Waveguide optoelectronic device

Information

  • Patent Grant
  • 11105975
  • Patent Number
    11,105,975
  • Date Filed
    Friday, December 1, 2017
    6 years ago
  • Date Issued
    Tuesday, August 31, 2021
    2 years ago
Abstract
A waveguide optoelectronic device comprising a rib waveguide region, and method of manufacturing a rib waveguide region, the rib waveguide region having: a base of a first material, and a ridge extending from the base, at least a portion of the ridge being formed from a chosen semiconductor material which is different from the material of the base wherein the silicon base includes a first slab region at a first side of the ridge and a second slab region at a second side of the ridge; and wherein: a first doped region extends along: the first slab region and along a first sidewall of the ridge, the first sidewall contacting the first slab region; and a second doped region extends along: the second slab region and along a second sidewall of the ridge, the second sidewall contacting the second slab region.
Description
FIELD

One or more aspects of embodiments according to the present invention relate to an optoelectronic device, and more particularly to an optoelectronic device suitable for use with silicon rib waveguides.


BACKGROUND

The ability of silicon photonic systems to provide improvements upon silicon based microelectronics has long been recognized. Advances in silicon photonics underpin the success of such systems and there is an ever increasing desire in particular for faster, more efficient optical modulators and photodetectors that are compatible with silicon photonic systems. Electro-absorption modulators (EAMs) including SiGe material have been found to deliver state of the art high-speed performance since the presence of germanium gives more freedom to optimize the device. However, when it comes to processing and manufacturing, meeting the slab tolerance requirements for a SiGe based waveguide modulator in large waveguide platform is challenging, particularly as a result of the fact that the waveguide height to slab thickness ratio is large.


SUMMARY

Accordingly, the present invention aims to solve the above problems by providing, according to a first aspect of embodiments, a waveguide optoelectronic device, comprising a rib waveguide region, the rib waveguide region having: a silicon base, and a ridge extending from the base, at least a portion of the ridge being formed from an semiconductor material which is different from the base; wherein the silicon base includes a first slab region at a first side of the ridge and a second slab region at a second side of the ridge; and wherein: a first doped region extends along: the first slab region and along a first sidewall of the ridge, the first sidewall contacting the first slab region; and a second doped region extends along: the second slab region and along a second sidewall of the ridge, the second sidewall contacting the second slab region. The optoelectronic device may be a modulator or a photodetector. If the optoelectronic device is a modulator, the waveguide ridge region may be referred to as a waveguide modulation ridge region. The term ‘rib’ may be used interchangeably with the term ‘ridge’, where what may generally be meant is that an optical mode of the rib waveguide device is chiefly confined within the ridge region of the waveguide. The portion of the rib may be a horizontal portion or a horizontal layer i.e. a portion of the rib which extends in a direction parallel to an uppermost surface of the slab.


The semiconductor material of the ridge may be silicon germanium. However, other semiconductor materials may also be used, in particular materials. It is also envisaged that the material of the ridge may take the form of metal alloys of silicon, germanium or SiGe. For example, a GeSn or SiGeSn alloy grown on Si.


In this way, the slab contact for applying a voltage across the semiconductor junction can be in silicon. Typically, contacts for applying a bias across a waveguide device will be made from a metal. Since the series resistance of silicon is lower than other materials (such as SiGe), a metal/silicon interface at the contact point will provide a better contact resistance than would be provided, for example, at a metal SiGe interface. By producing an optoelectronic device structure with at least a portion of the ridge being formed from a different material from the base, the resulting structure maintains the advantages associated with the chosen ridge material, whilst also enjoying the advantages provided by a silicon base layer.


In this invention, meeting silicon slab tolerance requirements in terms of processing is easier and more relaxed as compared to where the slab is formed of SiGe. The structure of the present invention therefore provides the advantages associated with SiGe waveguide EAMs whilst solving the above mentioned problems with slab tolerance requirements.


Optional features of the invention will now be set out. These are applicable singly or in any combination with any aspect of the invention.


Optionally, the waveguide electro-absorption modulator or photodiode further comprises: a first electrical contact located on the first slab region of the silicon base; and a second electrical contact located on the second slab region of the silicon base.


Optionally, the first doped region is n doped and the second doped region is p doped.


Optionally, the ridge comprises: a lower ridge portion in contact with and extending away from the base; the base and lower ridge portion both being formed from silicon; and an upper ridge portion in contact with and extending away from the lower ridge portion, the upper ridge portion being formed from the semiconductor material which is different from that of the base; wherein the first doped region which extends along the first sidewall includes a lower sidewall portion located at the first ridge portion and an upper sidewall region located at the second ridge portion; and the second doped region which extends along the second sidewall includes a lower sidewall portion located at the first ridge portion and an upper sidewall region located at the second ridge portion.


In this way, the ridge (i.e. the rib section of the EAM waveguide) will also include a portion made from the base material (in this case silicon). This advantageously optimizes the optical mode overlap between the waveguide device and the input (and output) passive silicon waveguides which couple light into and out of the waveguide device, thereby improving overall loss.


In addition, the present invention enables the height of the chosen semiconductor material of the ridge to be varied without necessarily varying the height of the overall ridge (since some of the ridge is made up of the material used for the base rather than being made up of the chosen semiconductor material). In embodiments where the chosen semiconductor material is SiGe, this can advantageously lead to the production of waveguide devices with a higher bandwidth. This is because the capacitance of the device depends upon the height of the SiGe region. By enabling the SiGe region to be reduced in height, the capacitance can be lowered, and the bandwidth can therefore be increased.


Optionally, the lower sidewall portions and slab regions have a higher dopant concentration than the upper sidewall portions.


Optionally the dopant concentrations are graded such that the lower sidewall portions have a higher dopant concentration than the upper sidewall dopant concentrations; and the slab regions have higher dopant concentrations than the lower sidewall portions. For example, on the first doped region, the doped portion in the upper sidewall could be n doped; the doped portion at the lower sidewall could be n+ doped; and the doped portion at the slab could be n++ doped. The same pattern could be followed for the p doped second doped region, ranging from p++ at the slab; p+ at the lower sidewall portion; and p doped at the upper sidewall portion. By employing a graded dopant structure, the dopant levels at the contact points on the slab can be maximized without detrimentally affecting the mode of light travelling through the waveguide.


Optionally, the distance (dnp2, dpp2) by which the first and second lower sidewall portions extend into the ridge is greater than the distance (dn, dp) by which the first and second upper sidewall portions extend into the ridge. That is to say, the thickness of the doped regions at the sidewalls may be thicker in the lower ridge portion as compared to in the upper ridge portion.


In this way, the series resistance (ohmic resistance) of the device is reduced which improves the overall RF bandwidth. In addition, by achieving such low series resistance (ohmic resistance) the maximum optical power handling of the device is also improved.


Optionally, the waveguide electro-absorption modulator or photodiode may further comprise: an input rib waveguide coupled to the input of the rib waveguide region to couple light into the rib waveguide region; and an output rib waveguide coupled to the output of the rib waveguide region to couple light out of the rib waveguide region.


Optionally, one or both of the input rib waveguide and output rib waveguide may be formed entirely from silicon.


Optionally, the height of the base (h2) and the height of the lower sidewall portions (h3) are chosen such that the mode center of the rib waveguide modulator or photodiode is located at the same height above the base as the mode center of the input and/or output rib waveguide(s).


In such embodiments, it should be understood that the height of the lower sidewall portions correspond to the distance by which they extend from the slab. The ridge extends from the base in a direction which is perpendicular or substantially perpendicular to the upper surface of the base. The base is typically formed on an insulating layer such as a buried oxide (BOX) layer (not shown), the lower surface being in contact with the insulating layer, and the upper surface being the opposing surface, i.e. that which is not in contact with the insulating layer.


The height may be thought of as extending in a vertical direction, and the upper surface of the base (and hence the upper surface of each of the first slab and second slab) as lying in a horizontal plane, that is to say, any plane parallel to the insulating layer upon which the base is located.


The device may further comprise an epitaxial crystalline cladding layer disposed between the silicon base and a silicon substrate; wherein the silicon substrate is located on an opposite side of the silicon base to the ridge. The device may further comprise a buried oxide layer, disposed on opposing horizontal sides of the epitaxial crystalline cladding layer, and wherein the epitaxial crystalline cladding layer is formed of a material which is different to the buried oxide layer. By horizontal, a direction may by meant which is perpendicular to the direction in which the ridge extends. The epitaxial crystalline cladding layer may be formed of a material which is not buried oxide. The epitaxial crystalline cladding layer may be formed, for example, of Si or SiGe.


According to a second aspect of embodiments, there is provided a method of manufacturing a rib waveguide modulation region, the method comprising the steps of:

    • providing a layer of a first semiconductor material;
    • etching a cavity into the layer, the cavity having a base, a first cavity edge and a second cavity edge;
    • implanting the base with a first dopant to create a first doped slab region; implanting the base with a second dopant to create a second doped slab region laterally spaced from the first slab region;
    • growing a chosen semiconductor material within the cavity, the chosen semiconductor material being a different material from the base layer;
    • etching the grown chosen semiconductor material to form a chosen semiconductor material waveguide ridge which lies within the cavity and extends upwards from base and overlies a portion of the first doped slab region and a portion of the second doped slab region; the waveguide having a first sidewall which contacts the first slab doped region and a second sidewall which contacts the second doped slab region;
    • implanting the first sidewall with the first dopant;
    • implanting the second sidewall with the second dopant; and
    • etching away the first cavity edge and the second cavity edge.


