The present invention relates to a waveguide power divider used for distributing or combining electromagnetic waves of a microwave band and a millimeter wave band, and a method for manufacturing the same.
A waveguide power divider used in a feed circuit of an array antenna is preferably able to set its power distribution ratio to an arbitrary ratio. For example, as a conventional waveguide power divider meeting this demand, the invention described in Patent Document 1 is known.
That is, the conventional waveguide power divider capable of setting a power distribution ratio to an arbitrary ratio is configured such that a first rectangular waveguide (13) and a second rectangular waveguide (12) are arranged by stacking in parallel, both waveguides are connected by a coupling window (14) of which longitudinal direction is orthogonal with a tube axis, and that a short thin-wall portion (15) is provided in the second rectangular waveguide (12).
The conventional waveguide power divider can set a power distribution ratio to an arbitrary ratio by displacing a center of the coupling window from a center of the thin-wall portion.
Patent Document 1: Japanese Patent Application Laid-open No. 2005-159767 (
However, the conventional waveguide power divider described above requires a complex process to provide the thin-wall portion in the second rectangular waveguide, and thus it has a problem of high manufacturing costs.
The present invention has been achieved in view of the above problems, and an object of the present invention is to provide a waveguide power divider which is capable of setting a power distribution ratio to an arbitrary ratio at a low cost and also in an easily manufacturable structure, and a method of manufacturing the waveguide power divider.
To achieve the object, a waveguide power divider according to one aspect of the present invention is constructed by having a first rectangular waveguide and a second rectangular waveguide arranged by stacking to set mutual tube axes in parallel and share a wide wall, having a coupling slot provided on the shared wide wall, having one side end side in a tube axial direction of the first rectangular waveguide set as a short-circuit surface at a position exceeding the coupling slot in the tube axial direction, and having three ports constituted by a side of the other side end of the first rectangular waveguide and each side end of both sides in a tube axial direction of the second rectangular waveguide, wherein the coupling slot is formed by having its longitudinal direction directed to a tube axial direction, and a matching conductor projected to a duct near the coupling slot is provided on one sidewall of the second rectangular waveguide.
According to the present invention, a waveguide power divider capable of setting a power distribution ratio to an arbitrary ratio at a low cost and in an easily manufacturable structure can be obtained.
[
[
[
[
[
[
Exemplary embodiments of a waveguide power divider and a method for manufacturing the same according to the present invention will be explained below in detail with reference to the accompanying drawings. The present invention is not limited thereto.
The waveguide slot-array antenna shown in
The radiating waveguide 2 and the feed circuit 4 are electromagnetically connected to each other by a coupling slot 5, and the radiating waveguide 3 and the feed circuit 4 are electromagnetically connected to each other by a coupling slot 6. The feed circuit 4 has a waveguide power divider 7 and a port A. In the example shown in the drawings, the radiating slots 1 are provided by six elements on the front surface of the radiating waveguide 2, and the radiating slots 1 are provided by four elements on the front surface of the radiating waveguide 3. Although the radiating waveguides 2 and 3 are arranged in a separated manner in the drawings, these waveguides can be integrally connected. In the case that these waveguides are integrally connected, a conductor wall or an electromagnetic shield is provided between the radiating waveguide 2 and the radiating waveguide 3 to avoid an electromagnetic interference between them.
In the above configuration, electromagnetic waves of a microwave band or a millimeter wave band input to the port A are distributed to two directions by the waveguide power divider 7. Electromagnetic waves in one direction are fed to the radiating waveguide 2 through the coupling slot 5, and excite six radiating slots 1 provided on the front surface of the radiating waveguide 2.
Electromagnetic waves in the other direction are fed to the radiating waveguide 3 through the coupling slot 6, and excite four radiating slots 1 provided on the front surface of the radiating waveguide 3.
In this case, the numbers of the radiating slots 1 are different between the radiating waveguides 2 and 3. However, even in this case, the waveguide power divider 7 is also required to have a capability capable of distributing electric power capable of exciting all of the radiating slots 1 at a uniform amplitude. This power distribution capability is also required when there are an odd number of radiating waveguides having the same number of radiating slots. Therefore, the waveguide power divider 7 used in the feed circuit 4 is preferably able to set a power distribution ratio to an arbitrary ratio.
A waveguide power divider according to the present embodiment that can set a power distribution ratio to an arbitrary ratio is explained in detail below.
(Configuration of a Waveguide Power Divider According to this Embodiment)
As shown in
The first rectangular waveguide 8 has one end in a tube axial direction opened and communicated with the port A, and has the other end in the tube axial direction blocked as a short-circuit surface 12. The second rectangular waveguide 9 has both ends in the tube axial direction opened to form ports B and C, respectively.
A coupling slot 10 is provided on the shared wide wall. In
A matching conductor 11 is provided near the coupling slot 10 within the second rectangular waveguide 9. Specifically, in an example shown in
As for the size, in a case of a 76-GHz band waveguide power divider, both the first rectangular waveguide 8 and the second rectangular waveguide 9 have 2.6 millimeters for a short-side direction width of the wide wall, and 1.2 millimeters for the height of a sidewall.
