Wavefront coded imaging systems

Information

  • Patent Grant
  • 7554731
  • Patent Number
    7,554,731
  • Date Filed
    Monday, August 28, 2006
    18 years ago
  • Date Issued
    Tuesday, June 30, 2009
    15 years ago
Abstract
An infrared imaging system for imaging infrared radiation from an object onto a detector includes optics configured for producing, with the infrared radiation, transverse ray intercept curves that are substantially straight, sloped lines. A wavefront coding element is configured such that a modulation transfer function of the optics and wavefront coding element, combined, exhibits reduced variation, over a range of spatial frequencies and caused, at least in part, by thermal variation within the imaging system, as compared to a modulation transfer function of the optics alone, without the wavefront coding element. A post processor is configured for generating an improved modulation transfer function, over the range of spatial frequencies, as compared to the modulation transfer function of the optics and the wavefront coding element.
Description
BACKGROUND

Traditional optical design is based on the premise that the only major components of the imaging system are the optics and detector. The detector can be analog (e.g. film) or a digital detector (e.g., CCD, CMOS, etc.). Traditional image processing techniques performed on an image are performed after the image is formed. Examples of traditional image processing include edge sharpening and color filter array (CFA) color interpolation. Traditional optics are therefore designed to form images at the detector that are sharp and clear over a range of field angles, illumination wavelengths, temperatures, and focus positions. Consequently, a trade off is made between forming good images, which requires optical designs that are larger, heavier, and contain more optical elements than are desirable, and modifying the design in order to reduce size, weight, or the number of optical elements, which results in loss of image quality.


A need remains in the art for improved optical designs which produce good images with systems that are smaller, lighter, and contain fewer elements than those based on traditional optics.


SUMMARY

Optical design based on Wavefront Coding enables systems such that they can be smaller, lighter, and contain fewer optical elements than those based on traditional optics. Wavefront Coding systems share the task of image formation between optics and digital processing. Instead of the imaging system being primarily composed of optics and the detector, Wavefront Coding imaging systems are composed of optics, the detector, and processing of the detected image. The detector can in general be analog, such as film, or a digital detector. Since processing of the detected image is an integral part of the total system, the optics of Wavefront Coded imaging systems do not need to form sharp and clear images at the plane of the detector. It is only the images after processing that need to be sharp and clear.


Wavefront Coding, in general, corrects for known or unknown amounts of “misfocus-like” aberrations. These aberrations include misfocus, spherical aberration, petzval curvature, astigmatism, and chromatic aberration. System sensitivities to environmental parameters such as temperature and pressure induced aberrations, and mechanical focus related aberrations from fabrication error, assembly error, drift, wear, etc., are also reduced with Wavefront Coding. Optical designs based on Wavefront Coding can reduce the effects of these aberrations and result in simpler designs that produce good images.


Optical system designs according to the present invention are improved in that they have the characteristic that the transverse ray intercept curves are substantially straight lines. Unlike traditional optical designs, the transverse ray intercept curves for wavefront coded systems need not have a near zero slope; the slope, which indicates misfocus, may be substantial, because wavefront coding allows the effects due to misfocus to be removed. In actual systems, the transverse ray intercept curves should vary mainly in slope over wavelength, field angles, temperature, etc., but need not be exactly straight lines; some ripple is acceptable. With wavefront coding optical surfaces and post processing, good images can be produced.


In one embodiment, an infrared imaging system for imaging infrared radiation from an object onto a detector includes optics configured for producing, with the infrared radiation, transverse ray intercept curves that are substantially straight, sloped lines. A wavefront coding element is configured such that a modulation transfer function of the optics and wavefront coding element, combined, exhibits reduced variation, over a range of spatial frequencies and caused, at least in part, by thermal variation within the imaging system, as compared to a modulation transfer function of the optics alone, without the wavefront coding element. A post processor is configured for generating an improved modulation transfer function, over the range of spatial frequencies, as compared to the modulation transfer function of the optics and the wavefront coding element.


Another embodiment is an improvement to an imaging system for imaging infrared radiation from an object onto a detector, the system including optics configured for producing, with infrared radiation, transverse ray intercept curves that are substantially straight, sloped lines. The improvement includes a wavefront coding element configured for modifying phase of a wavefront of the infrared radiation such that a modulation transfer function of the lens and wavefront coding element, combined, exhibits reduced variation, over a range of spatial frequencies and caused, at least in part, by thermal variation within the imaging system, as compared to a modulation transfer function of the optics alone, without the wavefront coding element. The improvement also includes a post-processor configured for generating an improved modulation transfer function, over the range of spatial frequencies, as compared to the modulation transfer function of a combination of the optics and the wavefront coding element.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a single-lens miniature imaging system according to the present invention.



