Weighing method and apparatus for meat processing systems

Information

  • Patent Grant
  • 9146150
  • Patent Number
    9,146,150
  • Date Filed
    Thursday, March 14, 2013
    11 years ago
  • Date Issued
    Tuesday, September 29, 2015
    9 years ago
Abstract
Disclosed are a method of, as well as an apparatus for, weighing items of poultry, such as poultry or chicken carcasses, in conjunction with a meat processing systems (5, 7). The method includes: a first step of providing a weighing bridge (1) having force measuring means (25) with two load cells; a second step of conveying a suspended item of poultry in a predefined path extending over the weighing bridge (1); a third step of transferring substantially the weight of the suspended item of poultry onto the weighing bridge; and a fourth step of reading out values detected by the load cells of the force measuring means (25); and calculating an actual weight using an average of the detected force values over a predetermined period of time. The apparatus includes components for carrying out the method.
Description
TECHNICAL FIELD

The invention relates to a weighing apparatus for use in conjunction with meat processing equipment or systems. In particular the invention relates to such a weighing apparatus that are provided in conveyers for weighing items of poultry during their travel along the conveyer of meat processing systems, so that weighing can be performed without interruption of travel.


BACKGROUND

Weighing apparatus are known, amongst others, from prior art patent documents U.S. Pat. No. 1,902,512, GB 1481495, U.S. Pat. Nos. 3,622,000, and 4,187,945. In these prior art systems generally an overhead conveyer track has a section associated therewith that is independently movable relative to the majority of the overhead track. Weighing devices are operatively connected to the independently movable section. Shackle assemblies for supporting bird or poultry carcasses are suspended for movement along the overhead track by carriers. Each shackle comprises an upper portion, including the carrier, and a lower portion that is relatively movable with respect to the upper portion. The lower portion includes a hook formation for holding a poultry carcass and a supporting slider or wheel for engaging a weighing platform of the independently movable section. When the lower portion of the shackle has engaged the weighing platform, it has slightly been lifted to transfer its entire weight onto the weighing platform, while the upper portion of the shackle remains suspended from the overhead track as the shackles travel therealong.


It is also common for such weighing apparatus either to be associated with a circular conveyer path, as additionally shown by U.S. Pat. No. 4,300,644, or with a linear conveyer path as shown by U.S. Pat. No. 5,037,351. It has also been practised to combine such weighing apparatus with transfer stations that transfer chicken or poultry carcasses from one processing line to a subsequent processing line. A transfer station in general is described in patent document U.S. Pat. No. 6,905,404, and although this does not disclose a weighing apparatus combined therewith, it is known that various suppliers, such as Linco and Meyn, offer such transfer stations.


The existing devices are critical with respect to their operating speed. As the speed is increased the reliability and accuracy of the measured weight tends to be compromised. Now that the operating speeds of meat processing systems is continuingly increasing, the weighing apparatus are more and more becoming a limiting element to the operating speed of processing lines. There thus has arisen a need for weighing apparatus that operate with greater accuracy and reliability at an increased speed.


Accordingly it is an aspect of the present invention to propose an improved weighing apparatus for use in conjunction with meat processing equipment or systems, which measures weight more accurately and allows an increased conveyer speed. In a more general sense it is an object of the present invention to at least overcome or ameliorate one or more of the disadvantages of the prior art. It is also an object of the present invention to at least provide alternative structures which are less cumbersome in manufacture and use and which can be made and used relatively inexpensively. At any rate the present invention is at the very least aimed at offering a useful alternative and contribution to the existing art.


SUMMARY

To this end the present invention provides an improved weighing method and apparatus as defined in the appended claims. Such an improved weighing method and apparatus allows to measure weight more accurately and allows to match increased conveyer speeds of present day meat processing systems.


Further advantageous aspects of the invention will become clear from the appended description and in reference to the accompanying drawings, which are briefly described as follows.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is in a perspective view of a transfer station, including a weighing apparatus according to the invention; positioned between a first and a second conveyor line;



FIGS. 2A, 2B, 2C are a perspective view, a top plan view, and a front elevation of the transfer station of FIG. 1 respectively;



FIG. 3 is an exploded view of a weighing bridge, as included in the transfer station of FIGS. 1 and 2;



FIG. 4 is a schematic top view of the transfer station with a weighing wheel of the weighing apparatus shown in somewhat greater detail;



FIG. 5A is a top plan view of the weighing wheel;



FIG. 5B is a perspective view of the weighing wheel;



FIG. 5C is an exploded view of the weighing wheel;



FIG. 6A is a perspective view of the weighing hook unit that forms part of the weighing wheel;



FIG. 6B is a side elevation of the weighing hook unit of FIG. 6B;



FIG. 6C is a rear elevation of the weighing hook unit of FIG. 6B;



FIG. 7 is a partial cross section of the weighing wheel taken over a weighing hook unit;



FIG. 8 is a partial cross section of a load cell as mounted in the weighing bridge of FIG. 3;



FIG. 9 is a schematic illustration showing the effect that low frequency vibrations may have on relatively short and relatively long weighing paths; and



FIG. 10 is a schematic illustration showing the measurement with three successive load cells as practised by the present invention.





