Traditional optical design is based on the premise that the only major components of the imaging system are the optics and detector. The detector can be analog (e.g. film) or a digital detector (e.g., CCD, CMOS, etc.). Traditional image processing techniques performed on an image are performed after the image is formed. Examples of traditional image processing include edge sharpening and color filter array (CFA) color interpolation. Traditional optics are therefore designed to form images at the detector that are sharp and clear over a range of field angles, illumination wavelengths, temperatures, and focus positions. Consequently, a trade off is made between forming good images, which requires optical designs that are larger, heavier, and contain more optical elements than are desirable, and modifying the design in order to reduce size, weight, or the number of optical elements, which results in loss of image quality.
A need remains in the art for improved optical designs which produce good images with systems that are smaller, lighter, and contain fewer elements than those based on traditional optics.
Optical design based on Wavefront Coding enables systems such that they can be smaller, lighter, and contain fewer optical elements than those based on traditional optics. Wavefront Coding systems share the task of image formation between optics and digital processing. Instead of the imaging system being primarily composed of optics and the detector, Wavefront Coding imaging systems are composed of optics, the detector, and processing of the detected image. The detector can in general be analog, such as film, or a digital detector. Since processing of the detected image is an integral part of the total system, the optics of Wavefront Coded imaging systems do not need to form sharp and clear images at the plane of the detector. It is only the images after processing that need to be sharp and clear.
Wavefront Coding, in general, corrects for known or unknown amounts of “misfocus-like” aberrations. These aberrations include misfocus, spherical aberration, petzval curvature, astigmatism, and chromatic aberration. System sensitivities to environmental parameters such as temperature and pressure induced aberrations, and mechanical focus related aberrations from fabrication error, assembly error, drift, wear, etc., are also reduced with Wavefront Coding. Optical designs based on Wavefront Coding can reduce the effects of these aberrations and result in simpler designs that produce good images.
Optical system designs according to the present invention are improved in that they have the characteristic that the transverse ray intercept curves are substantially straight lines. Unlike traditional optical designs, the transverse ray intercept curves for wavefront coded systems need not have a near zero slope; the slope, which indicates misfocus, may be substantial, because wavefront coding allows the effects due to misfocus to be removed. In actual systems, the transverse ray intercept curves should vary mainly in slope over wavelength, field angles, temperature, etc., but need not be exactly straight lines; some ripple is acceptable. With wavefront coding optical surfaces and post processing, good images can be produced.
In one embodiment, an infrared imaging system for imaging infrared radiation from an object onto a detector includes optics configured for producing, with the infrared radiation, transverse ray intercept curves that are substantially straight, sloped lines. A wavefront coding element is configured such that a modulation transfer function of the optics and wavefront coding element, combined, exhibits reduced variation, over a range of spatial frequencies and caused, at least in part, by thermal variation within the imaging system, as compared to a modulation transfer function of the optics alone, without the wavefront coding element. A post processor is configured for generating an improved modulation transfer function, over the range of spatial frequencies, as compared to the modulation transfer function of the optics and the wavefront coding element.
Another embodiment is an improvement to an imaging system for imaging infrared radiation from an object onto a detector, the system including optics configured for producing, with infrared radiation, transverse ray intercept curves that are substantially straight, sloped lines. The improvement includes a wavefront coding element configured for modifying phase of a wavefront of the infrared radiation such that a modulation transfer function of the lens and wavefront coding element, combined, exhibits reduced variation, over a range of spatial frequencies and caused, at least in part, by thermal variation within the imaging system, as compared to a modulation transfer function of the optics alone, without the wavefront coding element. The improvement also includes a post-processor configured for generating an improved modulation transfer function, over the range of spatial frequencies, as compared to the modulation transfer function of a combination of the optics and the wavefront coding element.
a and 7b illustrate sampled point spread functions (PSF) for the system of
a illustrates transverse ray intercept curves as typically implemented in traditional imaging systems.
b shows MTFs for the system of
The examplary single-lens imaging system (singlet) 100 is designed to meet the following specifications:
The exemplary singlet 100, without Wavefront Coding element 104, was designed so that the aberrations that are not corrected by the optical surfaces, namely petzval curvature and axial chromatic aberration, are a type of misfocus. Specifically, petzval curvature is a type of misfocus with field angle, and axial chromatic aberration is misfocus with illumination wavelength. The effect of these aberrations could hypothetically be corrected within small regions of the image plane by changing the focus position. By adding a Wavefront Coding surface, the resulting MTFs and PSFs will be insensitive to the focus-like aberrations. However, the MTFs and PSFs will not be the same as an ideal in-focus MTF or PSF from a traditional imaging system. Image processing is required to restore the spatial character of the image and produce a sharp and clear image.
