Weld training systems and methods

Information

  • Patent Grant
  • 11475785
  • Patent Number
    11,475,785
  • Date Filed
    Tuesday, December 8, 2020
    4 years ago
  • Date Issued
    Tuesday, October 18, 2022
    2 years ago
Abstract
An example weld training system includes: a weld training device configured to perform a simulated welding procedure on a simulated weld joint; a work surface comprising the simulated weld joint; a sensing device configured to track weld training device location information during the simulated welding procedure; a visual interface configured to display results of the simulated welding procedure based on the weld training device location information; and an enclosure comprising an interior volume configured to house within its interior the visual interface, the work surface, and the sensing device.
Description
BACKGROUND

This disclosure relates generally to welding systems, and more particularly, to a portable welding system that may be used for as a tool for training and/or recruiting purposes.


Welding is a process that has increasingly become utilized in various industries and applications. Such processes may be automated in certain contexts, although a large number of applications continue to exist for manual welding operations. In both cases, such welding operations rely on a variety of types of equipment to ensure the supply of welding consumables (e.g., wire feed, shielding gas, etc.) is provided to the weld in appropriate amounts at the desired time.


In preparation for performing manual welding operations, welding operators may be trained using a welding system (e.g., welding training system). The welding system may be designed to train welding operators with the proper techniques for performing various welding operations. Various training methods and systems may be utilized within the welding systems. However, these training methods and systems are generally large and unwieldy, and may be difficult to setup and transport to different training locations. Accordingly, it may be beneficial to provide for portable welding systems, such as portable welding systems that are easy to transport and setup in various types of training locations.


BRIEF DESCRIPTION

In an embodiment, a weld training system having a weld training device, a sensing device, and processing circuitry is provided. The weld training device is configured to perform a virtual welding procedure on a simulated weld joint via a virtual reality interface. The simulated weld joint is simulated on a work surface. The sensing device is configured to detect position or orientation information of the weld training device via processing circuitry. In addition, at least one of the weld training device, the work surface, the sensing device, or the processing circuitry are removably disposed within an interior volume of a portable enclosure. The portable enclosure is configured to be transported by an operator of the weld training system.


In another embodiment, a method is provided. The method includes operating a weld training system within a portable enclosure. The portable enclosure is configured to be transported by an operator of the weld training system. Operating the weld training system includes performing, via a weld training device, a virtual welding procedure on a simulated weld joint. The weld joint is simulated on a work surface via a virtual reality interface. Operating the weld training system also includes receiving, via a sensing device, position or orientation information of the weld training device. In addition, operating the weld training system includes determining, via processing circuitry, an updated position or orientation information of the weld training device based on the received position or orientation information of the weld training device. The updated position or orientation information is utilized to determine one or more current operating parameters of the virtual welding procedure. At least one of the weld training device, the work surface, the sensing device, or the processing circuitry are removably disposed within an interior volume of the portable enclosure of the weld training system.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is a block diagram of an embodiment of a portable weld training system in accordance with aspects of the present disclosure;



FIG. 2 is a block diagram of an embodiment of the portable weld training system of FIG. 1, where the portable weld training system includes components to enable a virtual reality welding system; and



FIG. 3 is an embodiment of a screen illustrating data corresponding to a weld, in accordance with aspects of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the systems and methods described herein relate to a weld training system that is portable and self-contained. As used herein, the weld training system may include any suitable welding related system, including, but not limited to, a welding training system, a live welding system, a simulated welding system, a virtual reality welding system, a welding training application (e.g., utilized on a computing device), a welding training system utilized on a gaming platform, and so forth. In certain embodiments, the weld training system may be configured to perform a virtual welding operation. In addition, the weld training system may be configured to perform a shielded metal arc welding (SMAW) process, a gas-metal arc welding (GMAW) process, a tungsten inert gas (TIG) welding process, a plasma cutting process, or any other type of welding process. In particular, one or more components of the weld training system may be removably disposed within an interior volume of a portable, self-contained enclosure.