FIG. 2 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths for the system of FIG. 1 with wavefront coding removed.



FIG. 3 illustrates distortion curves for the system of FIG. 1 with wavefront coding removed.



FIG. 4 illustrates modulation transfer functions (MTF) for the system of FIG. 1 with wavefront coding removed.



FIG. 5 illustrates MTFs for the system of FIG. 1 with wavefront coding, but without post processing.



FIG. 6 illustrates MTFs for the system of FIG. 1 with wavefront coding, before and after filtering.



FIGS. 7
a and 7b illustrate sampled point spread functions (PSF) for the system of FIG. 1 with wavefront coding and after filtering for two object distances.



FIG. 8 shows a low cost microscope objective according to the present invention.



FIG. 9 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths for the system of FIG. 8 with wavefront coding removed.



FIG. 10 illustrates MTFs for the system of FIG. 8 with wavefront coding, without wavefront coding, and with wavefront coding and filtering.



FIG. 11 shows a passive athermalized IR imaging system according to the present invention.



FIG. 12 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths for the system of FIG. 11 without wavefront coding.



FIG. 13 illustrates MTFs for the system of FIG. 11 without wavefront coding.



FIG. 14 illustrates MTFs for the system of FIG. 11 with wavefront coding, with and without filtering.



FIG. 15
a illustrates transverse ray intercept curves as typically implemented in traditional imaging systems.



FIG. 15
b shows MTFs for the system of FIG. 15a.



FIG. 16 illustrates an example of a one dimensional separable filter for use as a post processing element in the present invention.



FIG. 17 illustrates the magnitude of the transfer function of the filter of FIG. 16.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a single-lens miniature imaging system 100 according to the present invention. Lens 102 includes wavefront coding element 104 formed on its second surface. Detector 106 is preceded by an infrared (IR) filter 108 and cover glass 110. Post processing filter 112 performs processing on the images captured by detector 106.


The examplary single-lens imaging system (singlet) 100 is designed to meet the following specifications:

    • f=2.5 mm
    • F/#=2.6
    • Length<4.5 mm
    • Material: Polymethylmethacrylate (PMMA)
    • FOV=50°
    • Focus: ∞−30 cm
    • pixel size=6 μm
    • Bayer CFA/100% fill factor
    • MTF>40% at 40 lp/mm.


The exemplary singlet 100, without Wavefront Coding element 104, was designed so that the aberrations that are not corrected by the optical surfaces, namely petzval curvature and axial chromatic aberration, are a type of misfocus. Specifically, petzval curvature is a type of misfocus with field angle, and axial chromatic aberration is misfocus with illumination wavelength. The effect of these aberrations could hypothetically be corrected within small regions of the image plane by changing the focus position. By adding a Wavefront Coding surface, the resulting MTFs and PSFs will be insensitive to the focus-like aberrations. However, the MTFs and PSFs will not be the same as an ideal in-focus MTF or PSF from a traditional imaging system. Image processing is required to restore the spatial character of the image and produce a sharp and clear image.


The form of the Wavefront Coding surface used in this example is











S


(

x
,
y

)


=





a
i



sign


(
x
)







x

r
n





b
i




+


a
i



sign


(
y
)







y

r
n





b
i





,
where




(

Eq
.




1

)








the sum is over the index i. Sign(x)=−1 for x<0, +1 for x≧0.


The parameter rn is a normalized radius value. This particular Wavefront Coding surface is rectangularly separable and allows for fast software processing. Other forms of Wavefront Coding surfaces are nonseparable and are the sum of rectangularly separable forms. One non-separable form is defined as:

S(r,θ)=Σαirai cos(biθ+φi),  (Eq. 2)

where the sum is again over the subscript i.


There are an infinite number of Wavefront Coding surface forms. The Wavefront Coding surface for singlet 100 in this example is placed at the stop surface (e.g., Wavefront Coding element 104) and has the parameterized equation:










S


(

x
,
y

)


=





a
i



sign


(
x
)







x

r
n





b
i




+


a
i



sign


(
y
)







y

r
n





b
i








(

Eq
.




3

)









    • and the parameter values for i=1, 2, 3 are:
      • a1=17.4171, b1=2.9911 a2=10.8895, b2=6 a3=3.8845, b3=20.1909 rn=0.459.