The form of the Wavefront Coding surface used in this example is
the sum is over the index i. Sign(x)=−1 for x<0, +1 for x≧0.
The parameter rn is a normalized radius value. This particular Wavefront Coding surface is rectangularly separable and allows for fast software processing. Other forms of Wavefront Coding surfaces are nonseparable and are the sum of rectangularly separable forms. One non-separable form is defined as:
S(r,θ)=Σαira
where the sum is again over the subscript i.
There are an infinite number of Wavefront Coding surface forms. The Wavefront Coding surface for singlet 100 in this example is placed at the stop surface (e.g., Wavefront Coding element 104) and has the parameterized equation:
There are numerous traditional methods of designing lenses. Most methods try to balance aberrations in order to improve the off-axis imaging at the expense of on-axis imaging or system simplicity. Traditional design methodologies do not attempt to make the transverse ray intercept curves straight lines. Instead, the traditional goal is to try to minimize the distance of a substantial portion of the transverse ray intercept curves from the horizontal axis. In most traditional systems the ray intercept curves are very different from straight lines, but in general lie closer to the horizontal axis than the off-axis curves shown in
a (prior art) illustrates traditional transverse ray plots. These plots are taken from “Practical Computer Aided Lens Design”, Gregory Hallick Smith, William Bell, Inc., Richmond 1998. Note that the plot for near on axis rays do look similar to straight horizontal lines, and thus produce an in focus image. Refer also to
The transverse ray intercept curves of
The aberration petzval curvature gives rise to transverse ray intercept curves, with slopes that are a function of field angle. Axial chromatic aberration gives rise to ray intercept curves with slopes that are a function of illumination wavelength. From
a and 7b illustrate sampled two-dimensional PSFs for system 100 of
In one preferred embodiment, processing filter 112 is a rectangularly separable digital filter. Rectangularly separable filters are more computationally efficient (counting the number of multiplications and additions) than full 2D kernel filters. Separable filtering consists of filtering each row of the image with the 1D row filter and forming an intermediate image. The columns of the intermediate image are then filtered with the 1D column filter to provide the final in-focus image. The separable filter used for this exemplary singlet has the same filters for rows and columns.
Wavefront coding microscope objective 800 is designed to meet the following objectives:
The depth of field of traditional microscope objectives is described by the numerical aperture (NA) and the imaging wavelength. The wavefront coding objective can have a depth of field that is independent of the NA of the objective. The depth of field can be large enough to introduce prospective distortion to the final images. Regions of the object that are farther from the objective will appear smaller than regions of the object closer to the objective. Both near and far regions can image clearly with a large depth of field. Since the depth of field of traditional objectives is small, prospective distortion is not common with traditional objectives, especially with high NA. Prospective distortion can be reduced or eliminated by designing wavefront coding objectives that are telecentric. In telecentric imaging systems the magnification of the object is independent of the distance to the object.
The major aberration apparent in this design is axial chromatic aberration, with a smaller amount of petzval curvature and lateral chromatic aberration. Without Wavefront Coding this lens would image poorly in white light, although it might produce a reasonable image in a single color. Tables 2 and 3 give the optical prescription for this system. Table 3 gives rotationally symmetric aspheric terms for the system.
Wavefront coding element 806 is placed at aperture stop 804, and is given by the rectangularly separable form of:
Design goals are as follows:
Combined constraints of low F/#, inexpensive mounting material, and wide operating temperature make this design very difficult for traditional optics. Table 4 gives the optical prescription of system 1100.
The Wavefront Coding surface for IR system 100 of this example the parameterized equation:
One preferred way to define what constitutes a transverse ray intercept curve that is a “substantially straight line” is to look at the MTFs over the entire useful range of the system with wavefront coding applied. These curves must be very close to each other, in order for the post processing to be able to move all MTFs to the desired performance level. Compare the MTFs of
In
In
Now consider the upper set of MTFs of
For other systems, a lower level of performance may be acceptable, and consequently the deviation of the transverse ray intercept curves from a straight line may be larger. Such a situation would result if a fast lens (say F/2) is used with a digital detector, with, for example, 10 micron pixels. In 500 nm illumination, the diffraction limited MTF for the optical system would extend to 1000 lp/mm, but the highest spatial frequency that could be measured by the detector would be only 50 lp/mm. Thus, aberrations that alter the highest spatial frequencies of the optics are of no consequence, because they will not be measured by the detector. Note that while the transverse ray intercept curves may have noticeable deviations from a straight line (corresponding to the higher spatial frequencies), the transverse ray intercept curves are still “substantially straight lines” according to our definition, because the MTFs with wavefront coding are close together. The MTFs under consideration are those that correspond to the useful range of the particular system being considered.
