Waveguides with integrated lenses, mirrors and optical detectors are disclosed. Further, methods of manufacturing waveguides with integrated lenses and/or mirrors are also disclosed. The waveguides with integrated lenses and/or mirrors may be used in variable optical attenuators, arrayed waveguide gratings, evanescent couplers and other photonic architectures that require focusing and/or optical detection or power monitoring.
There is a wide-ranging demand for increased communications capabilities, including more channels and greater bandwidth per channel. The needs range from long distance applications such as telecommunications between two cities to extremely short range applications such as the data-communications between two functional blocks (fubs) in a semiconductor circuit with spacing of a hundred microns.
Optical media, such as optical fibers or waveguides, provide an economical and higher bandwidth alternative to electrical conductors for communications. A typical optical fiber includes a silica core, a silica cladding, and a protective coating. The index of refraction of the core is higher than the index of refraction of the cladding to promote internal reflection of light propagating down the silica core.
Optical fibers can carry information encoded as optical pulses over long distances. The advantages of optical media include vastly increased data rates, lower transmission losses, lower basic cost of materials, smaller cable sizes, and almost complete immunity from stray electrical fields. Other applications for optical fibers include guiding light to awkward places (e.g., surgical applications), image guiding for remote viewing, and various sensing applications.
The use of optical waveguides in circuitry to replace conductors isolates path length affects (e.g., delays) from electrical issues such as mutual impedance. As a result, optical interconnects and optical clocks are two applications for waveguide technology. Like optical fibers, waveguides include a higher index of refraction core embedded in a lower index of refraction cladding.
Wavelength Division Multiplexing (WDM) represents an efficient way to increase the capacity of an optical fiber. In WDM, a number of independent transmitter-receiver pairs use the same fiber.
An arrayed waveguide grating (AWG) is a component used in fiber optics systems employing WDM. The various elements of an AWG are normally integrated onto a single substrate. An AWG comprises a plurality of optical input/output waveguides on both sides of the substrate, two slab waveguides, and a grating that consists of channel waveguides that connect the slab waveguides together, which in turn, connect the input/output guides to the separate channel waveguides.
In an optical communications system, it is often required to adjust the intensity or optical power of the light signals being transmitted. Variable optical attenuators (VOA) are typically used to control the intensity of each light signal, and thereby maintain each light signal at the same intensity. Generally, a VOA attenuates, or reduces, the intensity of some of the light signals so that all of the light signals are maintained at the same intensity.
An evanescent coupler is formed with two waveguides disposed together in a substrate and that extend for a coupling distance close to each other, such that the light wave modes passing along each waveguide overlap. The overlap causes some light from one waveguide to pass to the other, and vice versa. The two waveguides in the evanescent coupler separate away from each other outside of the coupling distance.
In the architectures of many photonics devices, such as AWGs, VOAs, optical power monitors, and evanescent couplers, it is desirable to perform optical detection or power monitoring at an upper surface of the planar lightwave circuit (PLC). Consequently, planar lightwave circuits have been developed with mirrors positioned beneath a mounted detection device which enable exchange of optical signals between the waveguide and the detection device.
Typically, such mirrors have reflective surfaces positioned opposite a terminal end of the waveguide core and at an approximately 45° angle relative to the longitudinal axis of the core which results in the signal being reflected at an angle perpendicular to the core.
However, the mirrors or reflective surfaces, along with the waveguides, must be prefabricated and subsequently assembled or secured to the substrate. Such prefabrication is expensive and undesirable when mass producing components. Other processes that do not require prefabrication have been developed but these processes typically require multiple etching steps and often require the mirror to be made from a different material than the core or cladding of the waveguide. Accordingly, a more economic means is needed for fabricating mirrors or reflective surfaces in planar lightwave circuits.
Further, waveguide lenses are indispensable elements in numerous photonics devices, such as those described above. Specifically, waveguide lenses are often needed when it is necessary to provide efficient optical coupling between components or devices of a circuit or system. The coupling or inner connection between various devices or components can be complicated if there is any mismatch between an output or aperture of one device and an input or aperture of another device. The coupling or inner connection problem is exacerbated by the use of small diameter optical fibers which typically have a diameter on the order of 125 μm as an outer diameter and a core diameter as small as 8 μm. Thus, the mechanical alignment of a fiber with another optical component can be extremely difficult and mismatches often result.
Some lenses incorporated into the photonics devices include tapered hemispherical fiber lenses which must be made on an individual basis and therefore encounter quality control problems. Laser machine lenses are another alternative but must also be made individually and therefore are costly and time consuming. Finally, lenses have also been etched on tips of glass fibers. Although these etched lenses are relatively inexpensive because they are subject to batch processing, quality control problems arise from the fact that the etched lenses are subject to etching related defects and are subject to damage during handling.
Thus, there is a need for improved methods of incorporating mirrors or reflective surfaces and lenses into various photonics devices.
The disclosed devices and methods of fabrication thereof are illustrated more or less diagrammatically in the accompanying drawings, wherein:
It should be understood that the drawings are not necessarily to scale and that the embodiments are illustrated by diagrammatic representations, fragmentary views and graphical representations. In certain instances, details which are not necessary for an understanding of the disclosed devices and methods or which render other details difficult to perceive may have be omitted. It should be understood, of course, that this disclosure is not necessarily limited to the particular embodiments illustrated herein.
Turning to
Turning to
Thus, a plurality of waveguides or planar lightwave circuits are disclosed with integrated reflecting surfaces for use with optical power monitoring or optical detectors and with collimating lenses for enhanced coupling to other devices such as other circuit components or detectors. Further, the integrated convex collimating lenses can be used with evanescent couplers with or without power monitoring or optical detection capabilities. The power monitoring or optical detection capabilities provided by the integrated reflectors and lenses of the disclosed devices are applicable to variable optical attenuators, arrayed waveguide gratings and other optical devices. Further, numerous manufacturing techniques for producing the disclosed devices are also shown and described. These techniques take advantage of surface diffusion effects cause when cladding material is reflowed.
In the foregoing detailed description, the disclosed structures and manufacturing methods have been described with reference exemplary embodiments. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of this disclosure. The above specification and figures accordingly are to be regarded as illustrated rather than restrictive. Particular materials selected herein can be easily substituted for other materials that will be apparent to those skilled in the art and would nevertheless remain equivalent embodiments of the disclosed devices and manufacturing methods.
Number | Date | Country | |
---|---|---|---|
Parent | 10323207 | Dec 2002 | US |
Child | 11101320 | Apr 2005 | US |