The method may typically further comprise the step of annealing after first slab region and second slab region have been implanted. The method may also typically comprise the step of annealing after first sidewall and second sidewall have been implanted.


The step of a cavity into the silicon layer may be a deep etching step, the etch having a depth of at least 2 μm.


In some embodiments, the deep etch has an etch depth which is no less than 2 μm and no more than 3 μm.


In some embodiments, the deep etch has an etch depth which is no less than 2.2 μm and no more than 2.9 μm.


Optionally, the method further comprises the step of creating a lower ridge portion made of the first semiconductor material directly underneath the waveguide ridge of the chosen semiconductor material by:

    • etching the doped first slab region by a height h3 which is less than its total depth; and
    • etching the doped second slab region by a height h3 which is less than its total depth.


The first material and the chosen semiconductor material are typically semiconductor materials which are suitable for use within the field of optoelectronics but which have different properties to one another. In particular, the first material may be chosen such that it has a series resistance which is lower than the chosen semiconductor material. As previously described, in some embodiments, the first material is silicon and the chosen semiconductor material is SiGe. In other embodiments, the first material is silicon, and the chosen semiconductor material is germanium or a metal alloy of silicon, germanium or SiGe. For example, a GeSn alloy grown on Si or on a III-V semiconductor. In yet further embodiments, the first material is a III-V semiconductor and the chosen semiconductor material is a different III-V material.


According to a third aspect of embodiments of the present invention, there is provided a waveguide optoelectronic device, comprising a rib waveguide, the rib waveguide having: a base formed from a first material, and a ridge extending from the base, at least a portion of the ridge being formed from a second material which is different from the first material; wherein the base includes a first slab region at a first side of the ridge and a second slab region at a second side of the ridge; and wherein: a first doped region extends along: the first slab region and along a first sidewall of the ridge, the first sidewall contacting the first slab region; and a second doped region extends along: the second slab region and along a second sidewall of ridge, the second sidewall contacting the second slab region; and wherein the ridge comprises: a lower ridge portion in contact with and extending away from the base; the base and lower ridge portion both being formed from the first material; and an upper ridge portion in contact with and extending away from the lower ridge portion, the upper ridge portion being formed from the second material.


The first and second material are typically first and second semiconductor materials which are suitable for use within the field of optoelectronics. In some embodiments, the first semiconductor material has a series resistance which is lower than that of the second material. As previously described, in some embodiments, the first material is silicon and the second material is SiGe. In other embodiments, the first material is silicon, and the second material is a metal alloy of silicon, germanium or SiGe. For example, the second material may be a SiGeSn or GeSn alloy grown on Si or a III-V semiconductor. In yet further embodiments, the first material is a III-V semiconductor and the second material is a different III-V material.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will be appreciated and understood with reference to the specification, claims, and appended drawings wherein:



FIG. 1 depicts a schematic diagram of a waveguide device in the form of a waveguide electro-absorption modulator (EAM) according to an embodiment of the present invention;



FIG. 2A depicts a cross section along the line A-A′ in FIG. 1;



FIG. 2B depicts a cross section along the line B-B′ in FIG. 1;



FIG. 3A depicts the cross section of FIG. 2A with an optical mode shown propagating through the waveguide;



FIG. 3B depicts the cross section of FIG. 2B with an optical mode shown propagating through the waveguide;



FIG. 4A depicts a cavity etching step in a method of manufacturing a rib waveguide modulation region according to an embodiment of the present invention;



FIG. 4B depicts an implantation step in the method of manufacturing a rib waveguide modulation region;



FIG. 4C depicts a further implantation step in the method of manufacturing a rib waveguide modulation region;



FIG. 4D depicts an annealing step in the method of manufacturing a rib waveguide modulation region;



FIG. 4E depicts a SiGe growth step in the method of manufacturing a rib waveguide modulation region;



FIG. 4F depicts a further etch step in the method of manufacturing a rib waveguide modulation region;



FIG. 4G depicts a sidewall implantation step in the method of manufacturing a rib waveguide modulation region;



FIG. 4H depicts a further sidewall implantation step in the method of manufacturing a rib waveguide modulation region;



FIG. 4I depicts a further annealing step in the method of manufacturing a rib waveguide modulation region;



FIG. 4J depicts a further etch step in the method of manufacturing a rib waveguide modulation region;



FIG. 5 depicts an alternative embodiment of a waveguide electro-absorption modulator according to the present invention;



FIG. 6 depicts a further alternative embodiment of a waveguide electro-absorption modulator according to the present invention, this embodiment including further grading within the dopant regions;



FIG. 7a depicts a cross-section along the line A-A′ of a variant device;



FIG. 7b depicts a cross-section along the line B-B′ of a variant device; and



FIG. 8 depicts a cross-section along the line A-A′ of a further variant device.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments of a waveguide optoelectronic device (EAM) and/or method of manufacturing a rib waveguide modulation region provided in accordance with the present invention and is not intended to represent the only forms in which the present invention may be constructed or utilized. The description sets forth the features of the present invention in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and structures may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention. As denoted elsewhere herein, like element numbers are intended to indicate like elements or features. A waveguide optoelectronic device 1 according to a first embodiment of the present invention is described below with reference to FIGS. 1, 2A, 2B, 3A and 3B.


As shown in FIG. 1, the waveguide device 1 is suitable for coupling to standard optical input and output waveguides 2a, 2b such as silicon rib waveguides. Whilst this coupling could be achieved by direct coupling between input/output waveguides and the device, in the embodiment shown, coupling is achieved by way of an input taper 3a and an output taper 3b which allows for the waveguide device to be fabricated using smaller waveguide dimensions than those of the input/output waveguides 2a, 2b, thereby resulting in faster speeds of operation.



FIG. 2A and FIG. 3A each show a cross section of the waveguide optoelectronic device taken at line A-A′ of FIG. 1, that is to say, transverse to the direction of the propagation of light along the waveguides. FIG. 2B and FIG. 3B each show a cross section taken at line B-B′ of FIG. 1, at the output at the taper portion 3b which couples to the output rib waveguide 2b. Again, this cross section is taken transverse to the direction of the propagation of light.


The waveguide optoelectronic device 1 comprises a ridge modulation or photodetection region with a height hWG; the ridge modulation region being made up of a base 11 manufactured from a first waveguide material M1 and a ridge 12 manufactured from a second waveguide material M2 which is different from the first waveguide material.


The base 11 includes a first slab region extending away from a first sidewall of the waveguide ridge in a first direction and a second slab region extending away from a second sidewall of the waveguide ridge in a second direction; the second direction being opposite from the first direction.


The waveguide optoelectronic device includes a first doped region, the first doped region including a first doped slab region 13a and a first doped sidewall region extending along the first sidewall of the waveguide.


In the embodiment shown in FIG. 2A and FIG. 3A, the ridge of the waveguide is formed from a lower ridge portion 12a and an upper ridge portion 12b. The lower ridge portion is in contact with and extends away from the base; the base and lower ridge portion both being formed from the first material M1. The upper ridge portion is made from the second material M2 located on top of the lower ridge portion in that it is in contact with and extends away from the lower ridge portion.


The first doped sidewall region extends along the entire sidewall of the ridge including both the lower ridge portion 12a and the upper ridge portion 12b. The first doped sidewall region therefore comprises a first lower sidewall portion 13b which extends along the first sidewall at the lower ridge portion of the ridge; and a first upper sidewall portion 13c which extends along the sidewall at the upper ridge portion of the ridge.


Similarly, at the second side of the rib waveguide, the waveguide optoelectronic device comprises a second doped slab region 14a and a second doped sidewall region extending along the second sidewall of the waveguide. The second doped sidewall is made up of a second lower sidewall portion 14b which extends along the second sidewall at the lower ridge portion of the ridge; and a second upper sidewall portion 14c which extends along the sidewall at the upper ridge portion of the ridge.


The dopant concentration at the doped slab regions and the lower doped sidewall regions are higher than those of the upper doped sidewall regions. In the embodiment shown in FIGS. 2A and 3A, the first doped slab region and first lower sidewall doped region are n++ doped whilst the first upper sidewall is n doped; the n++ dopant region typically containing at least one-two orders of magnitude more dopant per cm3 as compared to the n doped region. The second doped slab region and second lower sidewall doped region are p++ doped whilst the second upper sidewall is p doped.


In this embodiment of FIGS. 2A and 3A, the first material M1 is formed from silicon, Si and the second material M2 is silicon germanium (SiGe). However, as described above, it is envisaged that the structure of this embodiment could equally be applied to other suitable optical materials. Examples of suitable dopant concentrations for an M1/M2 structure of Si/SiGe are shown in Table 1 below.












