1. Technical Field of the Invention
The invention is in the field of projection systems to protect devices from incoming flying weapons.
2. Description of the Related Art
Rocket propelled grenades (RPGs) are examples of a type of projectile that poses a great threat to ground vehicles and helicopters. RPGs are commonly used during close-in military engagements, where the shooter and the target are close to one another. Defeating an incoming RPG with a fragmentation warhead interceptor may destroy the incoming RPG, but may also in the process produce an omni-directional pressure wave and a shower of fragments. These fragments may injure personnel or cause damage, such as by causing damage to a helicopter or ground vehicle that is being fired upon. From the foregoing it will be appreciated that it may be desirable to have improved ways of dealing with incoming projectiles.
A weapon interceptor projectile includes deployable frame that supports a deployable net or mesh, maintaining coverage of the net or mesh over a substantially constant area. The deployable frame can be an inflatable structure, for example inflated by using a gas generator consisting of air bag propellant pellets. The inflatable structure may include a perimeter, such as a ring, supported by multiple spokes that attach the perimeter to a central body of the projectile. The perimeter may have an airfoil shape that provides lift that laterally expands the perimeter away from the central axis of the projectile. The spokes may be a series of inflatable members extending radially out from the central body, substantially evenly circumferentially spaced about the perimeter. The net or mesh may be attached to the perimeter at attachment points substantially corresponding to a center of lift of the airfoil of the perimeter. The inflatable structure may consist of an outer net expansion nacelle with an airfoil cross-section, and several central support struts. The support struts are attached to a central distribution plenum that contains the net or mesh prior to deployment. The deployable structure provides a way to rapidly deploy and maintain the net or mesh over a predetermined area. Continued attachment of the central projectile body to the deployable frame provides additional momentum when the net or mesh impacts an incoming airborne weapon. The lack of an interceptor warhead for defeating the incoming weapon eliminates the need for any electromechanical warhead safe and arm subsystem, and reduces the possibility of fratricide or unwanted collateral damage. The projectile may include a propulsion module that rapidly deploys the projectile at a desired angle, so as to intercept an incoming weapon. The projectile may be able to intercept incoming weapons over a full range of angles, with interception occurring at a desired stand-off distance. Use of proven automotive air bag technology provides a projectile that has high reliability, high durability, no moving parts, low cost, and low risk.
According to an aspect of the invention, a weapon interceptor projectile includes a deployable frame that supports a deployable net or mesh.
According to another aspect of the invention, a weapon interceptor projectile includes an inflatable frame inflated using pressurized gases from a gas generator, for example using propellant pellets ignited by an electrical igniter.
According to yet another aspect of the invention, a weapon interceptor projectile includes an inflatable frame for supporting a net or mesh, wherein the frame fractures a frangible casing when inflated.
According to still another aspect of the invention, a weapon interceptor projectile includes a deployable frame that has a perimeter with an airfoil shape, providing lift in a radial direction away from a central axis of the profile, in order to facilitate deployment of the frame and reduce aerodynamic drag of the structure in flight. A net or mesh may be attached to the perimeter, such as at or near a center of lift on the airfoil shape.
According to a further aspect of the invention, a weapon interceptor projectile includes: a body; a deployable net inside the body; and a deployable frame attached to the net. The net and the frame are configured to deploy such that the frame maintains the net in a shape.
According to still another aspect of the invention, a method of intercepting an incoming projectile includes the steps of: deploying a frame and a net of an interceptor projectile, wherein the net is attached to the frame such that the frame, when deployed, maintains a fixed shape; and after the deploying, intercepting the incoming projectile with the net.
To the accomplishment of the foregoing and related ends, the invention comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative embodiments of the invention. These embodiments are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
In the annexed drawings, which are not necessarily to scale:
A weapon interceptor projectile has a deployable frame for maintaining a deployable net in shape. The deployable frame may be an inflatable structure, including a flexible material inflated by a gas generator. The inflatable structure has a perimeter that supports an outside shape of the net, and a series of spokes or arms that couple the perimeter to a body of the projectile. The perimeter may have an airfoil cross-section shape, reducing drag of the frame and aiding in deployment. The perimeter may be have a circular shape, giving the net a circular area. The deployable frame allows the net to maintain its shape during flight, increasing its area and its ability to come into contact with an incoming weapon, such as a rocket propelled grenade (RPG).
Referring initially to
A net module 28 houses and deploys the net 14 and the frame 16. The net 14 is initially located in a central distribution plenum 30 that is at the center of the projectile body 12. The distribution plenum 30 has a forward-facing opening 32 out of which the net 14 emerges when deployed. The plenum 30 may have an angled opening, with a mouth that widens toward the forward-facing opening 32. This may facilitate deploying the net radially outward from the center of the body 12.