(Operation of Waveguide Power Divider Configured as Described Above)
Electromagnetic waves of a microwave band and a millimeter wave band input to the port A are propagated to a tube axial direction directed to the short-circuit surface 12 in the first rectangular waveguide 8, and excite the coupling slot 10. The excited coupling slot 10 generates electromagnetic waves in the second rectangular waveguide 9. The electromagnetic waves generated in the second rectangular waveguide 9 are propagated to both sides of the tube axial direction in the second rectangular waveguide 9, and are output from the port B and the port C.
In this case, the power ratio of the port B to the port C can be set to an arbitrary ratio based on a position of the matching conductor 11, that is, the offset distance X. That is, when the offset distance X is 0, that is, when the center position of the matching conductor 11 is matched with the longitudinal-direction center of the coupling slot 10, equal power is distributed to the port B and the port C. When the offset distance X is set to a positive value, that is, when the center position of the matching conductor 11 is at a position shifted from the longitudinal-direction center of the coupling slot 10 toward a port C side, the distribution ratio to the port B becomes high. On the other hand, when the offset distance X is a negative value, that is, when the center position of the matching conductor 11 is at a position shifted from the longitudinal-direction center of the coupling slot 10 toward a port B side, the distribution ratio to the port C becomes high. It is preferred that the offset distance X is adjusted within a range of a slot length (a longitudinal direction length) of the slot 10.
While the above operation is for a case of inputting electromagnetic waves to the port A and distributing the electromagnetic waves to the port B and the port C, because waveguide power dividers are reciprocal in general, the above operation can be also used to combine power. That is, when electromagnetic waves of the same frequency are input to the port B and the port C, these are combined at a predetermined ratio, and are output from the port A.
While a case of using an inductive iris for the matching conductor 11 is described in the present embodiment, a conductive post or a conductive block can be also used, and similar effects can be obtained. Generally, the matching conductor 11 can be processed more easily than a waveguide thin-wall portion of a conventional technique. Therefore, the waveguide power divider according to the present embodiment can be manufactured at a cost lower than that of conventional waveguide power dividers.
(Configuration and Method for Manufacturing Waveguide Power Divider According to the Embodiment)
Because the waveguide power divider 7 shown in
Therefore, when the waveguide power divider of the mode shown in
Accordingly, in the present embodiment, the waveguide power divider is manufactured by using diffusion bonding capable of bonding without using any brazing material. Diffusion bonding is a bonding method of heating and pressing members to be bonded, and metallurgically integrating the members by using a diffusion phenomenon generated between bonded surfaces. The diffusion bonding uses a principle that metallic binding is formed when metal surfaces are connected to each other to a distance of about an atomic level. Therefore, in principle, two metals can be bonded together when they are brought close to each other.
Therefore, the bonding cost in manufacturing can be reduced by using diffusion bonding. Furthermore, because any brazing material is not used, there is no problem of sticking out, and there is an advantage that deformation due to bonding hardly occurs.
(Structure)
The waveguide power divider shown in
The first metal sheet 13 is a metal sheet that becomes a wide wall facing a shared wide wall of the first rectangular waveguide 8. The fifth metal sheet 17 is a metal sheet facing the shared wide wall of the second rectangular waveguide 9. The third metal sheet 15 is a metal sheet that becomes a wide wall (a shared wide wall) shared by the first and second rectangular waveguides 8 and 9, and is formed with the coupling slot 10. The sheet thickness of each of these three metal sheets is arbitrary, and can be smaller than the sheet thickness of the second metal sheet 14 or the fourth metal sheet 16.
The second metal sheet 14 is a metal sheet to form a tube-axial-direction duct space excluding both wide wall sides of a cross-section square duct of the first rectangular waveguide 8, and is provided with a slit having a gap between both sidewalls of the first rectangular waveguide 8 as a slit width in a tube axial direction. The short-circuit surface 12 shown in
The fourth metal sheet 16 is a metal sheet to form a tube-axial-direction duct space excluding both wide wall sides of a cross-section square duct of the second rectangular waveguide 9, and is provided with a slit having a gap between both sidewalls of the second rectangular waveguide 9 as a slit width in a tube axial direction. Although not shown in
(Manufacturing Method)
In
Next, positioning is performed such that a longitudinal direction of the coupling slot 10 provided in the third metal sheet 15 is in parallel with a tube axial direction, the slit provided in the second metal sheet 14 and the slit provided in the fourth metal sheet 16 are in parallel with each other in the tube axial direction, a matching conductor part provided in the slit of the fourth metal sheet 16 is positioned near the coupling slot 10, and that an end of the slit provided in the second metal sheet 14 is located at a position of about ¼ of a waveguide wavelength distanced from a longitudinal-direction center of the coupling slot 10.
In a state that such positioning is performed, the waveguide power divider 7 shown in
Although
As described above, because the waveguide power divider is configured by dividing it into plural metal sheets, each of the metal sheets has a two-dimensional shape, and can be processed at a low cost by etching or pressing. Furthermore, because these metal sheets are bonded by diffusion bonding, mass production becomes possible at a low cost and in stable quality.
As described above, the waveguide power divider according to the present invention is useful as a waveguide power divider capable of setting a power distribution ratio to an arbitrary ratio at a low cost and in an easily manufacturable structure. In addition, the method for manufacturing a waveguide power divider according to the present invention is useful as a manufacturing method for mass production at a low cost and in stable quality.
Number | Date | Country | Kind |
---|---|---|---|
2008-079182 | Mar 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/054456 | 3/9/2009 | WO | 00 | 8/4/2010 |