TABLE 1







Doping type
Doping range [1/cm3]









n
1e15-1e18



p
1e15-1e18



n++
1e18-1e20



p++
1e18-1e20










As can be seen in FIG. 2A, the first doped slab region can be defined by a thickness dnp1 by which it extends downwards into the slabs of the first material M1. The first lower sidewall portion 13b and second lower sidewall portion 14b each extend upwardly away from the slab by a height h3 which corresponds to the height of the lower portion of the ridge. These lower sidewall portions 13b, 14b extend into the ridge by respective distance dnp2, dpp2, each of these respective distances being less than half the total cross sectional width of the lower ridge portion, such that an undoped region separates the n++ region from the p++ region thereby forming a p-i-n junction.


An electrical contact (not shown) will be located at each of the slab regions in order to apply a bias across the junction which is formed by the doped regions. These electrical contacts will be located directly onto the slab (i.e. at the upper surface of the slab, on either side of the ridge). Typically the contacts may be equidistant from the respective sidewalls of the ridge.


The first and second upper sidewall portions 13c, 14c extend into the upper ridge portion of the ridge by a distance dn, dp each of which is less than the respective distances dnp2, dpp2, by which the lower sidewall portions 13b, 14b each extend into the lower portion 12a of the rib waveguide. Examples of typical measurements are given (in nm) in Table 2.












TABLE 2







Geometry
Tolerance









h1 [nm]
100-800 



h2 [nm]
100-400 



h3 [nm]
 0-400



dnp1, dnp2 [nm]
50-300



dpp1, dpp2 [nm]
50-300



dp [nm]
50-300



dn [nm]
50-300










In this embodiment, the waveguide device takes the form of a waveguide electro-absorption modulator (EAM). However, it is envisaged that the device could instead take the form of another optoelectronic component such as a waveguide photodiode (PD).


Referring in particular to FIG. 3A and FIG. 3B, the parameters of the device are chosen such that the optical mode within the rib waveguide of the device 1 matches up with the optical mode propagating through the input waveguide and any input coupler such as a taper. In particular, it is the height of the mode in the ridge of the device hmode1 relative to the base of the device which matches up to the height of the mode hmode2 above the base of the input waveguide or taper. Typically, the optoelectronic device, the input/output waveguides, and any coupler, will be located within the same plane (i.e. the bottom surface of the base of the optoelectronic device will be level with the bottom surface of the base of the input/output waveguides). For example, the optoelectronic device, input/output waveguides and couplers may all be fabricated upon a planar insulating layer such as a buried oxide (BOX) layer (not shown).


Referring to FIGS. 4A to 4K, an example is described of a method of manufacturing a rib waveguide modulation region according to the present invention.


Initially, a layer 401 of a first semiconductor material M1 is provided; the layer having an upper surface 401a and a lower surface (corresponding to the bottom surface of the base of the optoelectronic device) 401b. In some embodiments, this base layer of the initial semiconductor layer will be located upon an insulator layer such as a BOX layer. Typically, the first material will be silicon, but it is envisaged that the method described herein could be applied to other materials suitable for use with optoelectronic components such as metal alloys of silicon.


The upper surface 401a of the initial layer of the first material is etched down to a given height (h2+h3) above the bottom of the layer 401b, the etching process therefore resulting in a cavity 402 located within the initial layer of the first material 401. The cavity formed by the etching process will have a base 402a; a first cavity edge 402b; and a second cavity edge 402c.


Once the cavity 402 has been created, a photoresist 403 is deposited onto the first material M1 covering all but a portion of the base of the cavity, the uncovered portion of the base 402a extending from the first cavity edge 402b to less than half way across the total length of the base of the cavity. The base of the cavity will ultimately become the first and second slabs of the optoelectronic device.


An implantation step is then carried out on the uncovered portion of the base of the cavity 402a to implant the uncovered portion with a first dopant, in this case an n type dopant to create a first slab doped portion 13a. In this case, the doped portion has a dopant concentration which may lie within the range of 1e18-1e20 cm−3. Typically, the dopant is applied vertically, i.e. at a direction which is parallel or substantially parallel to the edge of the cavity.


Examples of a suitable n type dopants include: phosphorus and arsenic. An Example of a suitable p type dopant is boron.


Once the implantation of the first slab doped portion is complete, the photoresist 403 is removed and the implantation process is repeated at the other side of the cavity to give rise to the second slab doped region as shown in FIG. 4C. Again, a photoresist 404 is deposited onto the first material M1; this time covering all but a second portion of the base of the cavity, the uncovered portion of the base 402a extending from the second cavity edge 402c to less than half way across the total length of the base of the cavity such that it does not contact the already implanted n doped region. An implantation step is carried out on the uncovered second portion of the base of the cavity 402a to implant the uncovered second portion with a second dopant, in this case a p type dopant, in order to create a second slab doped portion 14a. Again, the doped portion has a dopant concentration which may lie within the range of 1e18-1e20 cm−3. The doped portions extend by respective depths of dnp1 and dpp1 into the base of the cavity (i.e. into the slabs of the finished device).


A subsequent annealing step is carried out as shown in FIG. 4D.


Following annealing, a second material M2 is grown inside the cavity, the second material being different from the first material. In this embodiment, the second material M2 is typically epitaxially grown Silicon Germanium (SiGe), although it is envisaged that other optically suitable materials could be used including: III-V materials and metal alloys of silicon, germanium or SiGe. The height by which the epitaxially grown layer M2 extends from the base of the cavity will form the height of the upper portion of the ridge.


A further etch step to create the upper ridge portion 12b is then carried out, as shown in FIG. 4F, in which a region of the second material M2 is etched away above the first slab doped portion 13a and a region of the second material M2 above the second slab doped portion 14a. The etching extends along the entire depth of the cavity such that uncovered doped regions are left fully exposed either side of the remaining portion of the second material M2 which forms the upper ridge portion of the optoelectronic device. Note that each of the first and second slab doped portions actually extend laterally beyond the first and second side walls of the upper portion of the ridge such that the upper portion of the ridge overlays part of the first slab doped portion and also overlays part of the second doped portion.


Once the upper ridge has been created, sidewall implantation steps are carried out to implant the first and second sidewalls 13c, 14c with n and p dopants respectively. Firstly, as shown in FIG. 4G, the first sidewall of the upper ridge 12b is doped by applying a photoresist to cover the second material M2 and the second doped slab region 14a before implanting the n-type dopants at the first sidewall 13c at an angle to the sidewall. The first cavity edge 402b can be used as a shield, and the angle of implantation therefore chosen such that the edge of the cavity shields the first doped slab portion, meaning that the n dopant is applied only to the first sidewall 13c and not to the first doped slab region. As depicted in FIG. 4H, the sidewall implantation steps are then repeated for the second sidewall 14c of the ridge. Specifically, a photoresist to cover the second material M2 and the first doped slab region 13a before implanting the p-type dopants at the sidewall at an angle to the sidewall is applied. The first cavity edge 402c can be used as a shield, and the angle of implantation therefore chosen such that the edge of the cavity shields the second doped slab portion, meaning that the p dopant is applied only to the second sidewall 14c and not to the second doped slab region.


A further annealing step is carried out as depicted in FIG. 4I. Annealing (as shown in both FIG. 4D and FIG. 4I) may be performed at temperatures of 450-800° C. and for a typical duration of 30 minutes or less.



FIG. 4J depicts a further etch step in which the first and second doped slab portions 13a, 14a are etched by a depth h2, thereby creating the lower ridge portion 12a. For some embodiments of the optoelectronic device such as that shown in FIG. 5, there is no lower ridge 12a, so this extra etch step is not carried out. The embodiment of FIG. 5 differs from that of FIG. 2A and FIG. 3A only in that the ridge 12 of the optoelectronic device is made entirely of the second material M2, so there is no lower ridge portion. Instead, the ridge is a single piece of the second material M2 which extends directly from the base of the device. Finally (not shown), the remainder of the cavity walls may be etched away to leave the final device. FIG. 6 depicts a further alternative embodiment of a waveguide electro-absorption modulator according to the present invention, this embodiment differing from that of FIG. 2A in that it includes further grading within the dopant regions. The graded dopant regions include a first intermediate doped region 16a having a dopant of the same type as the first slab portion but of a dopant concentration between that of the first doped slab portion and the first doped sidewall; and a second intermediate doped region 16b having a dopant of the same type as the first slab portion but of a dopant concentration between that of the second doped slab portion and that of the second doped sidewall. The first and second intermediate doped regions may be applied in the same method as the sidewall doped portions but using a steeper implantation angle (i.e. the angle of implantation angle makes a smaller angle with the sidewall than the angle of implantation used for the sidewall doping.