DETAILED DESCRIPTION

In FIG. 1 a weighing bridge 1 is shown as part of a transfer station 3 that transfers suspended poultry carcasses from a first treatment line 5 to a second treatment line 7. The transfer station 3 is shown in greater detail in FIG. 2A and includes a frame 9 on which a receiving wheel assembly 11 is rotatably mounted. The receiving wheel assembly 11 is driving a weighing wheel assembly 13 also mounted on the frame 9 by means of a receiving wheel gear 11A driving a weighing wheel gear 13A. Further mounted on the frame 9 for rotation is a dispatch wheel 15 which is part of the second treatment line 7. As better seen in the front elevation of FIG. 2C, the weighing wheel assembly 13 also includes a weighing wheel 13B, which is suspended from the weighing wheel gear 13A by a drive shaft 13C. The weighing wheel 13B comprises a plurality of hook units 17 (FIG. 2B). The weighing unit 1 has a support column 19, which is completely independent from the frame 9, but is supported from the same ground level. The support column 19 of the weighing bridge 1, as seen in FIG. 3, has adjustable feet 21 to support it from the ground level or floor. The column 19 is preferably filled with a heavy material, such as sand or concrete, to increase its weight and thereby reduce its sensitivity to vibrations. At an upper end of the support column 19 a supporting plate 23 is attached that supports first, second, and third load cells 25, 27, 29. Each first, second, and third load cell 25, 27, 29 is associated with a weighing block segment 31. The weighing block segments 31, upon assembly of the weighing bridge 1, are substantially flush with a weighing platform guide 33. The weighing platform guide 33 has opposite first and second ramps 33A, 33B. Fasteners 35 are used to hold the assembly of the weighing bridge 1 together.


The transfer station 3 may be further explained in reference to the schematic top view of FIG. 4. Chicken or poultry carcasses are supplied to the receiving wheel assembly 11 by an overhead conveyor of a first treatment line 5. The individual spacing between successive carcasses in the first treatment line 5 may be 6 inches, or 152 mm. After transfer via the weighing wheel assembly 13 and the dispatch wheel 15, the individual spacing between the carcasses may be 8 inches, or 203 mm. For accurately measuring the weight of the individual carcasses it is preferred for the distance between adjacent carcasses to be increased to at least 10 inches, or 254 mm. This is accomplished as shown in FIG. 4 by varying the spacing of the individual hook units 17 while these are rotated in the direction of arrow 37. By varying the distance of the hook units 17 between 6 inches and 10 inches there are created around the circumference of the weighing wheel assembly 13 an area where the spacing corresponds to the receiving wheel 11, an area where the spacing corresponds to the dispatch wheel 15, and an area indicated by arrow 39 where the spacing is optimal for weighing the individual carcasses. To achieve this effect the weighing wheel 13B is constructed as shown in FIGS. 5A and 5C. As seen in the exploded arrangement of FIG. 5C, a drive wheel 41 that is driven by the shaft 13C (FIG. 2C). The drive wheel 41 on its lower side has a plurality of radial grooves 43, the number of which corresponds to the number of hook units 17. Each hook unit 17 has an upper first guide roller 45 engaged in a relevant one of the radial grooves 43. A guide ring 47 slidably engages the hook units 17 on a lower side. The guide ring 47 is rotatably retained on a stationary lower bearing plate 49 by means of rollers 51 engaging the guiding ring's 47 inner opening contour 53. In this example the guide ring 47 is a strictly circular ring, but other contours may be selected when a need arises. A distance collar 55 may be interposed between the drive wheel 41 and the lower bearing plate 49 to ensure that hook units 17 may freely move inwardly and outwardly with respect to the drive wheel 41 and about the bearing plate 49.


The hook units 17 will now be described in reference to FIGS. 6A-6C. Hook unit 17 includes a body part 57 which carries the upper guide roller 45. The hook unit 17 further includes a shackle part 59 that is vertically moveable with respect to the body part 57 through pairs of parallel links 61, 63 pivotally mounted from pivot pins 69 on opposite sides. The shackle part 59 has slots 59A, 59B for receiving the legs of a poultry or chicken carcass, and on a lower side has a lower second guide roller 65. The lower guide roller 65 is adapted to engage the weighing platform guide 33 of the weighing bridge 1 (FIG. 3); and thereby lift the shackle part 59 free of the body part 57. As illustrated in FIGS. 6A, 6B the shackle part 59 is not lifted and has its own weight as well as that of a suspended poultry carcass directly supported from the body part 57. A guide block 67 is removably attached to the body part 57 to slidably attach over the guide ring 47.


