571. The second ribs 553 have a sloped surface 563 facing the end of the wave gripping core sleeve through which the eyebolt 519 is inserted. The insertion direction of the eyebolt 519 is indicated by the arrow 572. A stopping plane 573 indicates the point at which ends of the steel core 515 and the eyebolt 519 engage within the wave gripping core sleeve 510, as well as the transition point between the first and second ribs 552 and 553.
As in the above-described exemplary embodiments of the wave gripping core sleeve, a recess 544 of an interlocking member 522 receives a wing 542 of an adjacent interlocking member. Spring members 540 and 541, such as garter springs, are disposed in grooves 542 and 543 formed at opposite ends of the wave gripping core sleeve 510.
The wave gripping core sleeves described above can also be used in hydraulic compression splices, automatic splice connectors, and related industries.
While various embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.