This disclosure is related to the field of using a waveguide to transmit signals to a stripline feed in a first signal direction and using a stripline feed to transmit signals to a waveguide in a second signal direction.
Waveguides are used in many radio frequency (RF) applications for low-loss signal propagation. For high frequency applications in particular, waveguides may be preferred over coaxial transmission lines. In some applications, it may be desirable to transition waveguides to a planar stripline. Planar striplines may be useful for signal transmission to various components on an RF board.
In order for a waveguide to transition to a planar stripline, multiple adapters are typically required. First, a waveguide-to-coax adapter may transition a waveguide to a coax. Second, a coax-to-microstrip adapter may transition a coax to a microstrip. Finally, the microstrip may be transitioned to a planar stripline on an RF board. Adapters associated with these transitions can be cost prohibitive at higher frequencies because such adapters are small and may be formed using high precision machining. Also, the size and weight of existing waveguide-to-coax transitions make them non-ideal for many applications.
In this disclosure, a low-loss waveguide to stripline feed apparatus is described. In an embodiment, a waveguide to stripline feed apparatus includes a substrate assembly having a first side and a second side. The apparatus further includes a waveguide antenna element positioned on the first side of the substrate assembly. The apparatus also includes a first reference ground plane positioned on the first side of the substrate assembly and enclosing the waveguide antenna element. The apparatus includes a stripline positioned within the substrate assembly. The apparatus further includes a second reference ground plane positioned on the second side of the substrate assembly.
In some embodiments, the apparatus includes a waveguide attached to the first side of the substrate assembly, enclosing the waveguide antenna element, and electrically connected to the first reference ground plane. In some embodiments, the waveguide is a circular waveguide. In some embodiments, the apparatus includes one or more substrates positioned between the waveguide antenna element and the stripline, where the stripline is proximity coupled to the waveguide antenna element. In some embodiments, the apparatus includes a slot defined within the waveguide antenna element. In some embodiments, the apparatus includes one or more vias electrically shorting the first reference ground plane to the second reference ground plane. In some embodiments, the waveguide antenna element and the first reference ground plane are positioned on a first substrate, where the stripline is positioned on a second substrate, and where the second reference ground plane is positioned on a third substrate. In some embodiments, the first substrate, the second substrate, and the third substrate each include a dielectric material. In some embodiments, the apparatus includes bonding layers positioned between each of the first substrate, the second substrate, and the third substrate.
In an embodiment, a method includes providing a waveguide antenna element and a first reference ground plane on a first substrate, the first reference ground plane enclosing the waveguide antenna element. The method further includes providing a stripline on a second substrate. The method also includes providing a second reference ground plane on a third substrate. The method includes bonding the first substrate, second substrate, and third substrate together to form a substrate assembly having a first side and a second side, where the waveguide antenna element and the first reference ground plane are positioned on the first side, and wherein the second reference ground plane is positioned on the second side.
In some embodiments, the method includes attaching a waveguide to the first side of the substrate assembly, where the waveguide encloses the waveguide antenna element and is electrically connected to the first reference ground plane. In some embodiments, the waveguide is a circular waveguide. In some embodiments, the method includes positioning one or more additional substrates between the waveguide antenna element and the stripline, where the stripline is proximity coupled to the waveguide antenna element. In some embodiments, the method includes providing a slot within the waveguide antenna element. In some embodiments, the method includes providing one or more vias electrically shorting the first reference ground plane to the second reference ground plane. In some embodiments, providing the waveguide antenna element, the first reference ground plane, the stripline, and the second reference ground plane is performed using a subtractive process, an additive process, or a combination thereof. In some embodiments, the subtractive process includes laser etching, milling, wet etching, or a combination thereof, and the additive process includes printing, deposition, or a combination thereof. In some embodiments, the bonding of the first substrate, the second substrate, and the third substrate together includes positioning bonding layers between each of the first substrate, the second substrate, and the third substrate.
In an embodiment, a method includes receiving a time-varying electric field signal at a waveguide antenna element positioned on a first side of a substrate assembly, wherein the time-varying electric field signal induces a current signal having a circular behavior within the waveguide antenna element. The method further includes generating a current signal at a stripline proximity coupled to the waveguide antenna element. In some embodiments, the time-varying electric field signal has a frequency of about 10 gigahertz (GHz).
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Rather, the intention is to cover all modifications, equivalents and alternatives falling within the scope of the disclosure as defined by the appended claims.
As used herein, the terms “top,” “bottom,” “first,” and “second” can refer to relative directions or positions of features in the apparatus shown in the Figures. These terms, however, should be construed broadly to include apparatus having other orientations, such as inverted or inclined orientations where top/bottom, over/under, above/below, up/down, and left/right can be interchanged depending on the orientation.