FIGS. 7A and 7B depict a further alternative embodiment of a waveguide electro-absorption modulator according to the present invention, along the lines A-A′ and B-B′ respectively. This embodiment differs from that shown in FIG. 6 in that the device further includes a region 701 formed of a lower refractive index material M3 (for example, silicon oxide) as well as a further substrate material 702 (for example, silicon). This may be provided by etching a region of the region 701, so as to provide a cavity with width We, and then to grow further substrate material into that cavity. The width We in this example has a value from 0.5 μm to 20 μm. The region 701, as shown in FIG. 7A, can be characterized in having a gap therein which is below the active waveguide region. The region 701 has a height hb in this example from 0.2 μm to 4 μm. The substrate material 702 may have a thickness from 200 μm to 800 μm. The part of the device shown in FIG. 7B has a complete region 701 below the passive waveguide i.e. it has not been etched, and so is substantially continuous. This structure can improve mode matching from the passive waveguide shown in FIG. 7B to the active waveguide shown in FIG. 7A.



FIG. 8 shows a further alternative embodiment of a waveguide electro-absorption modulator according to the present invention, along the line A-A′. This embodiment differs from that shown in FIG. 7a in that one upper sidewall portion 14c of the waveguide comprises a silicon region 901, having a width Wb which is within the range 0.1 μm to 0.4 μm. The silicon upper sidewall portion 901 is either entirely or partially n or p doped, while the opposite upper sidewall portion 13c is formed of SiGe or Ge and contains dopants of an opposite polarity to the silicon upper sidewall portion. The addition of a silicon sidewall helps reduce the capacitance of the device, and can therefore increase the operational radio-frequency bandwidth.


Although exemplary embodiments of a waveguide electro-absorption modulator and method of manufacturing a rib waveguide modulation region have been specifically described and illustrated herein, many modifications and variations will be apparent to those skilled in the art. Accordingly, it is to be understood that a waveguide electro-absorption modulator constructed according to principles of this invention may be embodied other than as specifically described herein. The invention is also defined in the following claims, and equivalents thereof

