This application claims the benefit of priority under 35 USC § 119 of Israel patent application no. 251324 filed on 21 Mar. 2017, the contents of which are incorporated herein by reference in their entirety as if fully set forth.
The present invention relates to weapons, in general and, in particular, to a multi-purpose weapon.
Policemen and other law enforcement, security and military personnel typically carry a number of weapons and tools on their person. These can include a hand gun, a baton, a flashlight, a mace can, an electric shocker, a laser pointer, etc. Batons are used for crowd control or the dispersal of belligerent people, as well as rescuing trapped individuals by breaking windows or doors.
There are two main disadvantages with the current baton. First, the length of the baton is limited, so that it can be carried conveniently on a belt or other easily accessible location. However, this means that the personnel must come into close contact with the individuals to be hit, subdued or moved aside. And second, the user would typically use one hand for using the baton and thus he can use only one other tool at the same time, since if more than one of these tools or weapons is used simultaneously, typically the user must hold one tool in each hand, so neither hand is free for any other activity.
There are known expandable telescopic batons that are manually expandable by the user. They include a telescopic rod that can be used to hit an assailant by manually extending it and hitting or jabbing him with it.
There are also known electroshock weapons, such as Tasers, for subduing a person from a distance of several meters. These Tasers include a cartridge which holds a pair of small, dart-like electrodes, coupled by conductors to the main unit. When these dart-like electrodes are fired towards a target, they lodge in the target and deliver electric current to the target to disrupt voluntary control of the muscles. Each time the user wishes to use the Taser, he must first insert a fresh cartridge. There are also known non-Taser stun guns or electro-shock weapons that deliver an electric shock aimed at temporarily disrupting muscle functions and/or inflicting pain without causing significant injury. Many types of these devices exist. Stun guns, batons (or prods), and belts administer an electric shock by direct contact, whereas Tasers (conducted electrical weapons) fire projectiles that administer the shock through thin flexible wires. Long-range electroshock projectiles, which can be fired from ordinary shotguns and do not need the wires, have also been developed.
Accordingly, there is a long felt need for a weapon that is compact for carrying but can be used effectively at a distance from the user, and it would be very desirable if the weapon was designed to permit simultaneous use of more than one tool or weapon while leaving at least one of the user's hands free.
The present invention relates to an extendable, telescoping multi-purpose baton that holds one or more tools in such a way that a user can use the baton and another tool at the same time while at least one hand remains free. The baton is extended by a propulsion mechanism permitting controlled speed and force of extension. According to preferred embodiments of the invention, the telescoping mechanism is an electrically actuated mechanical mechanism and the baton, itself, can be extended with sufficient speed and force to deliver a blow or jab when impacting the target, at a distant significantly longer than the user's arm length, permitting use from a safe distance. According to preferred embodiments of the invention the length of extension of the baton, the speed and force of the extension are controlled either automatically or by the user as desired. These capabilities provide, easier, safer and more controlled management of violent persons and crowds. According to embodiments of the invention, an electric shocker is disposed in the baton wherein its electrodes are mounted at the outermost end of the baton, permitting delivery of one or several repeated electric shocks beyond the range of the user's own arm and without the need to replace a cartridge, as is required by Tasers, or any other component of the shocker.
Thus, the weapon of the present invention can repeatedly deliver a blow or jab at a distance from the user and at a controlled force. It can jab, deliver an electric shock, dispense mace or tear gas, all of these operations repetitiously, simultaneously or one at a time, and all from a safe distance, and then retract the weapon for operating again and/or for easy handling and carrying.
There is provided, according to the present invention, a weapon including a housing, a telescopic rod formed of a plurality of telescopically interconnected rod segments mounted in the housing, where an innermost segment of the rod segments including a replaceable end member having an impact surface. The weapon also includes a guide collector, mounted adjacent a distal end of the weapon, and a guide member coupled at one end thereof to the guide collector and at its other end to the innermost rod segment. A propulsion drive mechanism is mounted in the housing, for controllably extending and retracting the guide member and thereby the telescopic rod towards a target at a distance.
According to some embodiments, the propulsion drive mechanism includes a motor and the weapon further includes a controller for controlling the motor and, in turn, the speed and force of extension and retraction of the telescopic rod.