Net ends 34 are attached at attachment points 38 to an inflatable structure 40 that serves as the deployable frame 14. The attachment points are at points of a perimeter or nacelle 42 of the inflatable structure 40 that provides an outer frame of the inflatable structure 40. The perimeter 42 may be an airfoil 44 that provides lift to expand and maintain the perimeter 42 radially outward away from an axis or center line of the body 12. The attachment points 38 may substantially coincide with points along a center of lift 46 of the airfoil 44.
The plenum 30 is surrounded by an inner cylinder 48. A pair of retention flanges 50 and 52 are all attached to the inner cylinder using a series of fasteners 54, such as a series of rivets. Trapped between the inner cylinder 48 and the flanges 50 and 52 are portions of the inflatable structure 40. The fasteners 54 are used to anchor these portions of the inflatable structure 40, to maintain attachment between the body 12 and the inflatable structure 40, even after deployment of the inflatable structure 40.
The lower retention flange 52 is also attached to a base 56 of the body 12. The base 56 encloses a gas generator 60 that is used to generate pressurized gases 64 for inflating the inflatable structure 40. The gas generator 60 may be the same as the material used for generating gases for the operation of automotive air bags, for example pellets containing a mixture of NaN3, KNO3 and SiO2. An igniter 70 is used to ignite the gas generator 60.
The gas generator 60 may have about 25 grams of combustible material. This may be on the order of half of the mass of explosive material used in a projectile that utilizes a high explosive material. It will be appreciated that it is advantageous from a safety and handling standpoint that no high explosive material is required in the projectile 10. For example there is no need for safe and arm electromechanical lockouts in the projectile 10.
The inflation of the inflatable structure 40 may provide containment for substantially all the pressurized gases produced by the gas generator 60. The structure 40 itself may provide containment for and may attenuate pressure rates produced by the combustion of the material of the gas generator 60.
The inflatable structure 40 is located in a pocket 76 between the retention flanges 50 and 52, and also is initially accordion folded around the retention flanges 50 and 52. These accordion folded regions are indicated at 78 and 79 in
The base 56 is also attached to the propulsion module 24. Various interior parts of the body 12, such as the base 56, the inner cylinder 48, the plenum 30, and the retention flanges 50 and 52, may be made of any of a variety of suitable metals, such as steel and aluminum. The inflatable structure 40 may be made of a suitable lightweight flexible material, such as nylon or suitable plastic material.
With reference to
In the stowed configuration the inflatable structure 40 is surrounded and enclosed by a frangible casing 88. The frangible may be made of a suitable plastic material. The casing 88 is configured to break into pieces as the inflatable structure 40 deploys by moving outward. The casing 88 may be configured such that the pieces are small enough to minimize collateral damage.
There may be four or more side thrust motors 90 on the propulsion module 24. Operation of side thrust motors may be used to orient the projectile 10 as desired. A control system may be used to set the desired orientation of the projectile 10, and the timing of initiating combustion of the gas generator 60 by firing the igniter 70, prior to launch of the projectile 10.
Side thrusting motors 90 of the propulsion module 24 are used to pitch and point the projectile as shown at reference numbers 120 and 122. Following the achievement of proper orientation of the projectile 10, the main thrust motor 126 of the propulsion module 24 is fired in a boost phase 130.
Finally, a net 14 and the frame 16 are deployed, as indicated at reference number 140. This deployment is initiated by firing of the igniter 70 (
Once the net 14 and the frame 16 are deployed the interceptor 10 is ready for its collision with the incoming weapon 112. A weapon 112 collides with the net or mesh 14, and/or with the frame 16. This collision may drive the weapon 112 off course. Alternatively or in addition the collision may cause damage to portions of the weapon 112 so as to disable the weapon 112. For example the collision may cause short-circuiting of a liner to a housing of the weapon 112, which may result in the weapon 112 becoming incapable of exploding. It will be appreciated that it is advantageous to retain the net 14 and the frame 16 mechanically coupled to the body 12 and the propulsion module 24. This provides additional momentum as the projectile collides with the incoming weapon 112. The additional momentum increases the amount of course diversion in the weapon 112. In addition, the increased momentum increases the amount of damage caused to the weapon 112, for example increasing the likelihood of short-circuiting a liner of the weapon 112. The perimeter 42 may have a diameter of about 2 meters when fully deployed. Thus the projectile 10 may have an effective diameter of about 2 meters for intercepting the incoming weapon 112.
The net or mesh 14 may be made of a variety of suitable materials, for example a fiber material such as KEVLAR.