For an explanation of the co-operation between the hook unit 17 and the guiding ring 47 reference can be made to FIG. 7, which is a partial cross section over a weighing hook unit 17 at the weighing wheel 13B. In conjunction with FIGS. 5A-5C it will be appreciated that the guide ring 47 by means of the stationary lower bearing plate 49 is arranged eccentrically with respect to the drive wheel 41. The guide ring 47 thereby urges the hook units 17 inwardly and outwardly when the drive wheel 41 rotates and the upper guide rollers 45 are guided in a radial direction of the drive wheel 41 by one of the radial grooves 43. The guide block 67 retains the body part 57 in engagement with the guide ring 47. The parallel links, only one of which 63 is visible in FIG. 7, allow the shackle part 59 with a rear face to rest against a first fact of the body part 57 and thereby support the weight of a suspended poultry carcass from the body part 57 and the lower bearing plate 49. When the loser guide roller 65 engages a first ramp 33A of the weighing platform guide 33 the shackle part 59 is lifted free from the body part 57 as the parallel links 61, 63 are allowed to swing about the relevant pivot pins 69.


The weighing bridge 1 as already briefly referred to in connection with FIG. 3, will now be explained in more detail. FIG. 8 shows one of the three identical load cells 25, 27, 29 that are mounted on the supporting plate 23. At a free end of the load cell 25, 27, 29, one of the block segments 31 is attached. The blocks segments 31 are arranged in a cut out portion of the weighing platform guide 33 (FIG. 3), so that the lower guide rollers 65 of the shackle parts 59 will ride over the block segments 31, one after the other, while the weighing hook units 17 are moved over the platform guide 33. The weighing of the poultry carcasses takes place at the weighing bridge 1, after one of the hook units 17 is engaged with the platform guide 33 and has its shackle part 59 lifted by the first ramp 33A and when the lower roller 65 engages the successive block segments 31 of the individual first, second and third load cells 25, 27, 29. Several variations of load cells are commercially available for measuring weights. For this application a so-called single-point load cell is preferred. Such a single-point load cell measures the lateral force rather than torque, and is thereby less critical as to where the force to be measured is applied. The selected type of load cell for the first, second and third load cells, 25, 27, 29 is a Model 1042 low profile aluminium load cell of Tedea-Huntleigh. The maximum deflection of the free end of each load cell 25, 27, 29 is limited by an adjustment screw 68.


The arrangement of three successive load cells 25, 27, 29 enables to increase the weighing time for each carcass. An increased weighing time allows the accuracy of the measurement to be increased. This is important in view of vibrations that occur in meat processing lines. While it is possible to reduce the effect of high frequency vibrations by electronic means or by software, this is not possible with low frequency vibrations. In FIG. 9 it is explained how a longer weighing time can reduce the effect of low frequency vibrations. The measured weight 71 is represented as a sinus-like alternating value about the actual weight, as can be caused by low frequency vibrations. At 73 an example is given of a short measuring distance. Because in this example only a negative amplitude of the measured weight 71 is encompassed by the short measuring distance 73, an average weight that is calculated from this measurement will clearly be too low. From another example of a relatively long measuring distance 75 in FIG. 9 it is clear that several amplitudes of the measured weight 71 can be encompassed, and that a calculated average will be a much more accurate representation of the actual weight 77.


Referring now to FIG. 10, the measurement with three successive load cells is schematically represented. The block segments 31 are so formed that there is a gradual transition for the lower guide roller 65 from one block segment to the other. As seen in FIG. 3 the lines of separation between the block segments 31 are not strictly radial, but slightly inclined to the radial, so that the guide roller 65 can not be caught in a recess that is formed between the segments. Due to this inclined transition between the segments 31 some measuring time is lost as illustrated at 79 in FIG. 10. So as not to lose too much measuring time, the inclination of the separation line between successive segments 31 is preferably chosen not to exceed 45° to the radial direction As seen in FIG. 10, the measured weight of each load cell has a sufficiently long duration 25A, 27A, 29A to ensure that at least two amplitudes of the measured weight 71 are encompassed. By also averaging the measurement of these successive load cells 25, 27, 29 it has been found that the influences of low frequency vibrations can be successfully eliminated. Also the through part of the measuring device 1 can be increased to match those of meat processing lines that operate at an increased speed. Upon calculation of the actual weight from averaging the successive measuring steps, the weighing apparatus 1 can be further arranged to identify the position of the weighed item of poultry with respect to a path of conveyance leading from the weighing bridge 3 and storing the calculated weight in respect thereof for subsequent monitoring. Such a feature will enable sorting and/or distribution of the weighed items of poultry between different meat processing lines, according to predefined weight ranges.


Accordingly there is described a method of, as well as an apparatus for, weighing items of poultry in conjunction with meat processing systems (first treatment line 5, second treatment line 7). The method includes: a first step of providing a weighing bridge (1) having force measuring means (first load cell 25); a second step of conveying a suspended item of poultry in a predefined path extending over the weighing bridge (1); a third step of transferring substantially the weight of the suspended item of poultry onto the weighing bridge (1); and a fourth step of reading out values detected by the force measuring means (first load cell 25) and calculating an actual weight using an average of the detected force values over a predetermined period of time. The method in particular further comprises providing first and second, as well as possibly third, successive load cells (25, 27; 29) in the measuring means and calculating the actual weight as an average of at least both load cell measurements.