Claims
  • 1. A waveguide optoelectronic device, comprising a rib waveguide region, the rib waveguide region having a silicon base and a ridge extending from the silicon base, wherein the silicon base includes a first slab region at a first side of the ridge and a second slab region at a second side of the ridge,wherein: a first doped region extends along: the first slab region and along a first sidewall of the ridge, the first sidewall contacting the first slab region; anda second doped region extends along: the second slab region and along a second sidewall of the ridge, the second sidewall contacting the second slab region,wherein the ridge comprises: a lower ridge portion in contact with and extending away from the silicon base, the silicon base and the lower ridge portion both including silicon; andan upper ridge portion in contact with and extending away from the lower ridge portion, the upper ridge portion including a semiconductor material that is different from silicon, andwherein: the first doped region which extends along the first sidewall includes a lower sidewall portion located at the lower ridge portion and an upper sidewall region located at the upper ridge portion; andthe second doped region which extends along the second sidewall includes a lower sidewall portion located at the lower ridge portion and an upper sidewall region located at the upper ridge portion.
  • 2. The waveguide optoelectronic device of claim 1, further comprising: a first electrical contact; anda second electrical contact,wherein the first electrical contact is in direct contact with the first slab region and the second electrical contact is in direct contact with the second slab region, andwherein the silicon base is composed of silicon.
  • 3. The waveguide optoelectronic device of claim 2, wherein the waveguide optoelectronic device is: a waveguide electro absorption modulator (EAM) and the rib waveguide region is a rib waveguide modulation region; ora waveguide photodiode (PD).
  • 4. The waveguide optoelectronic device of claim 2, wherein the semiconductor material is silicon germanium (SiGe), a metal alloy of silicon, a metal alloy of germanium, or a metal alloy of SiGe.
  • 5. The waveguide optoelectronic device of claim 4, wherein the semiconductor material is GeSn or SiGeSn.
  • 6. The waveguide optoelectronic device of claim 2, wherein: the first electrical contact is located on top of the first slab region; andthe second electrical contact is located on top of the second slab region.
  • 7. The waveguide optoelectronic device of claim 2, wherein the first doped region is n doped and the second doped region is p doped.
  • 8. A method of manufacturing the waveguide optoelectronic device of claim 1, the method comprising the steps of: providing a layer of silicon;etching a cavity into the layer, the cavity having a base, a first cavity edge and a second cavity edge;implanting the base with a first dopant to create a first doped slab region;implanting the base with a second dopant to create a second doped slab region laterally spaced from the first doped slab region;growing the semiconductor material within the cavity;etching the semiconductor material to form a waveguide ridge which lies within the cavity and extends upwards from the base and overlies a portion of the first doped slab region and a portion of the second doped slab region, the waveguide ridge having the first sidewall which contacts the first doped slab region and the second sidewall which contacts the second doped slab region;implanting the first sidewall with the first dopant;implanting the second sidewall with the second dopant; andetching away the first cavity edge and the second cavity edge.
  • 9. The method of claim 8, wherein the step of etching a cavity into the layer is a deep etching step and the etch has a depth of at least 2 μm.
  • 10. The method of claim 8, further comprising the step of: creating the lower ridge portion composed of the silicon directly underneath the waveguide ridge by:etching the first doped slab region by a height which is less than an unetched height of the first doped slab region; andetching the second doped slab region by a height which is less than an unetched height of the second doped slab region.
  • 11. The method of claim 8, wherein the semiconductor material is silicon germanium (SiGe), a metal alloy of silicon, a metal alloy of germanium, or a metal alloy of SiGe.
  • 12. The method of claim 11, wherein the semiconductor material is GeSn or SiGeSn.
  • 13. The waveguide optoelectronic device of claim 1, wherein each of the lower sidewall portion of the first doped region, the lower sidewall portion of the second doped region, the first slab region, and the second slab region has a respective dopant concentration that is higher than a dopant concentration of the upper sidewall region of the first doped region and higher than a dopant concentration of the upper sidewall region of the second doped region.
  • 14. The waveguide optoelectronic device of claim 13, wherein each of the first slab region and the second slab region has a respective dopant concentration that is higher than a dopant concentration of the lower sidewall portion of the first doped region and higher than a dopant concentration of the lower sidewall portion of the second doped region.
  • 15. The waveguide optoelectronic device of claim 1, wherein each of a distance by which the lower sidewall portion of the first doped region extends into the ridge and a distance by which the lower sidewall portion of the second doped region extends into the ridge is greater than a distance by which the upper sidewall region of the first doped region extends into the ridge and greater than a distance by which the upper sidewall region of the second doped region extends into the ridge.
  • 16. The waveguide optoelectronic device of claim 1, further comprising: an input rib waveguide coupled to an input of the rib waveguide region to couple light into the rib waveguide region; andan output rib waveguide coupled to an output of the rib waveguide region to couple light out of the rib waveguide region.
  • 17. The waveguide optoelectronic device of claim 16, wherein a height of the silicon base, a height of the lower sidewall portion of the first doped region, and a height of the lower sidewall portion of the second doped region are such that the mode center of the rib waveguide region is located at the same height above the silicon base as the mode center of the input rib waveguide, the output rib waveguide, or the input rib waveguide and the output rib waveguide.
  • 18. The waveguide optoelectronic device of claim 1, further comprising: a silicon substrate below the silicon base; anda crystalline cladding layer between the silicon base and the silicon substrate.
  • 19. The waveguide optoelectronic device of claim 18, further comprising a buried oxide layer, disposed on opposing horizontal sides of the crystalline cladding layer, wherein the crystalline cladding layer is a material which is different than the buried oxide layer.
  • 20. The waveguide optoelectronic device of claim 1, wherein the lower ridge portion is composed of silicon and the upper ridge portion is composed of the semiconductor material.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a national stage entry, under 35 U.S.C. § 371, of International Application Number PCT/EP2017/081186, filed on Dec. 1, 2017, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/429,701, filed Dec. 2, 2016. The entire contents of all of the applications identified in this paragraph are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP2017/081186 12/1/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2018/100157 6/7/2018 WO A
US Referenced Citations (302)
Number Name Date Kind
4093345 Logan et al. Jun 1978 A
4720468 Menigaux et al. Jan 1988 A
4739287 Staupendahl et al. Apr 1988 A
4943133 Deri et al. Jul 1990 A
4961619 Hernandez-Gil Oct 1990 A
5157756 Nishimoto Oct 1992 A
5163118 Lorenzo Nov 1992 A
5297233 Lerminiaux Mar 1994 A
5438444 Tayonaka et al. Aug 1995 A
5446751 Wake Aug 1995 A
5511088 Loualiche et al. Apr 1996 A
5524076 Rolland et al. Jun 1996 A
5559624 Darcie et al. Sep 1996 A
5581396 Kubota et al. Dec 1996 A
5715076 Alexander et al. Feb 1998 A
5726784 Alexander et al. Mar 1998 A
5757986 Crampton et al. May 1998 A
5784184 Alexander et al. Jul 1998 A
5861966 Ortel Jan 1999 A
5894535 Lemoff Apr 1999 A
5908305 Crampton et al. Jun 1999 A
5911018 Bischel Jun 1999 A
5917642 O'Donnell et al. Jun 1999 A
5999300 Davies et al. Dec 1999 A
6061487 Toyama May 2000 A
6222951 Huang Apr 2001 B1
6229189 Yap et al. May 2001 B1
6233077 Alexander et al. May 2001 B1
6298177 House Oct 2001 B1
6349106 Coldren Feb 2002 B1
6396801 Upton et al. May 2002 B1
6438279 Craighead Aug 2002 B1
6445839 Miller Sep 2002 B1
6549313 Doerr et al. Apr 2003 B1
6563627 Yoo May 2003 B2
6580739 Coldren Jun 2003 B1
6584239 Dawnay et al. Jun 2003 B1
6597824 Newberg et al. Jul 2003 B2
6614819 Fish et al. Sep 2003 B1
6636662 Thompson et al. Oct 2003 B1
6678479 Naoe et al. Jan 2004 B1
6680791 Demir et al. Jan 2004 B2
6710911 LoCascio et al. Mar 2004 B2
6768827 Yoo Jul 2004 B2
6845198 Montgomery et al. Jan 2005 B2
6873763 Nikonov Mar 2005 B2