FIGS. 2-4 illustrate the performance of system 100 with wavefront coding element 104 removed, in order to illustrate design requirements and performance. FIG. 5 illustrates the performance of system 100 with wavefront coding element 104 in place, but without post processing filter 112. FIG. 6 illustrates the performance improvement with post processing 112. FIGS. 7a and 7b show PSFs for system 100 with both wavefront coding and post processing.



FIG. 2 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for the system of FIG. 1 with wavefront coding element 104 removed for illustrative purposes. Curves are shown for system 100 at half field angles of 0°, 10°, 20° and 25° off axis, and for illumination wavelengths of 450 nm, 550 nm, and 650 nm. A slope of zero indicates an in-focus condition. Thus on-axis rays are nearly in focus. But, for off axis field angles, the slopes of the transverse ray intercept curves increase dramatically.


There are numerous traditional methods of designing lenses. Most methods try to balance aberrations in order to improve the off-axis imaging at the expense of on-axis imaging or system simplicity. Traditional design methodologies do not attempt to make the transverse ray intercept curves straight lines. Instead, the traditional goal is to try to minimize the distance of a substantial portion of the transverse ray intercept curves from the horizontal axis. In most traditional systems the ray intercept curves are very different from straight lines, but in general lie closer to the horizontal axis than the off-axis curves shown in FIG. 2. In other words, in traditional systems the variation from a straight horizontal line is mainly in the straightness of the line, rather than in its slope.



FIG. 15
a (prior art) illustrates traditional transverse ray plots. These plots are taken from “Practical Computer Aided Lens Design”, Gregory Hallick Smith, William Bell, Inc., Richmond 1998. Note that the plot for near on axis rays do look similar to straight horizontal lines, and thus produce an in focus image. Refer also to FIG. 15b which shows associated MTFs for this system. The MTFs for near on axis rays are good. But as the rays move further off axis, the plots in FIG. 15a quickly deviate from being straight lines. Their associated MTFs in 15b also quickly degrade.


The transverse ray intercept curves of FIG. 2 are essentially straight lines, both on and off axis. This is a deliberate design goal, because the use of wavefront coding element 104 and post processing filter 112 can bring the captured images into focus, so long as the curves without wavefront coding are essentially straight lines through the origin, even if the lines are significantly sloped. The effect of the slope is removed by adding wavefront coding and post processing.


The aberration petzval curvature gives rise to transverse ray intercept curves, with slopes that are a function of field angle. Axial chromatic aberration gives rise to ray intercept curves with slopes that are a function of illumination wavelength. From FIG. 2, both of these features are part of the transverse ray intercept curves in this examplary design.



FIG. 3 illustrates distortion curves for system 100 of FIG. 1, with wavefront coding element 104 removed. The distortion is less than 0.2%. If distortion was large enough then additional digital processing might be required to reposition image points into a non-distorted image. Table 1 lists the optical prescription of this lens, again without the Wavefront Coding surface. Units are in mm, and the total length is 4.1 mm. Aspheric terms describe rotationally symmetric forms of rorder with order equal to 4, 6, 8, etc.













TABLE 1







Surface
Radius
Thickness
Material
Diameter





Obj
Inf
Inf

0


1
2.077
1.7133
PMMA
2


Stop
−2.236
0.6498

1.4


3
Inf
1.1
BK7
3.4


4
Inf
0.55
BK7
3.4


Img

0.1

3.4














Surface
Conic
4th Asph.
6th Asph.
8th Asph.





Obj
0


1
−1.299
−.000375
−.010932
−.00603


Stop
−3.140
−.01049


3
0


4
0


Img










FIG. 4 illustrates MTFs for system 100 of FIG. 1, without wavefront coding element 104. These MTFs correspond to the transverse ray aberration curves of FIG. 2. The MTFs are for half field angles 0, 15, and 25 degrees with wavelengths of 550 nm. The MTFs include the pixel MTF due to the Bayer color filter array detector with six micron pixels and 100% fill factor. The on-axis MTF is essentially diffraction limited. The large drop in MTF off-axis is due to the large amount of petzval curvature that is unavoidable in traditional single lens designs with a large field of view. This singlet without wavefront coding 104 does not meet the MTF specification of greater than 40% modulation at 40 lp/mm for all field angles. But, due to its design for Wavefront Coding, modifying the second surface with a Wavefront Coding surface on element 104 will lead to acceptable MTF modulation values when combined with digital processing. By changing the wavefront coding element 104 either more or less sensitivity to misfocus aberrations can be formed.