In certain embodiments, a user and/or operator may easily transport the weld training system from various training and/or recruiting locations with the one or more components of the weld training system disposed within the interior volume of the portable, self-contained enclosure. For example, the portable, self-contained enclosure may be suitcase-type enclosures having any suitable attachments (e.g., straps, handles, wheels, levers, etc.) that provide mobility and that enable the user and/or operator to move the enclosure from one location to another. Further, the enclosure may protect the removably enclosed components of the weld training system from various elements (e.g., water, impact, stacking, dust, etc.) during transport and operation. In some situations, the enclosure may be a physically robust structure that enables a welding operator to assume real welding positions against the enclosure. For example, the operator and/or user may lean on the portable welding system for stability during a weld, and the enclosure may be physically robust enough to withstand such force. In addition, the components of the weld training system may be easy to assemble and/or disassemble. For example, a single user and/or operator may be able to set up and/or wrap up the components of the weld training system form the portable, self-contained enclosure in an intuitive and interactive way.


In certain embodiments, the weld training system includes components configured to enable a virtual reality environment that allows an operator and/or user to have a welding-like experience (virtual welding). In particular, one or more of these components are removably disposed within the portable, self-contained enclosure, and may be easily transported between recruiting and/or training locations by a single user and/or operator. The weld training system provides the user or a trainee with real-time feedback on relevant process parameters at the recruiting and/or training site, and also provides the user with a summary of post-weld feedback on the relevant process parameters. In certain embodiments, the weld training system can incorporate a competitive, gaming aspect to the virtual reality welding experience or the simulated welding experience, and can provide a welding score to the user based on the received feedback.



FIG. 1 is a block diagram of an embodiment of a portable weld training system 10, in accordance with aspects of the present disclosure. As noted above, embodiments of the portable welding system 10 include any suitable welding related system, including a virtual reality system that enables a virtual welding experience or a welding application utilized on the system 10 that enables a simulated welding experience. In particular, the components of the portable welding system 10 may be incorporated into a portable, self-contained enclosure 12 that is easy to transport between various training and/or recruiting locations. Further, the components of the portable welding system 10, as further described below, may be simple and easy to assemble and/or disassemble, such that a single operator is capable of setting up and/or wrapping up the system 10 within the enclosure 12 in an intuitive and interactive way. In particular, one or more components of the weld training system 10 may be removably disposed within an interior volume 11 of the portable, self-contained enclosure 12, such that the single operator may easily transport and setup the components in different training and/or recruiting locations.


The portable weld training system 10 includes a computer 13 (or a computing component), a display 14, a sensing device 16, and a power source 18. The computer 13 includes one or more processors 20, memory devices 22, and storage devices 24. The processor(s) 20 may be used to execute software, such as welding software, image processing software, sensing device software, and so forth. Moreover, the processor(s) 20 may include one or more microprocessors, such as one or more “general-purpose” microprocessors, one or more special-purpose microprocessors and/or application specific integrated circuits (ASICS), or some combination thereof. For example, the processor(s) 20 may include one or more reduced instruction set (RISC) processors.


The memory device(s) 22 may include a volatile memory, such as random access memory (RAM), and/or a nonvolatile memory, such as read-only memory (ROM). The memory device(s) 22 may store a variety of information and may be used for various purposes. For example, the memory device(s) 22 may store processor-executable instructions (e.g., firmware or software) for the processor(s) 20 to execute, such as instructions for a welding simulation, instructions to enable a virtual reality welding-like experience (e.g., virtual welding), and/or instructions for the sensing device 16. In addition, a variety of control regimes for various welding processes, along with associated settings and parameters may be stored in the storage device(s) 24 and/or memory device(s) 22, along with code configured to provide a specific output (e.g., initiate wire feed, enable gas flow, capture welding current data, detect short circuit parameters, determine amount of spatter, etc.) during operation.


The storage device(s) 24 (e.g., nonvolatile storage) may include ROM, flash memory, a hard drive, or any other suitable optical, magnetic, or solid-state storage medium, or a combination thereof. The storage device(s) 24 may store data (e.g., data corresponding to a welding operation, video and/or parameter data corresponding to a welding operation, etc.), instructions (e.g., software or firmware for the welding system, the sensing device 16, etc.), and any other suitable data. As will be appreciated, data that corresponds to a welding operation may include a video recording of the simulated or virtual reality welding operation, a simulated or virtual reality video, an orientation and/or a position of system 10 components, a work angle, a travel angle, a distance between components of the system 10, a travel speed, a proximity, a voltage, a current, a traversed path, a discontinuity analysis, welding device settings, and so forth.