The weighing apparatus as described includes: a conveyer section (weighing wheel assembly 13); a plurality of hook units (17) associated with the conveyer section (13), each hook unit (17) having a body part (57) connected to the conveyer section (13) for movement thereby through a predefined path and a shackle part (59) movable relative to the body part (57) for supporting an item of poultry; and a weighing bridge (1) comprising a frame (support column 19), a weighing platform (weighing block segments 31, weighing platform guide 33), as well as at least a first load cell (25) for measuring weight of an item of poultry suspended from the shackle part (59) of each hook unit (17) passing over the weighing bridge (1). The weighing apparatus has a second, as well as an optional third, load cell (27; 29) associated with the weighing platform (31, 33) to measure the weight of an item of poultry suspended from the shackle part of each hook unit (17) in succession to the first load cell (25).


It is thus believed that the operation and construction of the present invention will be apparent from the foregoing description and drawings appended thereto. It will be clear to the skilled person that the invention is not limited to any embodiment herein described and that modifications are possible which should be considered within the scope of the appended claims. Also kinematic inversions are considered inherently disclosed and to be within the scope of the invention. In the claims, any reference signs shall not be construed as limiting the claim. The term ‘comprising’ and ‘including’ when used in this description or the appended claims should not be construed in an exclusive or exhaustive sense but rather in an inclusive sense. Thus the expression ‘comprising’ as used herein does not exclude the presence of other elements or steps in addition to those listed in any claim. Furthermore, the words ‘a’ and ‘an’ shall not be construed as limited to ‘only one’, but instead are used to mean ‘at least one’, and do not exclude a plurality. Features that are not specifically or explicitly described or claimed may be additionally included in the structure of the invention without affecting its scope. Expressions such as: “means for . . . ” should be read as: “component configured for . . . ” or “member constructed to . . . ” and should be construed to include equivalents for the structures disclosed. The use of expressions like: “critical”, “preferred”, “especially preferred” etc. is not intended to limit the invention. Additions, deletions, and modifications within the purview of the skilled person may generally be made without departing from the spirit and scope of the invention, as is determined by the claims.