Compare the MTFs of
The major aberration apparent in the design of
This patent application is a continuation of commonly-owned and U.S. patent application Ser. No. 11/192,572, filed 29 Jul. 2005, now U.S. Pat. No. 7,106,510 which is a continuation of U.S. patent application Ser. No. 10/407,708, filed Apr. 4, 2003, now U.S. Pat. No. 6,940,649, which is a continuation of U.S. patent application Ser. No. 09/747,788, now abandoned, filed Dec. 22, 2000. This patent application is also a continuation-in-part of commonly-owned and U.S. patent application Ser. No. 09/070,969, filed May 01, 1998, now U.S. Pat. No. 7,218,448 which is a continuation-in-part of U.S. patent application Ser. No. 08/823,894, filed Mar. 17, 1997, now U.S. Pat. No. 5,748,371, issued May 5, 1998, which is a continuation of U.S. patent application Ser. No. 08/384,257, filed Feb. 3, 1995, now abandoned. Each of the above-mentioned patents and patent applications are incorporated herein by reference. U.S. patent application Ser. No. 09/875,435, filed Jun. 6, 2001, now U.S. Pat. No. 6,525,302, U.S. patent application Ser. No. 09/875,766, filed Jun. 6, 2001, and U.S. patent application Ser. No. 09/766,325 filed Jan. 19, 2001, now U.S. Pat. No. 6,873,733, issued Mar. 29, 2005 are each incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2959105 | Sayanagi | Nov 1960 | A |
3054898 | Westover et al. | Sep 1962 | A |
3305294 | Alvarez | Feb 1967 | A |
3583790 | Baker | Jun 1971 | A |
3614310 | Korpel | Oct 1971 | A |
3856400 | Hartmann et al. | Dec 1974 | A |
3873958 | Whitehouse | Mar 1975 | A |
4062619 | Hoffman | Dec 1977 | A |
4082431 | Ward, III | Apr 1978 | A |
4174885 | Joseph et al. | Nov 1979 | A |
4178090 | Marks et al. | Dec 1979 | A |
4255014 | Ellis | Mar 1981 | A |
4275454 | Klooster, Jr. | Jun 1981 | A |
4276620 | Kahn et al. | Jun 1981 | A |
4308521 | Casasent et al. | Dec 1981 | A |
4349277 | Mundy et al. | Sep 1982 | A |
4466067 | Fontana | Aug 1984 | A |
4480896 | Kubo et al. | Nov 1984 | A |
4573191 | Kidode et al. | Feb 1986 | A |
4575193 | Greivenkamp, Jr. | Mar 1986 | A |
4580882 | Nuchman et al. | Apr 1986 | A |
4589770 | Jones et al. | May 1986 | A |
4642112 | Freeman | Feb 1987 | A |
4650292 | Baker et al. | Mar 1987 | A |
4655565 | Freeman | Apr 1987 | A |
4725881 | Buchwald | Feb 1988 | A |
4734702 | Kaplan | Mar 1988 | A |
4794550 | Greivenkamp, Jr. | Dec 1988 | A |
4804249 | Reynolds et al. | Feb 1989 | A |
4825263 | Desjardins et al. | Apr 1989 | A |
4827125 | Goldstein | May 1989 | A |
4843631 | Steinpichler et al. | Jun 1989 | A |
4936661 | Betensky et al. | Jun 1990 | A |
4964707 | Hayashi | Oct 1990 | A |
4989959 | Plummer | Feb 1991 | A |
5003166 | Girod | Mar 1991 | A |
5076687 | Adelson | Dec 1991 | A |
5102223 | Uesugi et al. | Apr 1992 | A |
5128874 | Bhanu et al. | Jul 1992 | A |
5142413 | Kelly | Aug 1992 | A |
5165063 | Strater et al. | Nov 1992 | A |
5166818 | Chase et al. | Nov 1992 | A |
5193124 | Subbarao | Mar 1993 | A |
5218471 | Swanson et al. | Jun 1993 | A |
5243351 | Rafanelli et al. | Sep 1993 | A |
5248876 | Kerstens et al. | Sep 1993 | A |
5260727 | Eisner et al. | Nov 1993 | A |