According to some embodiments, the weapon further includes at least one weapon or tool selected from the group including: a knife, brass knuckles, a canister of mace, mustard gas or tear gas, an electroshock weapon, an illumination tool, a flashlight or a laser pointer, and a camera.
According to some embodiments, the weapon further includes an electric power source mounted in the housing, a capacitor coupled to the electric power source, and two electrodes disposed at the impact surface of the end member and selectively electrically coupled to the capacitor. When the capacitor is connected to the electrodes and the electrodes touch a target, an electric circuit is closed thereby discharging the capacitor through the target.
The weapon may further include a pressure sensor mounted in the impact surface to cause the telescopic rod to retract when a pre-defined pressure on the impact surface is reached.
There is further provided, according to the invention, a method for providing an impact, the method including actuating a drive mechanism to propel a telescopic rod, formed of a plurality of telescopically interconnected rod segments, by means of a guide member, where one end of the guide member is coupled to an innermost rod segment of the telescopic rod and a second end of the guide member is coupled to a guide collector, controlling speed and force of propulsion of the guide member, and delivering an impact by an end member coupled to the innermost rod segment of the telescopic rod.
Preferably, the method also includes retracting the innermost rod segment and the telescopic rod and collecting the guide member on the guide collector.
According to embodiments of the invention, the method may include delivering a jab by the impact surface of the end member. Alternatively, the method may include connecting a capacitor to a pair of electrodes mounted in the end member, and touching the electrodes to a target, thereby closing an electric circuit and discharging the capacitor through the target and delivering an electric shock.
Preferably, these embodiments further include recharging the capacitor after each shock, so that a plurality of shocks can be delivered in a short time.
The present invention will be further understood and appreciated from the following detailed description taken in conjunction with the drawings in which:
The present invention relates to an extendable weapon. In particular, the extendable weapon is a telescoping baton on or in which are mounted one or more additional tools, such as an electric shocker, a flashlight, a laser pointer, a canister of tear gas or other gas, etc. A removable and replaceable end member is mounted on the innermost telescoping section of the baton (which reaches the furthest when the baton is extended). The end member can be configured to deliver a jab or an electric shock to a target or can hold another weapon or tool. Several tools or weapons can be mounted in the baton at one time. Alternatively, or in addition, the end member can be replaced by another end member holding a specific tool or tools, depending upon the additional tool or weapon to be utilized. In this way, a user can use the baton and another tool at the same time. Alternatively, a user can hold and actuate the baton and another tool mounted therein in one hand, while his or her other hand remains free. Propelled rapid extension of the baton permits repeated delivery of a punch, electric shock, gas etc., to a distance beyond the length of the user's arm, permitting repetitious action at a distance.
According to preferred embodiments of the invention, the baton is electrically actuated and can be extended with sufficient speed and force to deliver a blow or jab when impacting the target, at a distant significantly longer than the user's arm length, permitting use from a safe distance. The length of expansion of the baton, the speed and force of the expansion can be controlled either automatically or by the user as desired.
Referring now to
In practice, weapon 10 would be mounted in a housing (not shown) including an outwardly extending, open ended outer tube for housing the rod segments 14 of the telescoping rod 12. A controlled propulsion drive mechanism 18, for extending and retracting the telescopic rod by means of a guide member 22, is also provided. It will be appreciated that, although one type of drive mechanism is illustrated, alternatively, any other appropriate propulsion drive mechanism, which is adapted and configured for rapid, controlled pushing and pulling of the guide member, can be utilized.
Guide member 22 is coupled at one end to a guide collector 24, adjacent the distal end of the weapon, and at its other end to the innermost rod segment of the telescopic rod 12, which includes an end member 16 having an impact surface or cushion 21. Guide member 22 is moved through drive mechanism 18 that propels it outwardly in such a way that it rapidly pushes the innermost rod segment 14 of the telescopic rod 12 outwards from the segment in which it is seated. Once it is fully extended and locked to the segment in which it is seated, that rod segment, in turn, pulls and extends the segment in which it is seated and, in this way, each of the rod segments 14 locks to and pulls the segment it is seated in, one after the other until telescopic rod 12 is fully extended. In order to perform this function, the guide member 22 must be suitably stiff or rigid so that it does not fold or collapse while being propelled by the drive mechanism. Yet, it is formed of a thickness that permits it to spool around the guide collector even though it is formed of such stiff or rigid material. Guide member 22 can be formed, for example, of dense plastic or metal, a steel ribbon, or so-called “fish tape”, which is a long, thin, flat steel wire wound up inside a donut-shaped wheel with a sturdy handle. Preferably, guide member 22 is formed of carbon. This guide member is found in each of the embodiments of the invention. Guide member 22 may have a cylindrical, flat or any other suitable cross section.
