The invention relates generally to data storage devices and, more particularly, to an improved data storage device having a more wear resistant probe for such devices.
Data storage devices, such as probe storage devices, are being proposed to provide small size, high capacity, low cost data storage devices. Such probe storage devices may include one or more probes, that each includes a conductive element (e.g., an electrode), which are positioned adjacent to and in contact with a ferroelectric thin film media. Binary “1's” and “0's” are stored in the media by causing the polarization of the ferroelectric film to point “up” or “down” in a spatially small region (domain) local to a tip of the probe by applying suitable voltages to the probe through the conductive element. Data can then be read by a variety of techniques, including sensing of piezoelectric surface displacement, measurement of local conductivity changes, or by sensing current flow during polarization reversal (destructive readout). Regardless of the type of readback mechanism, the probes should be mechanically robust and include an area of hard insulator around or adjacent to the conductive element to provide wear resistance.
Probe ferroelectric media typically includes a protective overcoat to minimize wear and limit contamination of the media. The probe may also include a protective overcoat to minimize wear of the probe. The probe and media protective overcoat thicknesses along with lubricant film thickness applied to the media protective overcoat combine to contribute to a large portion of the total head-to-media spacing budget. This spacing in turn affects the writing voltage efficiency, the readback efficiency, and the physical dimensions of the data written to the ferroelectric media. Thus, eliminating or reducing the need for the protective overcoats may improve the efficiencies and dimensions of the probe storage system.
Accordingly, there is identified a need for improved data storage devices that overcome limitations, disadvantages and shortcomings of known data storage devices.
The invention meets the identified need, as well as other needs, as will be more fully understood following a review of this specification and drawings.
An aspect of the present invention is to provide an apparatus including a probe including a first conductive element, a second conductive element and an insulator layer positioned between the first conductive element and the second conductive element. The apparatus may further include a third conductive element and an additional insulator layer positioned between the second conductive element and the third conductive element. The first conductive element and/or the second conductive element may each have a width in the range of about 2 nm to about 50 nm. The insulator layer may also have a width in the range of about 2 nm to about 50 nm.
Another aspect of the present invention is to provide an apparatus including a ferroelectric storage media and a probe adjacent the media wherein the probe includes a first conductive element, a second conductive element and an insulator layer positioned between the first conductive element and the second conductive element. The apparatus may further include a third conductive element and an additional insulator layer positioned between the second conductive element and the third conductive element. The first conductive element and/or the second conductive element may each have a width in the range of about 2 nm to about 50 nm. The insulator layer may also have a width in the range of about 2 nm to about 50 nm.
A further aspect of the present invention is to provide an apparatus including a probe having a tip portion, said tip portion including a first conductive element, a second conductive element and an insulator layer positioned between the first conductive element and the second conductive element. The tip portion may further include a third conductive element and an additional insulator layer positioned between the second conductive element and the third conductive element. The first conductive element and/or the second conductive element may each have a width in the range of about 2 nm to about 50 nm. The insulator layer may also have a width in the range of about 2 nm to about 50 nm.
While
Still referring to
Still referring to
The conductive elements 137 may be formed as a layer of conductive material(s) including, for example, metals (including Cu, Al, Ag, W, Ni, Ti, Ta, Pd, Pt, Ru, Cr, Mo, Ir), alloys of these and other metals, intermetallic alloys, metallic carbides (including SiC and TiC), conductive nitrides (including TiN, ZrN, VN CrN, and TiAlN), borides, conductive oxides (including RuO2, ReO2, and CrO2), silicides, conducting ceramics, or carbon-based materials. Each conductive element 137 may have a width X (see
The insulator layers 37 may be formed of any suitable insulating material(s) including for example, oxides (including Al2O3, SiO2, Cr2O3, ZrO2, TiO2, HfO2, BeO, MgO), insulating nitrides (including Si3N4, BN, C3N4), or diamond and diamond-like materials. Each insulator layer 139 may have a width Y (see
The probe 136 may be constructed using conventional sputtering and deposition techniques to form the multilayered structure conductor/insulator/conductor/insulator/conductor etc.
As a result of passing a voltage through each conductive element 137, an electric field is applied by each conductive element 137 to the domain 162 adjacent to the probe 136. The electric field from each conductive element 137 overlaps with the electric field from the adjacent conductive element(s) to give a combined electric field E+ from all of the conductive elements 137 that cumulatively provides sufficient field strength to alter the polarization of the particular domain 162.
As shown in
As shown in
Due to the contact between the probe 136 and storage layer 160, the probe 136 needs to be wear resistant. The insulator layers 139 contribute to the overall hardness of the probe 136 and make the probe 136 more wear resistant. In addition, the laminated or multilayered structure of the probe 136 and the dimensions selected for the conductive elements 137 and the insulator layers 139 contribute to making the probe 136 more wear resistant.
Still referring to
The base 243 of the probe 236 may be formed through deposition processes such as, for example, sputter deposition. The base 243 of the probe 236 can be designed to enhance other performance characteristics, such as bending angle or stiffness, while only the tip 241 is optimized for electric field delivery and high wear resistance. The base 243 can include conducting and insulating materials such that the conducting material acts as an electrode structured and arranged for conducting a voltage to the conductive elements 237.
Whereas particular embodiments have been described herein for the purpose of illustrating the invention and not for the purpose of limiting the same, it will be appreciated by those of ordinary skill in the art that numerous variations of the details, materials, and arrangement of parts may be made within the principle and scope of the invention without departing from the invention as described in the appended claims. In addition, it will be appreciated that the invention described herein has utility in various technologies such as, for example, data storage, scanning probe microscopy, probe based biological or electrochemical analysis, nanolithography, or electrical metrology.