6915047 Mekis Jul 2005 B1
7031617 Zucchelli et al. Apr 2006 B2
7085443 Gunn, III et al. Aug 2006 B1
7092609 Yegnanarayanan et al. Aug 2006 B2
7133576 Coldren et al. Nov 2006 B2
7174058 Coldren et al. Feb 2007 B2
7180148 Morse Feb 2007 B2
7184438 Loge et al. Feb 2007 B2
7256929 Rong et al. Aug 2007 B1
7257283 Liu Aug 2007 B1
7263247 Hehlen Aug 2007 B1
7391801 Soref Jun 2008 B1
7394948 Zheng et al. Jul 2008 B1
7397101 Masini Jul 2008 B1
7418166 Kapur et al. Aug 2008 B1
7505686 Jennen Mar 2009 B2
7536067 Handelman May 2009 B2
7558487 Liu et al. Jul 2009 B2
7570844 Handelman Aug 2009 B2
7603016 Soref Oct 2009 B1
7747122 Shetrit et al. Jun 2010 B2
7811844 Carothers et al. Oct 2010 B2
7826700 Knights et al. Nov 2010 B2
7885492 Welch et al. Feb 2011 B2
7916377 Vvitzens et al. Mar 2011 B2
7920790 Toliver Apr 2011 B2
7941014 Watts et al. May 2011 B1
8053790 Feng et al. Nov 2011 B2
8073029 Hashimoto Dec 2011 B2
8093080 Liao Jan 2012 B2
8106379 Bowers Jan 2012 B2
8160404 Pan et al. Apr 2012 B2
8242432 Feng et al. Aug 2012 B2
8346028 Feng Jan 2013 B2
8362494 Lo et al. Jan 2013 B2
8401385 Spivey et al. Mar 2013 B2
8403571 Walker Mar 2013 B2
8410566 Qian et al. Apr 2013 B2
8411260 Feng Apr 2013 B1
8493976 Lin Jul 2013 B2
8693811 Morini et al. Apr 2014 B2
8724988 Andriolli et al. May 2014 B2
8737772 Dong et al. May 2014 B2
8767792 Bowers Jul 2014 B2
8774625 Binkert et al. Jul 2014 B2
8792787 Zhao et al. Jul 2014 B1
8817354 Feng et al. Aug 2014 B2
8942559 Binkert et al. Jan 2015 B2
9128309 Robertson Sep 2015 B1
9142698 Cunningham et al. Sep 2015 B1
9182546 Prosyk et al. Nov 2015 B2
9229249 Akiyama Jan 2016 B2
9279936 Qian et al. Mar 2016 B2
9282384 Graves Mar 2016 B1
9306698 Chen et al. Apr 2016 B2
9329415 Song May 2016 B2
9411177 Cunningham et al. Aug 2016 B2
9438970 Jones et al. Sep 2016 B2
9448425 Ogawa et al. Sep 2016 B2
9500807 Oka Nov 2016 B2
9513498 Jones et al. Dec 2016 B2
9541775 Ayazi et al. Jan 2017 B2
9548811 Kucharski et al. Jan 2017 B2
9575337 Adams et al. Feb 2017 B2
9668037 Jones et al. May 2017 B2
9709738 Dumais Jul 2017 B1
9733542 Bai Aug 2017 B2
9995877 Nakamura Jun 2018 B2
10128957 Welch et al. Nov 2018 B2
10133094 Yu et al. Nov 2018 B1
10135542 Nagra et al. Nov 2018 B2
10185203 Yu et al. Jan 2019 B1
10191350 Yu et al. Jan 2019 B2
10216059 Yu et al. Feb 2019 B2
10222677 Yu et al. Mar 2019 B2
10231038 Rickman et al. Mar 2019 B2
10340661 Caer Jul 2019 B2
10401656 Yu et al. Sep 2019 B2
10678115 Yu et al. Jun 2020 B2
20010030787 Tajima Oct 2001 A1
20010040907 Chakrabarti Nov 2001 A1
20020048289 Atanackovic et al. Apr 2002 A1
20020102046 Newberg et al. Aug 2002 A1
20020154847 Dutt et al. Oct 2002 A1
20020159117 Nakajima et al. Oct 2002 A1
20020172464 Delwala Nov 2002 A1
20020186453 Yoo Dec 2002 A1
20030003734 Delwala Jan 2003 A1
20030003735 Deliwala Jan 2003 A1
20030003736 Delwala Jan 2003 A1
20030003737 Delwala Jan 2003 A1
20030003738 Delwala Jan 2003 A1
20030031445 Parhami et al. Feb 2003 A1
20030063362 Demir et al. Apr 2003 A1
20030095737 Welch et al. May 2003 A1
20030118286 Kamei Jun 2003 A1
20030133641 Yoo Jul 2003 A1
20030142943 Yegnanarayanan et al. Jul 2003 A1
20030156789 Bhardwaj et al. Aug 2003 A1
20030176075 Khan et al. Sep 2003 A1
20030223672 Joyner et al. Dec 2003 A1
20040008395 McBrien et al. Jan 2004 A1
20040013429 Duelk et al. Jan 2004 A1
20040033004 Welch et al. Feb 2004 A1
20040069984 Estes Apr 2004 A1
20040126052 Kamei Jul 2004 A1
20040126057 Yoo Jul 2004 A1
20040151423 Izhaky Aug 2004 A1
20040190830 Rasras Sep 2004 A1
20040207016 Patel Oct 2004 A1
20040208454 Montgomery et al. Oct 2004 A1
20040246557 Lefevre et al. Dec 2004 A1
20040251468 Mouli Dec 2004 A1
20040258347 Gothoskar Dec 2004 A1
20050053377 Yoo Mar 2005 A1
20050089269 Cheng et al. Apr 2005 A1
20050089273 Squires et al. Apr 2005 A1
20050189591 Gothoskar Sep 2005 A1
20050236619 Patel Oct 2005 A1
20050286850 German et al. Dec 2005 A1
20060023989 Yanagisawa Feb 2006 A1
20060133716 Little Jun 2006 A1
20060140528 Coldren et al. Jun 2006 A1
20060177173 Shastri Aug 2006 A1
20060251371 Schmidt Nov 2006 A1
20060257065 Coldren et al. Nov 2006 A1
20070065076 Grek et al. Mar 2007 A1
20070092193 Yokino Apr 2007 A1
20070104422 Watanabe May 2007 A1
20070104441 Ahn et al. May 2007 A1
20070280309 Liu Dec 2007 A1
20080013881 Welch et al. Jan 2008 A1
20080073744 Masini Mar 2008 A1
20080095486 Shastri et al. Apr 2008 A1
20080138088 Welch et al. Jun 2008 A1
20080260320 Laval Oct 2008 A1
20080267239 Hall Oct 2008 A1
20090003841 Ghidini et al. Jan 2009 A1
20090016666 Kuo Jan 2009 A1
20090142019 Popovic Jun 2009 A1
20090169149 Block Jul 2009 A1
20090185804 Kai et al. Jul 2009 A1
20090245298 Sysak et al. Oct 2009 A1
20090324164 Reshotko Dec 2009 A1
20100002994 Baehr-Jones et al. Jan 2010 A1
20100060970 Chen Mar 2010 A1
20100060972 Kucharski et al. Mar 2010 A1
20100078680 Cheng et al. Apr 2010 A1
20100080504 Shetrit et al. Apr 2010 A1
20100128336 Witzens et al. May 2010 A1
20100135347 Deladurantaye et al. Jun 2010 A1
20100166363 Matsuoka Jul 2010 A1
20100200733 McLaren et al. Aug 2010 A1
20100247021 Cunningham Sep 2010 A1
20100247022 Li Sep 2010 A1
20100247029 Li Sep 2010 A1
20100290732 Gill Nov 2010 A1
20100296768 Wu et al. Nov 2010 A1
20100310208 Wang et al. Dec 2010 A1
20100330727 Hill Dec 2010 A1
20110013905 Wang et al. Jan 2011 A1
20110013911 Alexander et al. Jan 2011 A1
20110142390 Feng et al. Jun 2011 A1
20110142391 Asghari et al. Jun 2011 A1
20110180795 Lo et al. Jul 2011 A1
20110200333 Schrenk et al. Aug 2011 A1
20110206313 Dong Aug 2011 A1
20110215344 Dardy Sep 2011 A1
20110293279 Lam et al. Dec 2011 A1
20110299561 Akiyama Dec 2011 A1
20120033910 Morini Feb 2012 A1
20120080672 Rong et al. Apr 2012 A1
20120093519 Lipson et al. Apr 2012 A1
20120189239 Tu et al. Jul 2012 A1
20120207424 Zheng Aug 2012 A1
20120213531 Nazarathy et al. Aug 2012 A1
20120219250 Ren Aug 2012 A1
20120243826 Sun Sep 2012 A1
20120300796 Sysak Nov 2012 A1
20120328292 Testa et al. Dec 2012 A1
20130020556 Bowers Jan 2013 A1
20130039664 Clifton Feb 2013 A1
20130051727 Mizrahi Feb 2013 A1
20130051798 Chen et al. Feb 2013 A1
20130058606 Thomson et al. Mar 2013 A1
20130089340 Huang et al. Apr 2013 A1
20130094797 Zheng et al. Apr 2013 A1
20130182305 Feng et al. Jul 2013 A1
20130188902 Gardes et al. Jul 2013 A1
20130195397 Kung Aug 2013 A1
20130229701 Feng Sep 2013 A1
20130243374 Watanabe Sep 2013 A1
20130259483 McLaren et al. Oct 2013 A1
20130279845 Kobrinsky Oct 2013 A1
20130285184 Li Oct 2013 A1
20130315599 Lam et al. Nov 2013 A1
20130321816 Dattner Dec 2013 A1
20140061677 Jakoby Mar 2014 A1
20140111793 Asghari Apr 2014 A1
20140140655 Chakravarty May 2014 A1
20140161457 Ho et al. Jun 2014 A1
20140226976 Britz et al. Aug 2014 A1
20140270618 Dinu Sep 2014 A1
20140286647 Ayazi Sep 2014 A1
20140307300 Yang et al. Oct 2014 A1
20140307997 Bar Oct 2014 A1
20140334768 Chang Nov 2014 A1
20140341497 Liu et al. Nov 2014 A1
20140341498 Manouvrier Nov 2014 A1
20150010307 Zhong et al. Jan 2015 A1
20150071651 Asmanis et al. Mar 2015 A1
20150098676 Krasulick Apr 2015 A1
20150125111 Orcutt May 2015 A1
20150162182 Edmonds et al. Jun 2015 A1
20150212268 Goodwill Jul 2015 A1
20150270684 Suzuki Sep 2015 A1
20150293384 Ogawa et al. Oct 2015 A1
20150316793 Ayazi Nov 2015 A1
20150346520 Lee et al. Dec 2015 A1
20150362764 Cunningham Dec 2015 A1
20150373433 McLaren et al. Dec 2015 A1
20160043262 Okumura Feb 2016 A1
20160103382 Liboiron-Ladouceur et al. Apr 2016 A1
20160109731 Huang Apr 2016 A1
20160211645 Padullaparthi Jul 2016 A1
20160211921 Welch et al. Jul 2016 A1
20160218811 Chen et al. Jul 2016 A1
20160266337 Feng Sep 2016 A1
20160290891 Feng Oct 2016 A1
20160358954 Hoyos Dec 2016 A1
20160365929 Nakamura et al. Dec 2016 A1
20170023810 Ogawa Jan 2017 A1
20170082876 Jones et al. Mar 2017 A1
20170207600 Klamkin Jul 2017 A1
20170212304 Sacher Jul 2017 A1
20170229840 Lambert Aug 2017 A1
20170250758 Kikuchi Aug 2017 A1
20170254955 Poon Sep 2017 A1
20170255077 Pruessner Sep 2017 A1
20170276872 Nakamura Sep 2017 A1
20170288781 Carpentier et al. Oct 2017 A1
20170299902 Yu Oct 2017 A1
20170317471 Lor Nov 2017 A1
20180081118 Klamkin Mar 2018 A1
20180101082 Yu Apr 2018 A1
20180217469 Yu Aug 2018 A1
20180246351 Ho Aug 2018 A1
20180335569 Saito et al. Nov 2018 A1
20180335653 Mentovich et al. Nov 2018 A1
20190139950 Yu et al. May 2019 A1
20190179177 Rickman Jun 2019 A1
20190278111 Yu Sep 2019 A1
20190293971 Yu Sep 2019 A1
20190330482 Williams Oct 2019 A1
20190384003 Painchaud Dec 2019 A1
20200124878 Yu et al. Apr 2020 A1
Foreign Referenced Citations (25)
Number Date Country
101529306 Sep 2009 CN
101868745 Oct 2010 CN
102162137 Aug 2011 CN
102713703 Oct 2012 CN
102955265 Mar 2013 CN
205485142 Aug 2016 CN
0 310 058 Apr 1989 EP
1 761 103 Mar 2007 EP
3 046 275 Jul 2016 EP
06-232384 Aug 1994 JP
2004-163753 Jun 2004 JP
2005-300678 Oct 2005 JP
WO 9113375 Sep 1991 WO
WO 9210782 Jun 1992 WO
WO 0241663 May 2002 WO
WO 02086575 Oct 2002 WO
WO 2008024458 Feb 2008 WO
WO 2009048773 Apr 2009 WO
WO 2011069225 Jun 2011 WO
WO 2015060820 Apr 2015 WO
WO 2015155900 Oct 2015 WO
WO 2016094808 Jun 2016 WO
WO 2016139484 Sep 2016 WO
WO 2016154764 Oct 2016 WO
WO 2017135436 Aug 2017 WO
Non-Patent Literature Citations (129)
Entry
Feng, Dazeng et al., “High-Speed GeSi Electroabsorption Modulator on the SOI Waveguide Platform”, IEEE Journal of Selected Topics in Quantum Electronics, Nov./Dec. 2013, 10 pages, vol. 19, No. 6, IEEE.