The computer 13 is communicatively coupled to a display 14, and the display 14 is configured for displaying data and/or screens associated with the virtual and/or simulated welding process (e.g., to display data corresponding to a welding software). The display 14 may provide a graphical user interface to a welding operator (e.g., welding instructor, welding student). For example, the graphical user interface may provide various screens to enable a welding operator (e.g., welding student, welding gamer, welding trainee, etc.) to perform a welding task, view real-time feedback of current welding parameters, view a post-welding summary of welding task, view averages and/or results from prior welding tasks, compare and view final welding scores of one or welding operators, and so forth. In certain embodiments, the display 32 may be a touch screen display configured to receive touch inputs, and to provide data corresponding to the touch inputs to the computer 18. In some embodiments, the display 14 is configured to display information corresponding to the sensing device software, and provides a virtual and/or simulated image of the weld being performed, as further described below.


The sensing device 16 (e.g., sensor, sensing assembly, and so forth) of the portable weld training system 10 is used to sense a position of one or more welding devices and/or to sense an orientation of one or more welding devices within the portable welding system 10. The sensing device 16 may include a motion sensing device, a motion tracking device, one or more sensing devices configured to track signals output from one or more sensing coils, or generally any suitable sensing device. Furthermore, in some situations, the sensing device 16 may include one or more cameras, such as one or more infrared cameras, one or more visible spectrum cameras, one or more high dynamic range (HDR) cameras, and so forth. Further, the position and/or orientation information received by the sensing device 16 may be utilized by the computer 13 to analyze current welding parameters, and utilized by the operator to adjust a particular welding parameter.


As noted above, the sensing device 16 may be configured to sense the position and/or orientation of various components within the welding system 10. Accordingly, if the portable weld training system 10 is configured to enable a virtual reality welding experience, the sensing device 16 may be used to sense the position and/or the orientation of various virtual reality components disposed within the system 10, and receive virtual reality position and/or orientation information for each component sensed. For example, in some embodiments, the portable welding system 10 includes a work surface 26 operatively coupled to a coupon attachment 28, the weld training device 30 (e.g., virtual reality welding torch 30), a vision device 32 (e.g., virtual reality vision device 32), and/or one or more other virtual reality accessories 34 (as explained in detail with respect to FIG. 2). The work surface 26 is a flat surface configured as a welding surface that provides support for various components of the system 10 (e.g., the virtual welding torch 30) and/or a simulated or virtual work piece. In certain embodiments, the work surface 26 is a removable piece that may be removably attached or detached from the portable, self-contained enclosure 12 to create the flat surface.


The weld training device 30 (e.g., virtual reality welding torch 30, VR welding torch 30, the weld training torch 30, etc.) may be used by the welding operator (e.g., welding student, trainee, or gamer) to perform welding operations within a virtual reality welding-like experience. For example, the weld training device 30 may be any 3-D controller (e.g., gaming control, gaming torch, artificial welding torch, etc.) that simulates the experience of a typical welding torch device (e.g., may be stiff, rigid, and/or heavy) and that is configured to mimic the functions of a welding torch in a typical welding operation. The weld training device 30 may communicate with the computer 13 via wired connections 36 and/or wireless communications. In some embodiments, the weld training device 30 may be configured to look and feel (e.g., size, weight, configuration, etc.) like a typical welding torch. Further, the weld training device 30 may include various sensors (e.g., accelerometers, vibration sensors, motion sensors and/or trackers, optical sensors, GPS-aided sensors, wireless motion and/or tracking tags, orthogonal coils configured to output a signal, etc.) that are utilized by the sensing device 16 to obtain position and/or orientation information of the weld training device 30. In some embodiments, the weld training device 30 may be configured with a user interface to receive inputs from the welding operator, control circuitry configured to process the inputs, and a communication interface configured to provide the inputs to another device. Further in some situations, the weld training device 30 may include one or more display and/or indicators to provide data to the welding operator. In some embodiments, the weld training device 30 may be removably disposed within the interior volume 11 of the portable, self-contained enclosure 12 to allow a single operator to easily transport the weld training device 30 and/or other components from one location to another.