Claims
  • 1. A weighing apparatus for use in conjunction with a meat processing system, for determining the weight of items of poultry during their travel along a conveyer of the meat processing system while minimizing inaccuracies in the determined weight of each item caused by vibrations of the system having a predetermined vibration frequency, the weighing apparatus including: a conveyer section;a plurality of hook units associated with the conveyer section, each hook unit having a body part connected to the conveyer section for movement thereby through a predefined path and a shackle part movable relative to the body part for supporting an item of poultry;a weighing bridge comprising a frame, a weighing platform, and a first load cell for measuring weight of an item of poultry suspended from the shackle part of each hook unit passing over the weighing bridge; anda second load cell associated with the weighing platform to measure the weight of an item of poultry suspended from the shackle part of each hook unit in succession to the first load cell;a first support structure coupled to the first load cell and a second support structure coupled to the second load cell, the first and second support structures being configured to ensure that each load cell measures the weight of an item of poultry passing over the weighing bridge for a duration sufficient to encompass at least two amplitudes of the predetermined vibration frequency;the determined weight of an item of poultry being calculated as an average of both load cell measurements.
  • 2. Weighing apparatus according to claim 1, wherein the frame is supported independently from any meat processing system in conjunction with which it is to be used.
  • 3. Weighing apparatus according to claim 1 further comprising a third load cell associated with the weighing bridge to measure the weight of an item of poultry suspended from the shackle part of each hook unit in succession to the first and second load cells and a support structure coupled to the third load cell ensuring that the third load cell measures the weight of an item of poultry passing over the weighing bridge for a duration sufficient to encompass at least two amplitudes of the predetermined vibration frequency, and wherein the determined weight is calculated as an average of all the load cell measurements.
  • 4. Weighing apparatus according to claim 1, further comprising a weighing wheel assembly as part of the conveyer section, the weighing wheel assembly including a drive wheel with a plurality of radial grooves, and a stationary bearing plate holding a guide ring eccentrically positioned with respect to the drive wheel, wherein the plurality of hook units each have a first guide roller on their body part engaged in one of the plurality of radial grooves and a guide block of the body part engaging the guide ring.
  • 5. Weighing apparatus according to claim 4, wherein the guide ring is rotatably held on the stationary bearing plate by rollers engaging an inner contour of the guide ring.
  • 6. Weighing apparatus according to claim 1 wherein the weighing platform includes a platform guide with opposite first and second ramps for lifting an engaging shackle part and wherein the first and second support structures comprise weighing segments connected to free ends of the first and second load cells.
  • 7. Weighing apparatus according to claim 6, wherein the weighing segments are separated from one another by a transitional gap extending in a direction inclined with respect to a direction perpendicular to the predefined path of movement of the hook units.
  • 8. Weighing apparatus according to claim 1 wherein each shackle part has a second guide roller for engaging the weighing bridge.
  • 9. Weighing apparatus according to claim 1, wherein the shackle part is movably connected to the body part by pairs of parallel links swivably mounted on pivot pins.
  • 10. Weighing apparatus according to claim 1, wherein deflection of each load cell is limited by an adjustment screw.
  • 11. Weighing apparatus according to claim 1 wherein the frame is a support column filled with a heavy material.
  • 12. A transfer station for transferring items of poultry from a first processing line to a second processing line in meat processing systems, the transfer station including the weighing apparatus of claim 1, wherein a delivery end of an overhead conveyer track of the first processing line and a receiving end of an overhead track of the second processing line are connected to the transfer station, the transfer station and communicate through the weighing apparatus.
  • 13. Transfer station according to claim 12, wherein a first spacing between individual items of poultry on the first processing line differs from a second spacing between the individual items of poultry on the second processing line, and wherein the weighing apparatus varies the distance of the hook units in the predefined path to accommodate the first spacing, the second spacing, as well as a third spacing optimal for weighing.