Drive mechanism 18 includes a motor 26 coupled, as by a transmission (not shown), to a pair of gear wheels 28, 29. Motor 26 can be an electric motor, for simplicity of design and ease of maintenance, or a step motor, a pneumatic motor or any other suitable motor. Guide member 22 passes between the gear wheels, which include a trough-like channel formed between them that is sized to frictionally engage the guide member so as to propel it in and out of the guide collector, depending on the direction of rotation of the gear wheels. Activation of the motor 26 causes guide member 22 to unwind from or wind onto guide collector 24 and to push or pull the innermost segment of rod segments 14, thereby selectively extending or retracting the telescopic rod 12.
A controller 20 is provided for controlling the motor and, in turn, the speed and force of extension and retraction of the telescopic rod, as well as controlling operation of any other tools mounted in the housing of the telescopic rod, or in housing 21 or on jabbing surface 16. The controller can be connected to the motor wirelessly, as by Bluetooth technology, or in any other fashion. According to some embodiments, electric wires (not shown) are provided in the housing, or embedded in the guide member, to carry control signals from controller 20 to one or more tools as described herein mounted in the housing of the telescopic rod, or in housing 21 or on jabbing surface 16. An appropriate user interface, such as one or more buttons or switches, is provided for a user to control the controller which actuates and stops the operation of the tools it controls. A power source 19, such as a battery, is provided and configured to provide power to the motor 26 and the other electrical components of the weapon 10.
The telescopic rod 12, particularly the end member 16, preferably is configured to receive one or more additional weapons or tools (not shown) mounted therein or thereon, such as a knife, brass knuckles, a canister of tear gas, a shocker or shocker electrodes or other electroshock weapon, etc. In this way, extension of the telescopic rod causes the weapon to reach the desired target while the user is distanced from the target. Preferably, the telescopic rod 12 is extended with sufficient force and speed that the jabbing surface delivers a strong blow. Alternatively, or in addition, telescopic rod 12 can be configured to receive an illumination tool (not shown) mounted thereon or therein, such as a flashlight or a laser pointer. These electric tools are also operated by the user interface and the controller 20 and preferably are powered by the internal power source 19.
When the weapon includes a shocker, two electrodes 17 are provided at the impact surface 21 of end member 16. Electrodes 17 are coupled to a capacitor (not shown). The capacitor, in turn, is coupled to the battery or any other power source for continual charging. In this way, the capacitor is recharged rapidly after each shock, so that a plurality of shocks can be delivered in a short time. When the user wishes to activate the shocker, he or she activates a switch which connects the capacitor to the electrodes 17 and, when the electrodes touch the body of the target, an electric circuit is closed thereby discharging the capacitor. The electric current of the discharge flows through the target's body and creates an electric shock. The capacitance of the capacitor is selected according to the degree of electric shock it is desired to deliver to the attacker, and according to the speed at which the capacitor is to be charged. It will be appreciated that suitable insulation is provided for the conducting wires leading from the capacitor to the electrodes 17. These wires can be disposed inside the telescoping rod, through the guide member or embedded therein, or as stripes along the outer surface of the telescoping rod. When on the outer surface, the entire rod can be electrified to deliver a shock when the segments are touched, except for non-electrified areas that can be provided for holding by the user. In some embodiments, all the rod segments except for the outermost (largest diameter) rod segment that is held by the user, will be electrified.
Referring now to
Guide member 70, as described in detail above, is coupled at one end to a guide collector 72, adjacent the distal end of the housing, and at its other end to the innermost segment 34′ of the telescopic rod, and passes through guide mechanism 40. Activation of drive mechanism 40 causes guide member 70 to unwind from or wind onto guide collector 72 and to push or pull the innermost telescopic section, to selectively extend or retract the telescopic rod.