Referring to
Referring to
Referring to
The waveguide 120 may be electrically connected to the first reference ground plane 114 with some of the first reference ground plane 114 being enclosed by the waveguide 120. This may enable interference with the transition between the waveguide 120 and a stripline 116 to be reduced as compared to other systems which may first transition to a microstrip line before transitioning to a stripline.
The apparatus 100 may include a stripline 116 within the substrate assembly 102. The stripline 116 may be proximity coupled to the waveguide antenna element 110. In other words, the stripline 116 may be capacitively coupled with the waveguide antenna element 110 such that a time-varying electrical voltage within the waveguide antenna element 110 may induce a time-varying electrical current within the stripline 116.
On the second side 106 of the substrate assembly 102, the apparatus 100 may include a second reference ground plane 118, which may be electrically shorted to the first reference ground plane 114 through one or more electrical vias 130. The second reference ground plane 118 may extend over the length of the second side 106 of the apparatus 100, which may be more easily seen in
Referring to
As shown in
The second reference ground plane 118 may be positioned on the third substrate 206. The optional fourth substrate 208 may be positioned between the first substrate 202 and second substrate 204 for proximity coupling spacing purposes. Although not shown, additional substrates may also be included between the first substrate 202, second substrate 204, and third substrate 206 for spacing purposes. The electrical vias 130 may pass through each of the substrates 202-208 to electrically short the first reference ground plane 114 to the second reference ground plane 118. The substrates 202-208 may be bonded together by one or more bonding layers 210 (e.g., adhesive layers).
Operation of the apparatus 100 is described with reference to
Referring to
A benefit of the apparatus 100 is that the apparatus 100 may have a reduced size, weight, and cost in comparison to existing waveguide-to-coax adapters and further coax-to-stripline adapters. Further, the substrate assembly 102 may exhibit a lower profile as compared to existing adapters. In some embodiments, the apparatus 100 may operate when the time-varying electric field signals 402, 508 have frequencies of about 10 GHz. Other advantages may exist.
Referring to
The method 800 may further include providing a slot within the waveguide antenna element, at 804. For example, the slot 112 may be provided in the waveguide antenna element 110.
The method 800 may also include providing a stripline on a second substrate, at 806. For example, the stripline 116 may be formed on the second substrate 204.
The method 800 may also include providing a second reference ground plane on a third substrate, at 808. For example, the second reference ground plane 118 may be formed on the third substrate 206.
The method 800 may include bonding the first substrate, the second substrate, and the third substrate together to form a substrate assembly having a first side and a second side, where the waveguide antenna element and the first reference ground plane are positioned on the first side, and where the second reference ground plane is positioned on the second side, at 810. For example, the first substrate 202, the second substrate 204, and the third substrate 206 may be bonded together to form the substrate assembly 102.
The method 800 may also optionally include positioning one or more additional substrates between the waveguide antenna element and the strapline, where the stripline is proximity coupled to the stripline antenna element, at 812. For example, the one or more additional substrates, such as the fourth substrate 208, may be positioned between the waveguide antenna element 110 and the stripline 116.
The method 800 may include providing one or more vias electrically shorting the first reference ground plane to the second reference ground plane, at 814. For example, the one or more vias 130 may be formed and may electrically short the first reference ground plane 114 to the second reference ground plane 118.
The method 800 may further include attaching a waveguide to the first side of the substrate assembly, the waveguide enclosing the waveguide antenna element, and the waveguide being electrically connected to the first reference ground plane, at 816. For example, the waveguide 120 may be attached to the first side 104 of the substrate assembly 102.
In some embodiments of the method 800, providing the waveguide antenna element, the first reference ground plane, the stripline, and the second reference ground plane is performed using a subtractive process, an additive process, or a combination thereof. Further, the subtractive process may include laser etching, milling, wet etching, or a combination thereof, and the additive process may include printing, deposition, or a combination thereof.
Referring to
The method 900 may further include generating a current signal at a stripline proximity coupled to the waveguide antenna element, at 904. For example, the current signal 408 may be generated at the stripline 116, which may be proximity coupled to the waveguide antenna element 110. Thus, the method 900 may be used for transmitting signals to the stripline 116 with the waveguide 120.
The method 1000 may further include generating a time-varying electric field signal at the waveguide antenna element in response to the current signal with circular behavior within the waveguide antenna element, at 1004. For example, the time-varying electric field signal 508 may be generated at the waveguide antenna element 110.
Although this disclosure has been described in terms of certain embodiments, other embodiments that are apparent to those of ordinary skill in the art, including embodiments that do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of the present disclosure is defined only by reference to the appended claims and equivalents thereof