  • 14. Transfer station according to claim 12 wherein the second processing line is a continuation of the first processing line.
  • 15. Method of weighing items of poultry in a weighing apparatus, including: a first step of obtaining a weighing bridge having force measuring means;a second step of conveying a suspended item of poultry in a predefined path extending over the weighing bridge;a third step of transferring substantially the weight of the suspended item of poultry onto the weighing bridge; anda fourth step of receiving values detected by the force measuring means and calculating a determined weight using an average of the detected force values over a duration encompassing at least two amplitudes of a predetermined vibration frequency, wherein the method further comprises providing first and second successive load cells in the measuring means and calculating the actual weight as an average of both load cell measurements.
  • 16. Method according to claim 15, further comprising providing a third successive load cell in the measuring means and calculating the actual weight as an average of all the load cell measurements.
  • 17. Method according to claim 15 further including a fifth step of identifying the position of the weighed item of poultry with respect to a path of conveyance leading from the weighing bridge and storing the calculated weight in respect thereof for subsequent monitoring.
  • 18. A weighing apparatus for use in conjunction with a meat processing systems, for weighing items of poultry during their travel along a conveyer of the meat processing system, the weighing apparatus including: a conveyer section;a plurality of hook units associated with the conveyer section, each hook unit having a body part connected to the conveyer section for movement thereby through a predefined path and a shackle part movable relative to the body part for supporting an item of poultry;a weighing bridge comprising a frame, a weighing platform, and a first load cell for measuring weight of an item of poultry suspended from the shackle part of each hook unit passing over the weighing bridge;a second load cell associated with the weighing platform to measure the weight of an item of poultry suspended from the shackle part of each hook unit in succession to the first load cell, and wherein the actual weight is calculated as an average of both load cell measurements;a weighing wheel assembly as part of the conveyer section, the weighing wheel assembly including a drive wheel with a plurality of radial grooves, and a stationary bearing plate holding a guide ring eccentrically positioned with respect to the drive wheel, wherein the plurality of hook units each have a first guide roller on their body part engaged in one of the plurality of radial grooves and a guide block of the body part engaging the guide ring.
  • 19. Weighing apparatus according to claim 18, wherein the guide ring is rotatably held on the stationary bearing plate by rollers engaging an inner contour of the guide ring.
  • 20. A weighing apparatus for use in conjunction with a meat processing systems, for weighing items of poultry during their travel along a conveyer of the meat processing system, the weighing apparatus including: a conveyer section;a plurality of hook units associated with the conveyer section, each hook unit having a body part connected to the conveyer section for movement thereby through a predefined path and a shackle part movable relative to the body part for supporting an item of poultry;a weighing bridge comprising a frame, a weighing platform, and a first load cell for measuring weight of an item of poultry suspended from the shackle part of each hook unit passing over the weighing bridge, the frame comprising a support column filled with a heavy material; anda second load cell associated with the weighing platform to measure the weight of an item of poultry suspended from the shackle part of each hook unit in succession to the first load cell, and wherein the actual weight is calculated as an average of both load cell measurements.
Priority Claims (1)
Number Date Country Kind
2009033 Jun 2012 NL national
US Referenced Citations (302)
Number Name Date Kind
3552511 Marcheso et al. Jan 1971 A
3918587 Drew, Jr. Nov 1975 A
3956794 Verbakel May 1976 A
3969790 Smorenburg Jul 1976 A
3979793 Hazenbroek Sep 1976 A
3983601 Verbakel Oct 1976 A
3990128 van Mil Nov 1976 A
4011573 Braico Mar 1977 A
4034440 van Mil Jul 1977 A
4096950 Brook Jun 1978 A
4118829 Harben, Jr. Oct 1978 A
4131973 Verbakel Jan 1979 A
4147012 van Mil Apr 1979 A
4153971 Simonds May 1979 A
4153972 Harben et al. May 1979 A
4178659 Simonds Dec 1979 A
4187945 Altenpohl et al. Feb 1980 A
4203178 Hazenbroek May 1980 A
4283813 House Aug 1981 A
4292709 van Mil Oct 1981 A
4388811 Zebarth Jun 1983 A
4395795 Hazenbroek Aug 1983 A
4406037 Hazenbroek Sep 1983 A
4418444 Meyn et al. Dec 1983 A
4418445 Meyn et al. Dec 1983 A
4434526 van Mil Mar 1984 A
4439891 van Mil Apr 1984 A
4468838 Sjöström et al. Sep 1984 A
4510886 van Mil Apr 1985 A