FIG. 5 illustrates MTFs for system 100 of FIG. 1 with wavefront coding element 104 in place but without post processing filter 112. The system is focused at infinity. The half field angles shown are 0, 15, and 25 degrees. The wavelength is 550 nm. These MTFs have very little variation with field angle due to the addition of the Wavefront Coding surface, as compared to FIG. 4. Pixel MTF due to the Bayer CFA has again been included. The Bayer CFA with 6 μm 100% fill factor pixels has a Nyquist spatial frequency of about 42 lp/mm. Note that there are purposely no zeros in the MTFs below the detector's Nyquist spatial frequency.



FIG. 6 illustrates MTFs for system 100 of FIG. 1, with wavefront coding element 104 and after processing filter 112. Applying a single digital filter in processing block 112 gives the optical/digital MTFs shown in FIG. 6. The MTFs before filtering are as shown in FIG. 5. The MTFs after processing filter 112 at the spatial frequency of 40 lp/mm are all above 40% as specified by the design specifications. The level of the MTFs after processing could further be increased beyond that of the traditional diffraction-limited case, but possibly at the expense of a lower signal to noise ratio of the final image.



FIGS. 7
a and 7b illustrate sampled two-dimensional PSFs for system 100 of FIG. 1, with wavefront coding element 104 and after processing filter 112. FIG. 7a shows the processed PSFs when the object is at infinity. FIG. 7b shows the processed PSFs when the object is at 30 cm. These PSFs are for 550 nm wavelength and half field angles of 0, 15, and 25 degrees. After filtering, these PSFs have nearly ideal shapes. This singlet 100 when combined with wavefront coding and digital filtering thus easily meets the system specifications.


In one preferred embodiment, processing filter 112 is a rectangularly separable digital filter. Rectangularly separable filters are more computationally efficient (counting the number of multiplications and additions) than full 2D kernel filters. Separable filtering consists of filtering each row of the image with the 1D row filter and forming an intermediate image. The columns of the intermediate image are then filtered with the 1D column filter to provide the final in-focus image. The separable filter used for this exemplary singlet has the same filters for rows and columns.



FIG. 16 illustrates an example of a one dimensional separable filter as used as processing filter 112. Coefficients are represented as real values, but can be quantified into integer values for fixed point computations. The sum of the filter coefficients equals approximately 1. The coefficients were determined with a least squares algorithm by minimizing the squared difference between the filtered wavefront coded optical transfer functions (OTF) and a desired MTF with a value greater than 40% at 40 lp/mm. The width of the filtered PSFs of FIGS. 7a and 7b are also minimized with the least squares algorithm. Changes in the filtered PSFs are minimized in regions away from their central peaks. FIG. 17 illustrates the magnitude of the transfer function of the filter of FIG. 16. The zero spatial frequency value is 1.


Wavefront coding microscope objective 800 is designed to meet the following objectives:

    • magnification=10×
    • N.A.=0.15
    • Distortion<1%
    • 7 micron square pixels with 100% fill factor
    • VGA grayscale detector
    • Optical material: PMMA.


The depth of field of traditional microscope objectives is described by the numerical aperture (NA) and the imaging wavelength. The wavefront coding objective can have a depth of field that is independent of the NA of the objective. The depth of field can be large enough to introduce prospective distortion to the final images. Regions of the object that are farther from the objective will appear smaller than regions of the object closer to the objective. Both near and far regions can image clearly with a large depth of field. Since the depth of field of traditional objectives is small, prospective distortion is not common with traditional objectives, especially with high NA. Prospective distortion can be reduced or eliminated by designing wavefront coding objectives that are telecentric. In telecentric imaging systems the magnification of the object is independent of the distance to the object.



FIG. 9 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for system 800 of FIG. 8, with wavefront coding element 806 removed. The ray intercept curves of FIG. 9 describe the performance of the system at wavelengths 450 nm, 550 nm and 650 nm for the image field heights of on-axis 0.0 mm, 1.2 mm and 2.8 mm. Full scale is +/−100 microns. Notice that each of these ray intercept curves vary mainly in slope, as required by the present invention (e.g., the shape of the curves are essentially the same when the slope components of the curves are not considered). While these plots are not quite as close to perfectly straight lines as those in FIG. 2, they can still be considered to be sloped substantially straight lines.


The major aberration apparent in this design is axial chromatic aberration, with a smaller amount of petzval curvature and lateral chromatic aberration. Without Wavefront Coding this lens would image poorly in white light, although it might produce a reasonable image in a single color. Tables 2 and 3 give the optical prescription for this system. Table 3 gives rotationally symmetric aspheric terms for the system.