A protruding, preferably substantially perpendicular handgrip 50 is provided, here shown extending downwardly from the housing 31. A battery 44, controller 80 and other electronics for operating the weapon may be disposed in handgrip 50 itself, or in an extension of handgrip 50. Controller 80 controls the extension and retraction of the telescopic rod, as well as the operation of any of the other tools mounted in or on the baton 30. Thus, handgrip 50 can serve also as a control column, to permit a user to control the extension and retraction of the baton, as described below. In this case, the handgrip 50 includes a user interface 52, such as one or more actuators, for example, a button or slider, such that operation thereof by the user controls the activation and operation of the controller. Alternatively, the controller 80 and battery 44 can be disposed in the rear of the housing, as shown in broken lines, or in any other suitable location.
Telescopic rod 32 preferably is configured to receive a weapon (not shown) mounted thereon or therein, such as a knife, brass knuckles, a canister of tear gas, an electric shocker or other electroshock weapon, etc. For example, the weapon can be mounted on or in the end member 35, which can be configured with a jabbing or impact surface, such that extension of the telescopic rod causes the weapon to engage the desired target. Preferably, the telescopic rod 32 is extended with sufficient speed and force to deliver a strong blow to the target. This would permit a user to attack or defend against one or more attackers, for example, from a distance of some 3.5 meters, extending the baton to jab with the power of some 80 Kg. See, for example,
Alternatively, or in addition, telescopic rod 32 or housing 31 can be configured to receive an illumination tool (not shown) mounted thereon or therein, such as a flashlight or a laser pointer. These electric tools are also operated by the controller 80 and preferably are powered by the internal power source 44, such as a battery.
According to any of the embodiments of the invention described herein, the segments 34 of telescopic rod 32 may be formed of carbon, or other hard, sturdy lightweight material, and includes stripes formed of a conductive material. In this case, the stripes on the rod segments can be coupled to the power source in order to electrify the telescoping rod, when the rod is extended or partially extended. The amount of current can be defined in advance or selected by the user, so as to control the level of shock. Thus, when the rod segments are touched by a target, an electrical circuit is closed and the target will receive an electric shock. This would provide protection to the user, preventing the target from getting too close or from taking the baton away from the user. It will be appreciated that suitable insulation can be provided between the conductive stripes.
Any number of possible drive mechanisms can be utilized in the present invention. One embodiment is shown in
In the embodiment of
Preferably, the length, speed and force of the extension and retraction of the telescoping rod can be set in advance or can be controlled by the user. Controller 80, for example, can control the number of rotations of the spur gears 60 and, thus, the length of the extension of the guide member 70 from guide collector 72 and, in turn, the extension or retraction of the telescoping rod. According to an exemplary embodiment of the invention, the spur gears 60 are driven by a step motor 42, such that the number of rotations can be accurately determined and controlled by the controller 80. According to some embodiments of the invention, a spiral torsion spring, like that in a self-retracting tape measure, is provided to retract and wind the guide member 70.
As shown schematically in
Referring again to
An alternative embodiment of a drive mechanism 40 is illustrated in
Baton 110 further includes a controller 126 for controlling the length and speed of extension of the telescopic rod. Controller 126, for example, can control the number of rotations of the gearing ring 116 and, thus, the length of the metallic strip 122 which is unwound. According to an exemplary embodiment of the invention, the gearing ring 116 is driven by a step motor, such that the number of rotations can be accurately controlled.
The controller 126 can include a manually operated slider, such that manual sliding thereof controls the operation of the motor 118. For example, moving the slider away from the user can actuate the motor to drive the gearing ring 116 to extend the telescopic rod, and moving the slider towards the user can actuate the motor to drive the gearing ring 116 to retract the telescopic rod. Preferably, a power source (not shown), such as a battery, is replaceably coupled to the controller 126 and to motor 118.
The telescopic rod 112 can be configured to receive a weapon (not shown) mounted thereon or therein, such as a knife, a Knuckle, a shocker or other electroshock weapon, etc. For example, the weapon can be mounted on the innermost segment or edge of the telescopic rod, such that outward rotation of the gearing ring 116 causes the telescopic rod to extend rapidly, so that the weapon reaches the desired target. Alternatively, or in addition, telescopic rod 112 can be configured to receive an illumination tool (not shown) mounted thereon or therein, such as a flashlight or a laser pointer. These electric tools are also operated by the controller 126. Preferably, the speed with which the telescopic rod 112 is extended provides sufficient kinetic energy to provide a strong jab to the target.