4514879 Hazenbroek May 1985 A
4516290 van Mil May 1985 A
4524489 van Mil Jun 1985 A
4550793 Giles Nov 1985 A
4558490 Hazenbroek et al. Dec 1985 A
4559672 Hazenbroek et al. Dec 1985 A
4567624 van Mil Feb 1986 A
4570295 van Mil Feb 1986 A
4574429 Hazenbroek Mar 1986 A
4577368 Hazenbroek Mar 1986 A
D283289 Hazenbroek Apr 1986 S
4593432 Hazenbroek Jun 1986 A
4597133 van den Nieuwelaar Jul 1986 A
4597136 Hazenbroek Jul 1986 A
4635317 van der Eerden Jan 1987 A
4639973 van der Eerden Feb 1987 A
4639974 Olson Feb 1987 A
4639975 van der Eerden Feb 1987 A
4646384 van der Eerden Mar 1987 A
4651383 van der Eerden Mar 1987 A
4653147 van der Eerden Mar 1987 A
4682386 Hazenbroek et al. Jul 1987 A
4704768 Hutting et al. Nov 1987 A
4709770 Kohashi et al. Dec 1987 A
4723339 van den Nieuwelaar et al. Feb 1988 A
4724581 van den Nieuwelaar Feb 1988 A
4736492 Hazenbroek et al. Apr 1988 A
RE32697 Hazenbroek et al. Jun 1988 E
4754822 Altenpohl et al. Jul 1988 A
4765028 van den Nieuwelaar et al. Aug 1988 A
4766644 van den Nieuwelaar et al. Aug 1988 A
4769872 Hazenbroek et al. Sep 1988 A
4770260 Brook Sep 1988 A
4779308 van den Nieuwelaar et al. Oct 1988 A
4788749 Hazenbroek et al. Dec 1988 A
4811456 Huevel Mar 1989 A
4811458 v. d. Nieuwelaar et al. Mar 1989 A
4811462 Meyn Mar 1989 A
4813101 Brakels et al. Mar 1989 A
4884318 Hazenbroek Dec 1989 A
4893378 Hazenbroek et al. Jan 1990 A
4894885 Markert Jan 1990 A
4896399 Hazenbroek Jan 1990 A
4899421 Van Der Eerden Feb 1990 A
4918787 Hazenbroek Apr 1990 A
4928351 van den Nieuwelaar et al. May 1990 A
4935990 Linnenbank Jun 1990 A
4939813 Hazenbroek Jul 1990 A
4951763 Zimmerman et al. Aug 1990 A
4958694 van den Nieuwelaar et al. Sep 1990 A
4965908 Meyn Oct 1990 A
4971177 Nojiri et al. Nov 1990 A
4972549 Van Den Nieuwelaar et al. Nov 1990 A
4993113 Hazenbroek Feb 1991 A
4993115 Hazenbroek Feb 1991 A
5001812 Hazenbroek Mar 1991 A
5013431 Doets May 1991 A
5015213 Hazenbroek May 1991 A
5019013 Hazenbroek May 1991 A
5026983 Meyn Jun 1991 A
5035673 Hazenbroek Jul 1991 A
5037351 van den Nieuwelaar et al. Aug 1991 A
5041054 van den Nieuwelaar et al. Aug 1991 A
5045022 Hazenbroek Sep 1991 A
5060596 Esbroeck Oct 1991 A
5064402 Koops Nov 1991 A
5067927 Hazenbroek et al. Nov 1991 A
5069652 Hazenbroek Dec 1991 A
5074823 Meyn Dec 1991 A
5088959 Heemskerk Feb 1992 A
5090940 Adkison Feb 1992 A
5098333 Cobb Mar 1992 A
5104351 van den Nieuwelaar et al. Apr 1992 A
5122090 van de Nieuwelaar et al. Jun 1992 A
5123871 van den Nieuwelaar et al. Jun 1992 A
5125498 Meyn Jun 1992 A
5147240 Hazenbroek et al. Sep 1992 A
5147241 Rudin Sep 1992 A
5154664 Hazenbroek et al. Oct 1992 A
5154665 Hazenbroek Oct 1992 A
RE34149 Markert Dec 1992 E
5173076 Hazenbroek Dec 1992 A
5173077 van den Nieuwelaar et al. Dec 1992 A
5176563 van den Nieuwelaar et al. Jan 1993 A
5176564 Hazenbroek Jan 1993 A
5178890 van den Nieuwelaar et al. Jan 1993 A
5186679 Meyn Feb 1993 A
5188559 Hazenbroek Feb 1993 A
5188560 Hazenbroek Feb 1993 A
5194035 Dillard Mar 1993 A
5197917 Verbakel et al. Mar 1993 A
5199922 Korenberg et al. Apr 1993 A
5222905 Van den Nieuwelaar et al. Jun 1993 A
5242324 Koops Sep 1993 A
5248277 Bos et al. Sep 1993 A
5256101 Koops Oct 1993 A
5269721 Meyn Dec 1993 A
5277649 Adkison Jan 1994 A
5277650 Meyn Jan 1994 A
5279517 Koops Jan 1994 A
5290187 Meyn Mar 1994 A
5299975 Meyn Apr 1994 A
5299976 Meyn Apr 1994 A
5318428 Meyn Jun 1994 A
5326311 Persoon et al. Jul 1994 A
5334083 van den Nieuwelaar et al. Aug 1994 A
5336127 Hazenbroek Aug 1994 A
5340351 Minderman et al. Aug 1994 A
5340355 Meyn Aug 1994 A
5342237 Kolkman Aug 1994 A
5344359 Kolkman Sep 1994 A
5344360 Hazenbroek Sep 1994 A
5366406 Hobbel et al. Nov 1994 A
5370574 Meyn Dec 1994 A
5372246 van Aalst Dec 1994 A
RE34882 Meyn Mar 1995 E
5429549 Verrijp et al. Jul 1995 A
5434366 Troisi Jul 1995 A
5439702 French Aug 1995 A
5453045 Hobbel et al. Sep 1995 A
5462477 Ketels Oct 1995 A
5470194 Zegers Nov 1995 A
5487700 Dillard Jan 1996 A
5490451 Nersesian Feb 1996 A
5505657 Janssen et al. Apr 1996 A
5549521 van den Nieuwelaar et al. Aug 1996 A
D373883 Dillard Sep 1996 S
5569067 Meyn Oct 1996 A
5576520 Waterman et al. Nov 1996 A
5595066 Zwanikken et al. Jan 1997 A
5605503 Martin Feb 1997 A
5643072 Lankhaar et al. Jul 1997 A
5643074 Linnenbank Jul 1997 A
5672098 Veraart Sep 1997 A
5676594 Joosten Oct 1997 A
5704830 Van Ochten Jan 1998 A
5713786 Kikstra Feb 1998 A
5713787 Schoenmakers et al. Feb 1998 A
5741176 Lapp et al. Apr 1998 A
5755617 van Harskamp et al. May 1998 A
5759095 De Weerd Jun 1998 A
5766063 Hazenbroek et al. Jun 1998 A
5782685 Hazenbroek et al. Jul 1998 A
5785588 Jacobs et al. Jul 1998 A
5803802 Jansen Sep 1998 A
5810651 De Heer et al. Sep 1998 A
5810653 Van Craaikamp et al. Sep 1998 A
5813908 Craaikamp Sep 1998 A
5827116 Al et al. Oct 1998 A
5833527 Hazenbroek et al. Nov 1998 A
5865672 Hazenbroek Feb 1999 A
5875738 Hazenbroek et al. Mar 1999 A
5947811 Hazenbroek et al. Sep 1999 A
5951393 Barendregt Sep 1999 A
5975029 Morimoto et al. Nov 1999 A
5976004 Hazenbroek Nov 1999 A
5980377 Zwanikken et al. Nov 1999 A
6007416 Janssen et al. Dec 1999 A