TABLE 2






Radius






Surface
of curv
Thickness
Material
Diameter
Conic




















Obj
Inf
2.45906

0.6357861
0


1
  1.973107
1.415926
Acrylic
1.2
−1.680295


2
−2.882275
0.7648311

1.2
−1.029351


Stop
Inf
0.1
Acrylic
0.841
0


4
Inf
25.83517

0.841
0


Img



6.173922






















TABLE 3





Surface
4th
6th
8th
10th
12th
14th





















1
0.013191
−0.22886
0.139609
−0.250285
−0.18807
0.193763


2
−0.008797
0.017236
0.007808
−0.223224
0.160689
−0.274339


Stop
−0.018549
−0.010249
−0.303999
1.369745
11.245778
−59.7839958









Wavefront coding element 806 is placed at aperture stop 804, and is given by the rectangularly separable form of:











S


(

x
,
y

)


=





a
i



sign


(
x
)







x

r
n





b
i




+


a
i



sign


(
y
)







y

r
n





b
i





,




(

Eq
.




4

)









    • and the parameter values for i=1, 2 are:
      • a1=1.486852, b1=3.0 a2=3.221235, b2=10.0 rn=0.419.






FIG. 10 illustrates MTFs for system 800 of FIG. 8 with wavefront coding, without wavefront coding, and with both wavefront coding and post processing-filtering, for illumination at 450 nm. Image field heights are 0.0 mm, 1.2 mm and 2.8 mm.



FIG. 11 shows a passive athermalized IR imaging system 1100 according to the present invention. Lens 1102 is composed of silicon. Lens 1104 is composed of germanium. Lens 1106 is composed of silicon. The aperture stop 1108 is at the back surface of lens 1106. Wavefront coding surface 1110 is on the back surface of lens 1106 (at aperture stop 1108). Processing block 1112 processes the image.


Design goals are as follows:

    • F/2
    • f=100 mm
    • 3 deg half field of view
    • Illumination wavelength=10 microns
    • 20 micron square pixels, 100% fill factor
    • Silicon & germanium optics
    • Aluminum mounts
    • Temperature range of −20° C. to +70° C.


Combined constraints of low F/#, inexpensive mounting material, and wide operating temperature make this design very difficult for traditional optics. Table 4 gives the optical prescription of system 1100.














TABLE 4






Radius






Surface
of curv
Thickness
Material
Diameter
Conic




















Obj
Inf
Inf

0.6357861
0


1
58.6656
5.707297
Silicon
60
0


2
100.9934
22.39862

57.6
0


3
447.046
8.000028
Germanium
32.4
0


4
50.88434
17.54754

32.4
0


5
455.597
7.999977
Silicon
29.5
0


Stop
−115.6064
57.9967

29.5
0


Img



6.173922









The Wavefront Coding surface for IR system 100 of this example the parameterized equation:











S


(

x
,
y

)


=





a
i



sign


(
x
)







x

r
n





b
i




+


a
i



sign


(
y
)







y

r
n





b
i





,




(

Eq
.




5

)









    • and the parameter values for i=1, 2 are:
      • a1=16.196742, b1=3.172720 a2=−311.005659, b2=20.033486 rn=18.314428.






FIG. 12 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for system 1100 of FIG. 11, with wavefront coding element 1110 removed. The ray intercept curves of FIG. 11 describe the performance of system 1100 at a wavelength of 10 microns, on axis field points for ambient temperatures of +20° C., −20° C., and +70° C. Full scale is +/−100 microns. Again these plots can be considered to be substantially straight lines. While they have more “wiggle” than the plots of FIGS. 2 and 9, in each case, if the plot were fitted to the closest straight line, the wiggles would not stray far from the line.



FIG. 13 illustrates on-axis MTF curves for system 1100 without wavefront coding at three temperatures (+20°, −20° and +70°). Performance is nearly diffraction limited at +20°, but drops dramatically with changes in temperature.



FIG. 14 illustrates MTFs for system 1100 of FIG. 11, with wavefront coding, both with and without filtering by processing block 1112. The illumination wavelength is 10 microns. The MTFs without filtering are significantly different from diffraction limited MTFs, but vary little with temperature. Thus, processing block 1112 is able to correct the images. The MTFs after filtering are near diffraction limited for all three temperatures (+20°, −20° and +70°). Filtered MTFs extend only to the Nyquist frequency of the 20 micron detector, or 25 lp/mm.