As in the embodiment of
It will be appreciated that a combination of these drive mechanisms can be utilized. For example, the motor driving the guide member can be controlled by a transmission or by an additional motor. In this case, the rotating wheels of the embodiment of
An electroshock weapon can be provided as part of the weapon according to any of the embodiments of the invention. The electroshock weapon typically includes two electrodes, which are connected to a power source by conductors, to deliver an electric current to disrupt the voluntary control of a target's muscles, thereby causing neuromuscular incapacitation of the attacker. These electrodes would be coupled to the end member on the innermost segment of the telescopic rod. A steel spring can be provided to serve as the ground for the shocker. The electroshock weapon preferably is also controlled by the controller and powered by a capacitor coupled to the power source disposed in the housing. It will be appreciated that, since the electric shocker utilizes a capacitor that can rapidly be charged and discharged many times, there is no limit to the number of times the electric shocker can be utilized without having to replace any parts, such as cartridges, unlike conventional Tasers. For use as a Taser, two electrodes which are connected to the capacitor are mounted on the impact surface 21 (see
In any of the embodiments of the invention, in order not to injure a person hit by the extending impact surface, two springs can be mounted with a pressostat or other pressure sensor that would send a signal to the controller to actuate the motor in the reverse direction when a pre-defined pressure on the impact surface is reached. A standard defining an acceptable maximum force can be set and the telescopic rod withdrawn in order to prevent unintended injury greater than that permitted by law. One example of such a power control system will now be described with reference to
It will be appreciated that the weapons of the present invention can be configured to include one or more holders for a number of mechanical or electrical tools, some or all of which can be removable and replaceable, for example, an electric shocker, a flashlight, a laser pointer, a canister of tear gas, etc. In the case of canisters of pressurized tear gas or other gas, the controller actuates an electric valve on the canister to permit release of the pressurized gas. These commands can be sent over wires or in a wireless manner, such as by means of Bluetooth. In this way, a user can use the baton and another tool at the same time utilizing one hand, while his or her other hand remains free. For example, mace, mustard gas or another gas can be released from the canister and/or a flashlight can be lit by the user's hand via the controller.
Alternatively, or in addition, a camera can be mounted on the weapon, for example, in telescoping rod or in the housing, for capturing images of disrupters of the peace or criminals. Such camera could be mounted either in the body of the housing or on a periscope device (not shown) for capturing images from above a crowd. A Bluetooth or other wireless connection can be provided in the housing to permit transmission of the captured images to a central location. The weapon can further include a pointer, such as a laser pointer, facilitating aiming of the weapon at the desired target.
Thus, it will be appreciated that the weapon of the present invention can replace the conventional policeman's club or baton, electric shocker, flashlight, and laser pointed with a single weapon, making both attack and defense significantly more efficient and safer, as compared with separate conventional weapons that are used at close proximity to the target.
It will further be appreciated that the weapon of the present invention can be manufactured in different sizes and weights, depending on the anticipated user and the kinds of situations in which it is likely to be used.
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made. It will further be appreciated that the invention is not limited to what has been described hereinabove merely by way of example. Rather, the invention is limited solely by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
4719534 | Ward | Jan 1988 | A |
4819137 | Hamilton | Apr 1989 | A |
4884809 | Rowan | Dec 1989 | A |
4893815 | Rowan | Jan 1990 | A |
5041951 | Fan | Aug 1991 | A |
5529300 | Frazier | Jun 1996 | A |
6231447 | Pelkey | May 2001 | B1 |
6238292 | Pelkey | May 2001 | B1 |
6963480 | Eccles | Nov 2005 | B2 |
7316621 | Tufts | Jan 2008 | B2 |
7421933 | Pearson | Sep 2008 | B1 |
7488255 | Labes | Feb 2009 | B2 |
8721459 | Pelkey | May 2014 | B2 |
20020163799 | Kukuk | Nov 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20180274881 A1 | Sep 2018 | US |