Claims
- 1. A production line assembly machine for manufacturing a wooden I-beam from a pair of elongated wooden flange members each having a longitudinal groove formed in one of the faces of the flange, and planar wooden web members having opposite longitudinal edges, comprising:
- (a) a pair of flange chutes mounted to a machine base for conveying an opposite pair of flanges along left and right hand sides of the machine, respectively;
- (b) a flange infeed drive assembly for driving said pair of flanges along said flange chutes;
- (c) a web conveyor area between the flange chutes for conveying said web members between said left and right hand flanges;
- (d) a web drive system for driving said webs in end-to-end relationship between said flange chutes, said flange chutes converging towards a machine center line axis to enable the web edges to be respectively inserted into the converging flange grooves in joined relationship to form the beam; and
- (e) a flange outfeed drive assembly engaging the flanges of the joined beam to convey same towards a discharge end of the machine;
- wherein said web conveyor area includes a web infeed hopper and a vacuum conveyor belt system, upon which a stack of web members is adapted to be disposed in the hopper behind a web feeder gate, for applying suction to a bottom surface of the bottommost web to thereby advance the same through the web feeder gate through the traction force generated by the suction applied through the advancing belt.
- 2. The production line assembly machine of claim 1, wherein said web conveyor area includes a pair of web bottom support rails located between the chutes, said vacuum conveyor belt system including a vacuum box mounted to extend between the support rails.
- 3. The production line assembly machine of claim 2, further comprising means for vertically adjusting the height of the vacuum box relative to the support rails.
- 4. The production line assembly machine of claim 3, wherein said adjusting means includes a plurality of adjustment screw assemblies, each adjustment screw assembly including a threaded adjustment rod portion mounted to one of the vacuum supply box and a web support rail, and an adjustment nut portion, threadedly engaging the adjustment rod and mounted to the other of the vacuum supply box and the support rail to provide for relative adjusting movement.
- 5. The production line assembly machine of claim 2, wherein said vacuum supply box includes a top plate on which is disposed an upper run of the conveyor belt, a series of vacuum supply holes being formed in each of the top plate and conveyor belt to apply suction against the lower surface of the bottommost web member.
- 6. The production line assembly machine of claim 6, wherein selected ones of the vacuum supply holes in the top plate are interconnected to each other through a slot which permits vacuum to be continuously supplied to the conveyor belt when the conveyor vacuum holes are out of alignment with the top plate vacuum holes.
- 7. The production line assembly machine of claim 6, wherein said vacuum supply holes in the top plate are arranged to provide a greater amount of suction force against a leading end of the bottommost web member.
- 8. The production line assembly machine of claim 7, wherein two groups of vacuum supply holes are formed in the top plate in longitudinally spaced relation to each other.
- 9. The production line assembly machine of claim 8, wherein the two groups of vacuum supply holes are spaced a sufficient distance from each other such that a trailing end portion of a web member of predetermined nominal length is adapted to be disposed, in the feeding position within the stack, between said first and second groups such that little or no suction is supplied to said trailing end portion.
- 10. The production line assembly machine of claim 8, wherein said top plate includes an imperforate region formed in a trailing end portion of said top plate upstream from the said two groups of vacuum supply holes, and wherein the trailing end portion of web members of a second predetermined nominal length are adapted to be juxtaposed over this imperforate section in the feeding position.
- 11. The production line assembly machine of claim 1, wherein vacuum is supplied to the vacuum conveyor belt system through a low pressure, high volume source of vacuum.
- 12. The production line assembly machine of claim 11, wherein said source of vacuum is plant vacuum.
- 13. In a machine for manufacturing wooden products which are formed in part with planar wooden members, the improvement comprising a planar wooden member infeed hopper and a vacuum conveyor belt system upon which a stack of said planar wooden members is adapted to be disposed behind a planar wooden web member feeder gate for sequential feeding from the bottom of the stack through the gate.
- 14. A method of manufacturing a wooden I-beam from a pair of elongated wooden flange members each having a longitudinal groove formed in one of the faces of the flange, and planar wooden web members having opposite longitudinal edges, comprising the steps of conveying an opposing pair of said flanges along left and right hand flange chutes within the machine utilizing a plurality of infeed flange drive rolls; conveying a plurality of web members between said flange chutes in end-to-end relationship with a plurality of top and bottom web drive rolls; said left and right hand flanges being gradually converged to enable the web edges to be respectively inserted into the flange grooves in joined relationship to form the beam; conveying the joined beam towards a discharge end of the said machine with a plurality of flange outfeed drive rolls, wherein the step of conveying said web members between said flange chutes includes the additional step of sequentially feeding said web members into the top and bottom web drive rolls from a web infeed hopper having a web feeder gate behind which the said web members are stacked, by engaging the lower surface of a bottommost web member with a vacuum conveyor belt to create suction which is applied to advance said web member beneath said feeder gate.
RELATED APPLICATIONS
The present application is a continuation-in-part of application Ser. No. 08/147,526 filed Nov. 5, 1993, now U.S. Pat. No. 5,501,752, entitled "Wooden I-Beam Assembly Machine and Control System Therefor" assigned to Globe Machine Manufacturing Company, Tacoma, Washington, the assignee of the present invention.
US Referenced Citations (33)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
147526 |
Nov 1993 |
|