One preferred way to define what constitutes a transverse ray intercept curve that is a “substantially straight line” is to look at the MTFs over the entire useful range of the system with wavefront coding applied. These curves must be very close to each other, in order for the post processing to be able to move all MTFs to the desired performance level. Compare the MTFs of FIG. 4 (e.g., no wavefront coding) to those of FIG. 5 (e.g., wavefront coding). The FIG. 5 MTF curves are very close together. In FIG. 6, post processing has moved the MTFs to an acceptable level. More sophisticated post processing could improve the MTFs much further, to nearly diffraction limited performance, so long as the preprocessing curves are close enough together. Post processing could not accomplish this goal with the curves of FIG. 4, because they are not close together.



FIG. 10 also illustrates this concept. The MTF curves without wavefront coding do not track each other. The curves with wavefront coding are close together. Thus, the curves with wavefront coding after post processing are very good.


In FIGS. 13 and 14, the MTF curves without wavefront coding (e.g., FIG. 13) are far apart, but the MTF curves with wavefront coding (e.g., FIG. 14) are close enough together that the post processing curves are nearly diffraction limited.


In FIG. 13, it can be seen that the on-axis MTF (at +20° C., meaning essentially no temperature related misfocus) is essentially diffraction limited. This is the best case traditional MTF for this system. The MTFs at other temperatures, though, have greatly reduced performance due to temperature related effects.


Now consider the upper set of MTFs of FIG. 14, with wavefront coding and after processing. The MTFs are nearly identical. Thus the associated transverse ray intercept curves can be considered to be substantially straight lines, since they are close enough to straight to give essentially ideal MTFs.


For other systems, a lower level of performance may be acceptable, and consequently the deviation of the transverse ray intercept curves from a straight line may be larger. Such a situation would result if a fast lens (say F/2) is used with a digital detector, with, for example, 10 micron pixels. In 500 nm illumination, the diffraction limited MTF for the optical system would extend to 1000 lp/mm, but the highest spatial frequency that could be measured by the detector would be only 50 lp/mm. Thus, aberrations that alter the highest spatial frequencies of the optics are of no consequence, because they will not be measured by the detector. Note that while the transverse ray intercept curves may have noticeable deviations from a straight line (corresponding to the higher spatial frequencies), the transverse ray intercept curves are still “substantially straight lines” according to our definition, because the MTFs with wavefront coding are close together. The MTFs under consideration are those that correspond to the useful range of the particular system being considered.


Compare the MTFs of FIGS. 6, 10, and 14 with wavefront coding (e.g., useful range MTFs for embodiments of the present invention) with the MTFs resulting from traditional design of FIG. 15b. These traditional MTFs are quite far apart, so post processing could never give adequate performance. These curves are generally 50% or more apart, whereas the wavefront coding curves in FIGS. 6, 10, and 14, are within an average of 20% of each other over the useful range of the system, and, in the case of FIG. 10, are within an average of 10% of each other over the useful range of the system.


The major aberration apparent in the design of FIG. 11 is temperature related misfocus. Without Wavefront Coding, this lens would image poorly over a range of temperatures.