International Search Report and Written Opinion of the International Searching Authority, dated Mar. 1, 2018, corresponding to PCT/EP2017/081215, 15 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Mar. 8, 2018, corresponding to PCT/EP2017/081186, 13 pages.
U.K. Intellectual Property Office Search Report, dated May 25, 2018, for Patent Application No. GB1720033.8, 3 pages.
U.K. Intellectual Property Office Search Report, dated May 30, 2018, for Patent Application No. GB1720036.1, 7 pages.
U.K. Intellectual Property Office Examination Report, dated Aug. 23, 2018, for Patent Application No. GB1720033.8, 5 pages.
U.K. Intellectual Property Office Search and Examination Report, dated Aug. 28, 2018, for Patent Application No. GB1720036.1, 7 pages.
U.S. Appl. No. 16/465,538, filed May 30, 2019.
“40Gb/s 2R Optical Regenerator (wavelength converter)”, CIP Technologies, Preliminary Datasheet, Nov. 2013, 2 pages.
Bregni, Stefano et al., “Architectures and Performance of AWG-Based Optical Switching Nodes for IP Networks”, IEEE Journal on Selected Areas in Communications, Sep. 2003, pp. 1113-1121, vol. 21, No. 7.
Chinese Notification of the First Office Action and Search Report, for Patent Application No. 201580009961.1, dated Sep. 5, 2018, 8 pages.
Chinese Notification of the First Office Action, for Patent Application No. 201710650505.6, dated Mar. 21, 2019, 5 pages.
Chinese Patent Office Notification of the Second Office Action, for Patent Application No. 201580009961.1, dated May 13, 2019, 5 pages.
Coldren et al. “Diode Lasers and Photonic Integrated Circuits”, 2012, pp. 1-12, Second Edition, John Wiley & Sons, Inc.
Dong, Po et al., “Wavelength-tunable silicon microring modulator”, Optics Express, May 10, 2010, pp. 10941-10946, vol. 18, No. 11.
Dong, Po et al., “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators”, Optics Express, Mar. 12, 2012, pp. 6163-6169, vol. 20, No. 6.
Dubé-Demers, Raphaël et al., “Low-power DAC-less PAM-4 transmitter using a cascaded microring modulator”, Optics Letters, Nov. 15, 2016, pp. 5369-5372, vol. 41, No. 22, Optical Society of America.
Durhuus, Terji et al., “All-Optical Wavelength Conversion by Semiconductor Optical Amplifiers”, Journal of Lightwave Technology, Jun. 1996, pp. 942-954, vol. 14, No. 6.
Edagawa, Noboru et al., “Novel Wavelength Converter Using an Electroabsorption Modulator”, IEICE Trans. Electron., Aug. 1998, pp. 1251-1257, vol. E81-C, No. 8.
Ellis, A.D. et al., “Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier”, Electronics Letters, Oct. 1, 1998, pp. 1958-1959, vol. 34, No. 20.
European Patent Office Communication pursuant to Article 94(3) EPC, for Patent Application No. 15 707 725.6, dated Jun. 7, 2019, 7 pages.
Farrell, Nick, “Intel pushes photonic tech for the data center”, TechRadar, Apr. 2, 2014, http://www.techradar.com/news/internet/data-centre/intel-pushes-its-photonic-tech-for-the-data-centre-1 239198, 6 pages.
Farrington, Nathan et al., “A Demonstration of Ultra-Low-Latency Data Center Optical Circuit Switching,” ACM SIGCOMM Computer Communication Review, vol. 42, No. 4, 2012, pp. 95-96.
Farrington, Nathan et al., “Helios: A Hybrid Electrical/Optical Switch Architecture for Modular Data Centers”, SIGCOMM'10, Aug. 30-Sep. 3, 2010, 12 Pages, New Delhi, India.
Fidaner, Onur et al., “Integrated photonic switches for nanosecond packet-switched optical wavelength conversion”, Optics Express, Jan. 9, 2006, pp. 361-368, vol. 14, No. 1.
Fidaner, Onur et al., “Waveguide Electroabsorption Modulator on Si Employing Ge/SiGe Quantum Wells”, Optical Society of America, 2007, 1 page.
Foster, Mark A., “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides”, Optics Express, Sep. 24, 2007, pp. 12949-12958, vol. 15, No. 20.
Fu, Enjin et al., “Traveling Wave Electrode Design for Ultra Compact Carrier-injection HBT-based Electroabsorption Modulator in a 130nm BiCMOS Process”, Proc. of SPIE, 2014, 11 pages, vol. 8989.
Geis, M.W. et al., “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response”, Optics Express, Mar. 18, 2009, pp. 5193-5204, vol. 17, No. 7.
Gripp, Jürgen et al., “Optical Switch Fabrics for Ultra-High-Capacity IP Routers”, Journal of Lightwave Technology, Nov. 2003, pp. 2839-2850, vol. 21, No. 11.
Hsu, A. et al., “Wavelength Conversion by Dual-Pump Four-Wave Mixing in an Integrated Laser Modulator”, IEEE Photonics Technology Letters, Aug. 2003, pp. 1120-1122, vol. 15, No. 8.
Hu, Hao et al., “Ultra-high-speed wavelength conversion in a silicon photonic chip”, Optics Express, Sep. 26, 2011, pp. 19886-19894, vol. 19, No. 21.
Hussain, Ashiq et al., “Optimization of Optical Wavelength Conversion in SOI Waveguide”, Applied Mechanics and Materials, 2012, 5 pages, vol. 110-116.
International Search Report and Written Opinion of the International Searching Authority, dated Jun. 8, 2015, Mailed Jun. 15, 2015, and Received Jun. 15, 2015, Corresponding to PCT/GB2015/050523, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Jun. 8, 2015, Mailed Sep. 16, 2015, and Received Sep. 17, 2015, Corresponding to PCT/GB2015/050524, 18 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Aug. 29, 2018, Corresponding to PCT/EP2018/062269, 15 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Jun. 6, 2016, Corresponding to PCT/GB2016/050570, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Mar. 28, 2018, Corresponding to PCT/EP2017/083028, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Mar. 8, 2018, Corresponding to PCT/EP2017/080216, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Mar. 8, 2018, Corresponding to PCT/EP2017/080221, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, dated May 26, 2017, Corresponding to PCT/IT2017/000004, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, dated May 8, 2015 and Received May 11, 2015, Corresponding to PCT/GB2015/050520, 11 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Sep. 11, 2017, Corresponding to PCT/GB2017/051998, 15 pages.
Kachris, Christoforos et al., “A Survey on Optical Interconnects for Data Centers”, IEEE Communications Surveys & Tutorials, vol. 14, No. 4, Fourth Quarter 2012, pp. 1021-1036.
Kachris, Christoforos et al., “Optical Interconnection Networks in Data Centers: Recent Trends and Future Challenges”, IEEE Communications Magazine, Optical Technologies for Data Center Networks, Sep. 2013, pp. 39-45.
Kimoto, Koji et al., “Metastable ultrathin crystal in thermally grown SiO2 film on Si substrate”, AIP Advances, Nov. 12, 2012, pp. 042144-1 through 042144-5, vol. 2, AIP Publishing.
Knoll, Dieter et al., “BiCMOS Silicon Photonics Platform for Fabrication of High-Bandwidth Electronic-Photonic Integrated Circuits”, IEEE, 2016, pp. 46-49.
Lal, Vikrant et al., “Monolithic Wavelength Converters for High-Speed Packet-Switched Optical Networks”, IEEE Journal of Selected Topics in Quantum Electronics, Jan./Feb. 2007, pp. 49-57, vol. 13, No. 1.
Leuthold, J. et al., “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration”, Optical and Quantum Electronics, 2001, pp. 939-952, vol. 33, Nos. 7-10.
Lever, L. et al., “Adiabatic mode coupling between SiGe photonic devices and SOI waveguides”, Optics Express, Dec. 31, 2012, pp. 29500-29506, vol. 20, No. 28.
Liao, Ling et al., “High speed silicon Mach-Zehnder modulator”, Optics Express, Apr. 18, 2005, pp. 3129-3135, vol. 13, No. 8.
Liu, Ansheng et al., “High-speed optical modulation based on carrier depletion in a silicon waveguide”, Optics Express, Jan. 22, 2007, pp. 660-668, vol. 15, No. 2.
Liu, Y. et al., “Error-Free 320-Gb/s All-Optical Wavelength Conversion Using a Single Semiconductor Optical Amplifier”, Journal of Lightwave Technology, Jan. 2007, pp. 103-108, vol. 25, No. 1.
Maxwell, G. et al., “WDM-enabled, 40Gb/s Hybrid Integrated All-optical Regenerator”, ECOC 2005 Proceedings, 2005, pp. 15-16, vol. 6.
Meuer, Christian et al., “80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering”, Optics Express, Mar. 3, 2011, pp. 5134-5142, vol. 19, No. 6.
Moerman, Ingrid et al., “A Review on Fabrication Technologies for the Monolithic Integration of Tapers with III-V Semiconductor Devices”, IEEE Journal of Selected Topics in Quantum Electronics, Dec. 1997, pp. 1308-1320, vol. 3, No. 6.
Nakamura, Shigeru et al., “168-Gb/s All-Optical Wavelength Conversion With a Symmetric-Mach-Zehnder-Type Switch”, IEEE Photonics Technology Letters, Oct. 2001, pp. 1091-1093, vol. 13, No. 10.
Neilson, David T., “Photonics for Switching and Routing”, IEEE Journal of Selected Topics in Quantum Electronics, Jul./Aug. 2006, pp. 669-678, vol. 12, No. 4.
Ngo, Hung Q. et al, “Nonblocking WDM Switches Based on Arrayed Waveguide Grating and Limited Wavelength Conversion”, Proceedings from the 23rd Conference of the IEEE Communications Society, 2004, 11 pages.
Ngo, Hung Q. et al., “Constructions and Analyses of Nonblocking WDM Switches Based on Arrayed Waveguide Grating and Limited Wavelength Conversion”, IEEE/ACM Transactions on Networking, Feb. 2006, pp. 205-217, vol. 14, No. 1.
Ngo, Hung Q. et al., “Optical Switching Networks with Minimum Number of Limited Range Wavelength Converters,” 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE vol. 2, 2005, pp. 1128-1138.