6007417 Jones et al. Dec 1999 A
6024636 Hazenbroek et al. Feb 2000 A
6027403 Hazenbroek et al. Feb 2000 A
6027404 Wols Feb 2000 A
6029795 Janssen et al. Feb 2000 A
6033299 Stone et al. Mar 2000 A
6062972 Visser May 2000 A
6084184 Troisi Jul 2000 A
6095914 Cornelissen et al. Aug 2000 A
6126534 Jacobs et al. Oct 2000 A
6132304 Aarts et al. Oct 2000 A
6142863 Janssen et al. Nov 2000 A
6152816 van den Nieuwelaar et al. Nov 2000 A
6176772 Hazenbroek et al. Jan 2001 B1
6179702 Hazenbroek Jan 2001 B1
6190250 Volk et al. Feb 2001 B1
6193595 Volk et al. Feb 2001 B1
6220953 Cornelissen et al. Apr 2001 B1
6231436 Bakker May 2001 B1
6254471 Meyn Jul 2001 B1
6254472 Meyn Jul 2001 B1
6277021 Meyn Aug 2001 B1
6299524 Janssen et al. Oct 2001 B1
6306026 Post Oct 2001 B1
6322438 Barendregt Nov 2001 B1
6358136 Volk et al. Mar 2002 B1
6371843 Volk et al. Apr 2002 B1
6375560 Verrijp Apr 2002 B1
6383069 Volk et al. May 2002 B1
6398636 Jansen et al. Jun 2002 B1
6446352 Middelkoop et al. Sep 2002 B2
6478668 Visser et al. Nov 2002 B2
6530466 Murata et al. Mar 2003 B2
6599179 Hazenbroek et al. Jul 2003 B1
6612919 Janset et al. Sep 2003 B2
6656032 Hazenbroek et al. Dec 2003 B2
6726556 Gooren et al. Apr 2004 B2
6736717 Annema et al. May 2004 B1
6764393 Hazenbroek et al. Jul 2004 B1
6783451 Aandewiel et al. Aug 2004 B2
6811478 van den Nieuwelaar et al. Nov 2004 B2
6811480 Moriarty Nov 2004 B2
6811802 van Esbroeck et al. Nov 2004 B2
6830508 Hazenbroek et al. Dec 2004 B2
6837782 Hetterscheid et al. Jan 2005 B2
6899613 van den Nieuwelaar et al. May 2005 B2
6912434 van den Nieuwelaar et al. Jun 2005 B2
6986707 van den Nieuwelaar et al. Jan 2006 B2
7018283 Schmidt et al. Mar 2006 B2
7029387 van den Nieuwelaar et al. Apr 2006 B2
7059954 Annema et al. Jun 2006 B2
7063611 Nolten et al. Jun 2006 B2
7066806 de Heer et al. Jun 2006 B2
7070493 Hazenbroek et al. Jul 2006 B2
7115030 van Hillo et al. Oct 2006 B2
7125330 Beeksma et al. Oct 2006 B2
7128937 van den Nieuwelaar et al. Oct 2006 B2
7133742 Cruysen et al. Nov 2006 B2
7172781 Kish Feb 2007 B2
7232365 Annema et al. Jun 2007 B2
7232366 van den Nieuwelaar et al. Jun 2007 B2
7249998 van Esbroeck et al. Jul 2007 B2
7261629 Holleman Aug 2007 B2
7279644 Kasel Oct 2007 B1
7284973 van Esbroeck et al. Oct 2007 B2
7302885 Townsend Dec 2007 B2
7344437 Van Den Nieuwelaar et al. Mar 2008 B2
D565941 Peters et al. Apr 2008 S
7357707 de Vos et al. Apr 2008 B2
7476148 McQuillan et al. Jan 2009 B2
7494406 Van Esbroeck et al. Feb 2009 B2
7530888 Annema et al. May 2009 B2
7572176 Petersen et al. Aug 2009 B2
7662033 Ritter et al. Feb 2010 B1
7662034 Van Hillo et al. Feb 2010 B2
7717773 Woodford et al. May 2010 B2
7740527 Harben Jun 2010 B1
7744449 van Esbroeck et al. Jun 2010 B2
7824251 van den Nieuwelaar et al. Nov 2010 B2
20010023171 Hazenbroek et al. Sep 2001 A1
20020020568 Brook Feb 2002 A1
20020055328 Schmidt et al. May 2002 A1
20020058470 Schmidt et al. May 2002 A1
20020090905 Moriarty Jul 2002 A1
20020168930 Jansen et al. Nov 2002 A1
20030008606 Hazenbroek et al. Jan 2003 A1
20030084856 Hazenbroek et al. May 2003 A1
20030092372 Aandewiel et al. May 2003 A1
20040198209 Hazenbroek et al. Oct 2004 A1
20040235409 Nolten et al. Nov 2004 A1
20050037704 Heer et al. Feb 2005 A1
20050037705 Beeksma et al. Feb 2005 A1
20050048894 van Hillo et al. Mar 2005 A1
20050186897 Holleman Aug 2005 A1
20050221748 Hillo et al. Oct 2005 A1
20060099899 Hazenbroek et al. May 2006 A1
20060217051 Gerrits Sep 2006 A1
20070082595 de Vos et al. Apr 2007 A1
20070221071 Kuijpers et al. Sep 2007 A1
20070224306 van Esbroeck et al. Sep 2007 A1
20080017050 van Esbroeck et al. Jan 2008 A1
20080125025 Van Den Nieuwelaar et al. May 2008 A1
20080171506 Nieuwelaar et al. Jul 2008 A1
20090239457 Jansen et al. Sep 2009 A1
20090320761 Grave et al. Dec 2009 A1
20100022176 Van Den Nieuwelaar et al. Jan 2010 A1
20100029186 Janssen et al. Feb 2010 A1
20100048114 Van Den Nieuwelaar et al. Feb 2010 A1
20100062699 Sorensen et al. Mar 2010 A1
20100075584 Aandewiel et al. Mar 2010 A1
20100081366 De Vos et al. Apr 2010 A1
20100120344 Van Den Nieuwelaar et al. May 2010 A1
20100151779 Bakker Jun 2010 A1
20100221991 Hagendoorn Sep 2010 A1
20130196584 van den Berg et al. Aug 2013 A1
Foreign Referenced Citations (9)
Number Date Country
0 736 255 Oct 1996 EP
0 786 208 Jul 1997 EP
1 353 155 Oct 2003 EP
1 440 618 Jul 2004 EP
1 538 113 Jun 2005 EP
2 181 841 May 2010 EP
2 529 177 Dec 1983 FR
1 395 722 May 1975 GB
WO 0244670 Jun 2002 WO
Non-Patent Literature Citations (6)
Entry
European Search Report—NL 2004574, Publication Date Jan. 3, 2011, Foodmate B.V.
Written Opinion—NL 2004574, Publication Date Jan. 3, 2011, Foodmate B.V.
PCT/NL2011/050267—International Preliminary Report on Patentability, Publication Date Oct. 23, 2012, Foodmate B.V.
International Search Report & Written Opinion—PCT/NL2013/050434, Publication Date Aug. 14, 2013, Foodmate B.V.
Search Report in Netherlands Application No. 2006075 dated Jan. 12, 2011.
Office Action in EP Application No. 12 703 612.7 dated May 26, 2014.
Related Publications (1)
Number Date Country
20130333956 A1 Dec 2013 US