Claims
  • 1. An infrared imaging system for imaging infrared radiation from an object to a detector, comprising: optics configured for producing, with the infrared radiation, transverse ray intercept curves that are substantially straight, sloped lines;a wavefront coding element configured for modifying phase of a wavefront of the infrared radiation such that a modulation transfer function of the optics and wavefront coding element, combined, has reduced variation, over a range of spatial frequencies and caused, in part, by thermal variation within the imaging system, as compared to a modulation transfer function of the optics alone, without the wavefront coding element; anda post processor configured for generating an improved modulation transfer function, over the range of spatial frequencies, as compared to the modulation transfer function of the optics and the wavefront coding element.
  • 2. The infrared imaging system of claim 1, wherein the wavefront coding element is formed on a surface of the optics.
  • 3. The infrared imaging system of claim 1, wherein the system includes an aperture stop, and wherein the wavefront coding element is disposed substantially at the aperture stop.
  • 4. The infrared imaging system of claim 1, wherein the optics consist of a single lens.
  • 5. The infrared imaging system of claim 4, wherein the lens includes a front surface facing the object and a back surface opposite the front surface, and wherein the wavefront coding element is formed on one of the front surface and the back surface.
  • 6. The infrared imaging system of claim 1, wherein the wavefront coding element is further configured such that the modulation transfer function of the optics and wavefront coding element exhibits the reduced variation over a field of view of at least approximately fifty degrees.
  • 7. The infrared imaging system of claim 1, wherein the post processor includes a digital filter.
  • 8. The infrared imaging system of claim 7, wherein the digital filter includes a separable filter.
  • 9. The infrared imaging system of claim 1, wherein the wavefront coding element forms one of a rectangularly separable surface, a non-separable surface, and a surface having a sum of rectangularly separable forms.
  • 10. In a system for imaging infrared radiation from an object to a detector, the system including optics configured for producing, with the infrared radiation, transverse ray intercept curves that are substantially straight, sloped lines, an improvement comprising: a wavefront coding element configured for modifying phase of a wavefront of the infrared radiation such that a modulation transfer function of the optics and wavefront coding element, combined, has reduced variation, over a range of spatial frequencies and caused, in part, by thermal variation within the system, as compared to a modulation transfer function of the optics alone, without the wavefront coding element; anda post processor configured for generating an improved modulation transfer function, over the range of spatial frequencies, as compared to the modulation transfer function of the optics and the wavefront coding element.
  • 11. In the system of claim 10, the further improvement wherein the wavefront coding element is formed on a surface of the optics.
  • 12. In the system of claim 11, the further improvement wherein the wavefront coding element is formed on a surface of the optics furthest from the object.
  • 13. In the system of claim 10, the further improvement wherein the optics consists of a single lens.
  • 14. In the system of claim 10, the further improvement wherein the wavefront coding element is further configured such that the modulation transfer function of the optics and wavefront coding element exhibits the reduced variation over a field of view of at least approximately fifty degrees.
  • 15. In the system of claim 10, the further improvement wherein the post processor includes a digital filter.
  • 16. In the system of claim 15, the further improvement wherein the digital filter includes a separable filter.
  • 17. In the system of claim 10, the further improvement wherein the wavefront coding element forms one of a rectangularly separable surface, a non-separable surface, and a surface having a sum of rectangularly separable forms.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of commonly-owned and U.S. patent application Ser. No. 11/192,572, filed 29 Jul. 2005, now U.S. Pat. No. 7,106,510 which is a continuation of U.S. patent application Ser. No. 10/407,708, filed Apr. 4, 2003, now U.S. Pat. No. 6,940,649, which is a continuation of U.S. patent application Ser. No. 09/747,788, now abandoned, filed Dec. 22, 2000. This patent application is also a continuation-in-part of commonly-owned and U.S. patent application Ser. No. 09/070,969, filed May 01, 1998, now U.S. Pat. No. 7,218,448 which is a continuation-in-part of U.S. patent application Ser. No. 08/823,894, filed Mar. 17, 1997, now U.S. Pat. No. 5,748,371, issued May 5, 1998, which is a continuation of U.S. patent application Ser. No. 08/384,257, filed Feb. 3, 1995, now abandoned. Each of the above-mentioned patents and patent applications are incorporated herein by reference. U.S. patent application Ser. No. 09/875,435, filed Jun. 6, 2001, now U.S. Pat. No. 6,525,302, U.S. patent application Ser. No. 09/875,766, filed Jun. 6, 2001, and U.S. patent application Ser. No. 09/766,325 filed Jan. 19, 2001, now U.S. Pat. No. 6,873,733, issued Mar. 29, 2005 are each incorporated herein by reference.