Nishimura, Kohsuke et al., “Optical wavelength conversion by electro-absorption modulators”, Active and Passive Optical Components for WDM Communications IV, Proceedings of SPIE, 2004, pp. 234-243, vol. 5595.
Partial English translation of the Chinese Notification of the First Office Action and Search Report, for Patent Application No. 201580009961.1, dated Sep. 5, 2018, 12 pages.
Partial English translation of the Chinese Patent Office Notification of the Second Office Action, for Patent Application No. 201580009961.1, dated May 13, 2019, 7 pages.
Partial English translation of the Chinese Notification of the First Office Action, for Patent Application No. 201710650505.6, dated Mar. 21, 2019, 7 pages.
Pogossian, S.P. et al., “Analysis of high-confinement SiGe/Si waveguides for silicon-based optoelectronics”, J. Opt. Soc. Am. A, Mar. 1999, pp. 591-595, vol. 16, No. 3, Optical Society of America.
Proietti, Robert et al., “TONAK: A Distributed Low-latency and Scalable Optical Switch Architecture,” 39th European Conference and Exhibition on Optical Communication, 2013, pp. 1005-1007.
Proietti, Roberto et al., “40 Gb/s 8x8 Low-latency Optical Switch for Data Centers,” OSA/OFC/NFOEC 2011, 3 pages.
Quad 40Gb/s 2R Optical Regenerator, CIP Technologies, Preliminary Datasheet, Nov. 2013, 2 pages.
Reed, Graham T. et al., “Silicon optical modulators”, Materials Today, Jan. 2005, pp. 40-50, vol. 8, No. 1.
RefractiveIndex.INFO, Refractive index database, https://RefractiveIndex.Info, 2015, 2 pages.
Roelkens, Gunther et al., “III-V-on-Silicon Photonic Devices for Optical Communication and Sensing”, Photonics, 2015, 29 pages, vol. 2, No. 3.
Rouifed, Mohamed-Saïd et al., “Advances Toward Ge/SiGe Quantum-Well Waveguide Modulators at 1.3μm”, IEEE Journal of Selected Topics in Quantum Electronics, Jul./Aug. 2014, 7 pages, vol. 20, No. 4.
RP Photonics Encyclopedia, Refractive Index, 2015, 3 pages, RP Photonics Consulting GmbH.
Segawa, Toru et al., “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG”, Optics Express, Feb. 17, 2010, pp. 4340-4345, vol. 18, No. 5.
Stamatiadis, C. et al., “Fabrication and experimental demonstration of the first 160 Gb/s hybrid silicon-on-insulator integrated all-optical wavelength converter”, Optics Express, Feb. 1, 2012, pp. 3825-3831, vol. 20, No. 4.
Stamatiadis, Christos et al., “Photonic Provisioning Using a Packaged SOI Hybrid All-Optical Wavelength Converter in a Meshed Optical Network Testbed”, Journal of Lightwave Technology, Sep. 15, 2012, pp. 2941-2947, vol. 30, No. 18.
Stubkjaer, Kristian E., “Semiconductor Optical Amplifier-Based All-Optical Gates for High-Speed Optical Processing”, IEEE Journal on Selected Topics in Quantum Electronics, Nov./Dec. 2000, pp. 1428-1435, vol. 6, No. 6.
Summers, Joseph A. et al., “Monolithically Integrated Multi-Stage All-Optical 10Gbps Push-Pull Wavelength Converter”, Optical Fiber Communication Conference, 2007, 3 pages, Anaheim, CA, USA.
Sysak, M.N. et al., “Broadband return-to-zero wavelength conversion and signal regeneration using a monolithically integrated, photocurrent-driven wavelength converter”, Electronics Letters, Dec. 7, 2006, 2 pages, vol. 42, No. 25.
Tauke-Pedretti, Anna et al., “Separate Absorption and Modulation Mach-Zehnder Wavelength Converter”, Journal of Lightwave Technology, 2008, pp. 1-8, vol. 26, No. 1.
Turner-Foster, Amy C. et al., “Frequency conversion over two-thirds of an octave in silicon nanowaveguides”, Optics Express, Jan. 15, 2010, pp. 1904-1908, vol. 18, No. 3.
U.K. Intellectual Property Office Examination Report, dated Apr. 12, 2019, for Patent Application No. GB1703716.9, 5 pages.
U.K. Intellectual Property Office Examination Report, dated Aug. 10, 2017, for Patent Application No. GB1420064.6, 5 pages.
U.K. Intellectual Property Office Examination Report, dated Aug. 20, 2018, for Patent Application No. GB 1711525.4, 4 pages.
U.K. Intellectual Property Office Examination Report, dated Mar. 21, 2018, for Patent Application No. GB 1420064.6, 3 pages.
U.K. Intellectual Property Office Search and Examination Report, dated Apr. 20, 2017, Received Apr. 24, 2017, for Patent Application No. GB 1703716.9, 7 pages.
U.K. Intellectual Property Office Search and Examination Report, dated Mar. 13, 2018, for Patent Application No. GB1800519.9, 9 pages.
U.K. Intellectual Property Office Search and Examination Report, dated Sep. 12, 2017, Received Sep. 15, 2017, for Patent Application No. GB1711525.4, 5 pages.
U.K. Intellectual Property Office Search Report, dated Aug. 6, 2014, Received Aug. 8, 2014, for Patent Application No. GB1403191.8, 5 pages.
U.K. Intellectual Property Office Search Report, dated Jul. 13, 2017, for Patent Application No. GB1706331.4, 3 pages.
U.K. Intellectual Property Office Search Report, dated Jun. 10, 2015, Received Jun. 12, 2015, for Patent Application No. GB1420063.8, 4 pages.
U.K. Intellectual Property Office Search Report, dated Jun. 4, 2015, Received Jun. 8, 2015, for Patent Application No. GB1420064.6, 5 pages.
U.K. Intellectual Property Office Search Report, dated Sep. 19, 2017, for Patent Application No. GB1704739.0, 4 pages.
U.K. Intellectual Property Office Search Report, dated Sep. 5, 2014, Received Sep. 10, 2014, for Patent Application No. GB1403191.8, 2 pages.
U.K. Intellectual Property Office Examination Report, dated Dec. 2, 2015, for Patent Application No. GB 1403191.8, 3 pages.
U.K. Intellectual Property Office Examination Report, dated Oct. 20, 2015, for GB 1420063.8, 3 pages.
U.S. Office Action from U.S. Appl. No. 14/629,922 dated Nov. 25, 2015, 13 pages.
U.S. Office Action from U.S. Appl. No. 14/629,922, dated May 11, 2016, 14 pages.
U.S. Office Action from U.S. Appl. No. 15/120,861, dated Apr. 25, 2018, 15 pages.
U.S. Office Action from U.S. Appl. No. 15/120,861, dated Aug. 10, 2018, 20 pages.
U.S. Office Action from U.S. Appl. No. 15/120,861, dated Nov. 17, 2017, 22 pages.
U.S. Office Action from U.S. Appl. No. 15/256,321, dated Oct. 31, 2016, 24 pages.
U.S. Office Action from U.S. Appl. No. 15/369,804 dated Jul. 6, 2017, 14 pages.
U.S. Office Action from U.S. Appl. No. 15/430,314, dated Jan. 29, 2018, 26 pages.
U.S. Office Action from U.S. Appl. No. 15/555,431, dated Apr. 6, 2018, 11 pages.
U.S. Office Action from U.S. Appl. No. 15/927,943, dated Jun. 15, 2018, 13 pages.
U.S. Office Action from U.S. Appl. No. 16/195,774, dated Aug. 20, 2019, 38 pages.
U.S. Office Action from U.S. Appl. No. 16/195,774, dated Apr. 20, 2020, 41 pages.
U.S. Office Action from U.S. Appl. No. 16/195,774, dated Oct. 9, 2020, 30 pages.
U.S. Office Action from U.S. Appl. No. 16/231,257, dated Oct. 24, 2019, 8 pages.
U.S. Office Action from U.S. Appl. No. 16/275,157, dated Sep. 6, 2019, 13 pages.
U.S. Office Action from U.S. Appl. No. 16/275,157, dated Feb. 21, 2020, 14 pages.
U.S. Office Action from U.S. Appl. No. 16/420,096, dated Jan. 17, 2020, 11 pages.
U.S. Office Action from U.S. Appl. No. 16/420,096, dated Jul. 28, 2020, 10 pages.
U.S. Office Action from U.S. Appl. No. 16/550,141, dated Jul. 16, 2020, 12 pages.
Vivien, L. et al., “High speed silicon modulators and detectors”, ACP Technical Digest, Communications and Photonics Conference, Nov. 7, 2012, 3 pages.
Vivien, Laurent et al., “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide”, Optics Express, Jul. 23, 2007, pp. 9843-9848, vol. 15, No. 15.
Vlachos, Kyriakos et al., “Photonics in switching: enabling technologies and subsystem design”, Journal of Optical Networking, May 2009, pp. 404-428, vol. 8, No. 5.
Wang, J. et al., “Evanescent-Coupled Ge p-i-n Photodetectors on Si-Waveguide With SEG-Ge and Comparative Study of Lateral and Vertical p-i-n Configurations”, IEEE Electron Device Letters, May 2008, pp. 445-448, vol. 29, No. 5.
Website: “Cladding (fiber optics)”, Wikipedia, 2012, http://en.wikipedia.org/w/index.php?title=Cladding_(fiber_optics)&oldid=508909143, 1 page.
Website: “Epitaxy”, Wikipedia, 2015, https://en.wikipedia.org/w/index.php?title=Epitaxy&oldid=686946039, 6 pages.
Website: “Intel primes market for silicon photonics to lift data centre interconnect speeds”, The Inquirer, http://www.theinquirer.net/inquirer/news/234 5 61 O/intel-primes-market-for silicon-photonics-to-lift-data-centre-interconnect-speeds, printed Jan. 18, 2017, 8 pages.
Website: “Silicon dioxide”, Wikipedia, 2013, http://web.archive.org/web/20130423194808/https://en.wikipedia.org/wiki/Silicon_dioxide, printed Aug. 14, 2019, 13 pages.
Website: “Silicon on insulator”, Wikipedia, 2015, https://en.wikipedia.org/w/index.php?title=Silicon_on_insulator&oldid=670386829, 5 pages.
Xi, Kang et al., “Petabit Optical Switch for Data Center Networks,” Polytechnic Institute of New York University, Brooklyn, New York, 9 pages, 2010.
Yao, Shun et al., “A Unified Study of Contention-Resolution Schemes in Optical Packet-Switched Networks”, Journal of Lightwave Technology, 2003, 31 pages, vol. 21, No. 3.
Ye, Tong et al., “A Study of Modular AWGs for Large-Scale Optical Switching Systems,” Journal of Lightwave Technology, vol. 30, No. 13, Jul. 1, 2012, pp. 2125-2133.
Ye, Tong et al., “AWG-based Non-blocking Clos Networks”, Aug. 21, 2013, pp. 1-13.
Related Publications (1)
Number Date Country
20200012043 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
62429701 Dec 2016 US