5270825 | Takasugi et al. | Dec 1993 | A |
5270861 | Estelle | Dec 1993 | A |
5270867 | Estelle | Dec 1993 | A |
5280388 | Okayama | Jan 1994 | A |
5299275 | Jackson et al. | Mar 1994 | A |
5301241 | Kirk | Apr 1994 | A |
5307175 | Seachman | Apr 1994 | A |
5317394 | Hale et al. | May 1994 | A |
5337181 | Kelly | Aug 1994 | A |
5426521 | Chen et al. | Jun 1995 | A |
5438366 | Jackson et al. | Aug 1995 | A |
5442394 | Lee | Aug 1995 | A |
5444574 | Ono et al. | Aug 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5473473 | Estelle et al. | Dec 1995 | A |
5476515 | Kelman et al. | Dec 1995 | A |
5521695 | Cathey, Jr. et al. | May 1996 | A |
5532742 | Kusaka et al. | Jul 1996 | A |
5555129 | Konno et al. | Sep 1996 | A |
5565668 | Reddersen et al. | Oct 1996 | A |
5568197 | Hamano | Oct 1996 | A |
5572359 | Otaki et al. | Nov 1996 | A |
5610684 | Shiraishi | Mar 1997 | A |
5640206 | Kinoshita et al. | Jun 1997 | A |
5706139 | Kelly | Jan 1998 | A |
5748371 | Cathey, Jr. et al. | May 1998 | A |
5751475 | Ishiwata et al. | May 1998 | A |
5756981 | Roustaei et al. | May 1998 | A |
5969853 | Takaoka | Oct 1999 | A |
5969855 | Ishiwata et al. | Oct 1999 | A |
6021005 | Cathey, Jr. et al. | Feb 2000 | A |
6025873 | Nishioka et al. | Feb 2000 | A |
6034814 | Otaki | Mar 2000 | A |
6037579 | Chan et al. | Mar 2000 | A |
6069738 | Cathey, Jr. et al. | May 2000 | A |
6091548 | Chen | Jul 2000 | A |
6097856 | Hammond, Jr. | Aug 2000 | A |
6121603 | Hang et al. | Sep 2000 | A |
6128127 | Kusaka | Oct 2000 | A |
6133986 | Johnson | Oct 2000 | A |
6144493 | Okuyama et al. | Nov 2000 | A |
6172723 | Inoue et al. | Jan 2001 | B1 |
6172799 | Raj | Jan 2001 | B1 |
6208451 | Itoh | Mar 2001 | B1 |
6218679 | Takahara et al. | Apr 2001 | B1 |
6219113 | Takahara | Apr 2001 | B1 |
6248988 | Krantz | Jun 2001 | B1 |
6285345 | Crossland et al. | Sep 2001 | B1 |
6288382 | Ishihara | Sep 2001 | B1 |
6337472 | Garner et al. | Jan 2002 | B1 |
6525302 | Dowski et al. | Feb 2003 | B2 |
6536898 | Cathey et al. | Mar 2003 | B1 |
6873733 | Dowski, Jr. | Mar 2005 | B2 |
6940649 | Dowski, Jr. | Sep 2005 | B2 |
20030173502 | Dowski et al. | Sep 2003 | A1 |
20040145808 | Cathey et al. | Jul 2004 | A1 |
20050264886 | Dowski, Jr. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
0531926 | Mar 1993 | EP |
0584769 | Mar 1994 | EP |
0618473 | Oct 1994 | EP |
0742466 | Nov 1996 | EP |
0759573 | Feb 1997 | EP |
0791846 | Aug 1997 | EP |
0981245 | Jan 2006 | EP |
2278750 | Dec 1994 | GB |
2000-98301 | Apr 2000 | JP |
WO 9624085 | Aug 1996 | WO |
WO 9957599 | Nov 1999 | WO |
WO 0052513 | Sep 2000 | WO |
WO 02052331 | Jul 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060291058 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11192572 | Jul 2005 | US |
Child | 11511022 | US | |
Parent | 10407708 | Apr 2003 | US |
Child | 11192572 | US | |
Parent | 09747788 | Dec 2000 | US |
Child | 10407708 | US | |
Parent | 11511022 | US | |
Child | 10407708 | US | |
Parent | 08384257 | Feb 1995 | US |
Child | 08823894 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09070969 | May 1998 | US |
Child | 11511022 | US | |
Parent | 08823894 | Mar 1997 | US |
Child | 09070969 | US |