US Referenced Citations (104)
Number Name Date Kind
2959105 Sayanagi Nov 1960 A
3054898 Westover et al. Sep 1962 A
3305294 Alvarez Feb 1967 A
3583790 Baker Jun 1971 A
3614310 Korpel Oct 1971 A
3856400 Hartmann et al. Dec 1974 A
3873958 Whitehouse Mar 1975 A
4062619 Hoffman Dec 1977 A
4082431 Ward, III Apr 1978 A
4174885 Joseph et al. Nov 1979 A
4178090 Marks et al. Dec 1979 A
4255014 Ellis Mar 1981 A
4275454 Klooster, Jr. Jun 1981 A
4276620 Kahn et al. Jun 1981 A
4308521 Casasent et al. Dec 1981 A
4349277 Mundy et al. Sep 1982 A
4466067 Fontana Aug 1984 A
4480896 Kubo et al. Nov 1984 A
4573191 Kidode et al. Feb 1986 A
4575193 Greivenkamp, Jr. Mar 1986 A
4580882 Nuchman et al. Apr 1986 A
4589770 Jones et al. May 1986 A
4642112 Freeman Feb 1987 A
4650292 Baker et al. Mar 1987 A
4655565 Freeman Apr 1987 A
4725881 Buchwald Feb 1988 A
4734702 Kaplan Mar 1988 A
4794550 Greivenkamp, Jr. Dec 1988 A
4804249 Reynolds et al. Feb 1989 A
4825263 Desjardins et al. Apr 1989 A
4827125 Goldstein May 1989 A
4843631 Steinpichler et al. Jun 1989 A
4936661 Betensky et al. Jun 1990 A
4964707 Hayashi Oct 1990 A
4989959 Plummer Feb 1991 A
5003166 Girod Mar 1991 A
5076687 Adelson Dec 1991 A
5102223 Uesugi et al. Apr 1992 A
5128874 Bhanu et al. Jul 1992 A
5142413 Kelly Aug 1992 A
5165063 Strater et al. Nov 1992 A
5166818 Chase et al. Nov 1992 A
5193124 Subbarao Mar 1993 A
5218471 Swanson et al. Jun 1993 A
5243351 Rafanelli et al. Sep 1993 A
5248876 Kerstens et al. Sep 1993 A
5260727 Eisner et al. Nov 1993 A
5270825 Takasugi et al. Dec 1993 A
5270861 Estelle Dec 1993 A
5270867 Estelle Dec 1993 A
5280388 Okayama Jan 1994 A
5299275 Jackson et al. Mar 1994 A
5301241 Kirk Apr 1994 A
5307175 Seachman Apr 1994 A
5317394 Hale et al. May 1994 A
5337181 Kelly Aug 1994 A
5426521 Chen et al. Jun 1995 A
5438366 Jackson et al. Aug 1995 A
5442394 Lee Aug 1995 A
5444574 Ono et al. Aug 1995 A
5465147 Swanson Nov 1995 A
5473473 Estelle et al. Dec 1995 A
5476515 Kelman et al. Dec 1995 A
5521695 Cathey, Jr. et al. May 1996 A
5532742 Kusaka et al. Jul 1996 A
5555129 Konno et al. Sep 1996 A
5565668 Reddersen et al. Oct 1996 A
5568197 Hamano Oct 1996 A
5572359 Otaki et al. Nov 1996 A
5610684 Shiraishi Mar 1997 A
5640206 Kinoshita et al. Jun 1997 A
5706139 Kelly Jan 1998 A
5748371 Cathey, Jr. et al. May 1998 A
5751475 Ishiwata et al. May 1998 A
5756981 Roustaei et al. May 1998 A
5969853 Takaoka Oct 1999 A
5969855 Ishiwata et al. Oct 1999 A
6021005 Cathey, Jr. et al. Feb 2000 A
6025873 Nishioka et al. Feb 2000 A
6034814 Otaki Mar 2000 A
6037579 Chan et al. Mar 2000 A
6069738 Cathey, Jr. et al. May 2000 A
6091548 Chen Jul 2000 A
6097856 Hammond, Jr. Aug 2000 A
6121603 Hang et al. Sep 2000 A
6128127 Kusaka Oct 2000 A
6133986 Johnson Oct 2000 A
6144493 Okuyama et al. Nov 2000 A
6172723 Inoue et al. Jan 2001 B1
6172799 Raj Jan 2001 B1
6208451 Itoh Mar 2001 B1
6218679 Takahara et al. Apr 2001 B1
6219113 Takahara Apr 2001 B1
6248988 Krantz Jun 2001 B1
6285345 Crossland et al. Sep 2001 B1
6288382 Ishihara Sep 2001 B1
6337472 Garner et al. Jan 2002 B1
6525302 Dowski et al. Feb 2003 B2
6536898 Cathey et al. Mar 2003 B1
6873733 Dowski, Jr. Mar 2005 B2
6940649 Dowski, Jr. Sep 2005 B2
20030173502 Dowski et al. Sep 2003 A1
20040145808 Cathey et al. Jul 2004 A1
20050264886 Dowski, Jr. Dec 2005 A1
Foreign Referenced Citations (13)
Number Date Country
0531926 Mar 1993 EP
0584769 Mar 1994 EP
0618473 Oct 1994 EP
0742466 Nov 1996 EP
0759573 Feb 1997 EP
0791846 Aug 1997 EP
0981245 Jan 2006 EP
2278750 Dec 1994 GB
2000-98301 Apr 2000 JP
WO 9624085 Aug 1996 WO
WO 9957599 Nov 1999 WO
WO 0052513 Sep 2000 WO
WO 02052331 Jul 2002 WO
Related Publications (1)
Number Date Country
20060291058 A1 Dec 2006 US
Continuations (5)
Number Date Country
Parent 11192572 Jul 2005 US
Child 11511022 US
Parent 10407708 Apr 2003 US
Child 11192572 US
Parent 09747788 Dec 2000 US
Child 10407708 US
Parent 11511022 US
Child 10407708 US
Parent 08384257 Feb 1995 US
Child 08823894 US
Continuation in Parts (2)
Number Date Country
Parent 09070969 May 1998 US
Child 11511022 US
Parent 08823894 Mar 1997 US
Child 09070969 US