It will be appreciated that the perimeter 42 may be in shapes other than circular. For example the perimeter 42 may alternatively have a square, other rectangular, octagonal, other polygonal, or other suitable shape. The inflatable structure 40 may optionally include structural members for strengthening parts of the structure 40, and maintaining a desired shape.
The projectile 10 has a number of advantageous characteristics relative to certain prior interceptors. Since no explosives are used in intercepting and defeating an incoming weapon, there is a reduction in the possibility of unwanted damage to nearby structures and personnel, for example ground personnel or structure and crew of an air vehicle that fires the projectile 10. The projectile 10 utilizes a number of proven technologies, provided a higher reliability, low cost, and low risk system for intercepting and defeating the incoming weapon 112. In conjunction with this advantage, the projectile 10 advantageously does not utilize any moving parts. Another advantage is the projectile may be able to intercept incoming weapons at substantially any incoming angle. Since the frame 16 supports the deployed net 14, there may be a greater margin of error in the timing of net deployment, since the net 14 remains at its fully deployed area, rather than perhaps collapsing again after initial deployment.
The lack of a warhead or other explosive in the projectile 10 dispenses with any need for safety measures associated with explosives, such as safe and arm subsystems. The projectile 10 may also be lighter than systems that require a relatively heavy explosive and fragmentation package to defeat an incoming weapon.
The frame 16 has been described above in terms of the inflatable structure 40 (
The projectile 10 may be used for other purposes than intercepting weapons. Other sorts of objects may be intercepted using the projectile 10. It will be appreciated that a variety of sizes may be used for the area covered by the net 14 and surrounded by the perimeter or nacelle 42 for other parts of a deployable frame.
The continuing attachment of the deployable frame 16 to the body 12, even after deployment, may advantageously dispense with any need for providing separate weights to the net 14 or the deployable frame 16.
Although the invention has been shown and described with respect to a certain preferred embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.
Number | Name | Date | Kind |
---|---|---|---|
1211001 | Steinmetz | Jan 1917 | A |
1247331 | Robinson | Nov 1917 | A |
1274419 | Jackson | Aug 1918 | A |
1536164 | Tainton | May 1925 | A |
2296980 | Carmichael | Sep 1942 | A |
2308683 | Forbes | Jan 1943 | A |
2322624 | Forbes | Jun 1943 | A |
4090567 | Tomlinson | May 1978 | A |
4142696 | Nottingham | Mar 1979 | A |
4193567 | McCarty, Jr. | Mar 1980 | A |
4833995 | Gotz et al. | May 1989 | A |
5583311 | Rieger | Dec 1996 | A |
6079398 | Grimm | Jun 2000 | A |
6220918 | Laronge | Apr 2001 | B1 |
6382105 | Jones | May 2002 | B1 |
6454623 | Flatau | Sep 2002 | B1 |
6959893 | Sadowski et al. | Nov 2005 | B1 |
7190304 | Carlson | Mar 2007 | B1 |
7202809 | Schade et al. | Apr 2007 | B1 |
7412916 | Lloyd | Aug 2008 | B2 |
7415917 | Lloyd | Aug 2008 | B2 |
8122810 | Glasson | Feb 2012 | B2 |
20050016372 | Kilvert | Jan 2005 | A1 |
20050132923 | Lloyd | Jun 2005 | A1 |
20050183615 | Flatau | Aug 2005 | A1 |
20060112817 | Lloyd | Jun 2006 | A1 |
20060225598 | Okamoto et al. | Oct 2006 | A1 |
20070079819 | Vanek et al. | Apr 2007 | A1 |
20070180983 | Farinella et al. | Aug 2007 | A1 |
20090266226 | Beach et al. | Oct 2009 | A1 |
20100307328 | Hoadley et al. | Dec 2010 | A1 |
20120011996 | Glasson | Jan 2012 | A1 |
Entry |
---|
Versatile Explosives, Airbag Chemistry, Summer 2003, Los Alamos National Laboratory: http://www.lanl.gov/quarterly/q—sum03/chemistry.shtml. |
“Force Protection Systems”, Pacific Scientific Energetic Materials Company, [retrieved online], <http://www.psemc.com/force—protection.htm>. |
“IABS—RPG Active Countermeasure”, IABS RPG Countermeasure, (2002-2006), [retrieved online], <http://www.defence-update.com/products/i/IABS.htm>. |
Related U.S. Appl. No. 12/189,299, filed Aug. 11, 2008. |
Related U.S. Appl. No. 12/189,302, filed Aug. 11, 2008. |
Number | Date | Country | |
---|---|---|---|
20120211595 A1 | Aug 2012 | US |