The virtual reality vision device 32 (e.g., VR vision device 32) may be a head-mounted virtual reality display, such as goggles, a helmet, or any head-piece that enables the user wearing the device 32 to be immersed in the virtual reality environment (e.g., virtual reality welding-like environment). The VR vision device 32 may communicate with the computer 13 via wired connections 36 and/or wireless communications. Further, in certain embodiments, the environment visualized by the user via the VR vision device 32 may also be projected onto the display 14 or on an external display 38 for other viewers to visualize. In addition, in some situations, the portable welding device 10 may forgo vision device 32, and may display the welding-like environment directly on the display 14, or on the external display 38. In some situations, the VR vision device 32 may also include various sensors (e.g., accelerometers, vibration sensors, motion sensors and/or trackers, optical sensors, GPS-aided sensors, wireless motion and/or tracking tags, orthogonal coils configured to output a signal, etc.) that are utilized by the sensing device 16 to obtain position and/or orientation information of the vision device 32. In some embodiments, the VR vision device 32 may be removably disposed within the interior volume 11 of the portable, self-contained enclosure 12 to allow a single operator to easily transport the VR vision device 32 and/or other components from one location to another.


In some embodiments, one or more other virtual reality accessories 34 (as explained in detail with respect to FIG. 2) may be utilized by the portable welding system 10. For example, in some situations, the virtual reality welding-like experience may be created with virtual reality components such as virtual reality welding gloves, auditory accessories (e.g., speakers, headphones, etc.) that replicate welding sounds, and/or additional visual components (e.g., accessory devices to the vision device 32 that enable the user to see both virtual and real components). In some situations, these components may also include various sensors (e.g., accelerometers, vibration sensors, motion sensors and/or trackers, optical sensors, GPS-aided sensors, wireless motion and/or tracking tags, orthogonal coils configured to output a signal, etc.) that are utilized by the sensing device 16 to obtain position and/or orientation information. For example, the sensing device 16 may obtain position and/or orientation information from the welding gloves. The VR accessories 34 may communicate with the computer 13 via wired connections 36 and/or wireless communications. In some embodiments, the VR accessories 34 may be removably disposed within the interior volume 11 of the portable, self-contained enclosure 12 to allow a single operator to easily transport the VR accessories 34 and/or other components from one location to another.


An external display 38 is coupled to the computer 13 to enable an individual located remotely from the portable welding system 10 to view data corresponding to the welding system 10. Furthermore, a network device 40 is coupled to the computer 13 to enable the computer 13 to communicate with other devices connected to the Internet or cloud services 42 (e.g., for providing welding results to another device and/or for receiving welding results from another device). In some embodiments, the cloud services 42 include a storage 44 configured to store information for a plurality of welding operators utilizing a plurality of remote welding systems 10. For example, the storage 44 is configured to store, for each welding operator, user identification information, historical weld information, and/or historical welding scores. Further, the network device 40 may enable the computer 13 to communicate with an external portable welding system 46, a production welding system 48, and/or a remote computer 50. As may be appreciated, the portable welding system 10 described herein may be used to simulate and/or recreate the welding experience for welding students in a cost effective and convenient manner. Indeed, the portable welding system 10 described herein may allow a welding instructor to easily transport the system 10 via the enclosure 12 to various locations, easily setup the system 10 within a compact space, and introduce a welding experience to one or more welding students in an interactive manner Furthermore, the welding system 10 is configured to integrate real welding with virtual reality and/or simulated welding in a stimulating and interactive manner to train welding students for high quality production welding.



FIG. 2 is a block diagram of an embodiment of the portable weld training system 10 of FIG. 1, where the components of the portable weld training system 10 may be removably disposed within the enclosure 12 for easy transport and increased mobility. In particular, the components of the portable weld training system 10 enable a virtual reality welding-like experience (e.g., virtual welding experience) for welding operators. For example, the enclosure 12 includes the computer 13, the display 14, the sensing device 16, the power source 18, the work surface 26, and the coupon attachment 28. Further, the enclosure also includes a storage space 52 within the interior volume 11 where the weld training device 30, the vision device 32, the coupons 54, and various other virtual reality accessories 34 (e.g., the visual components 56, the auditory components 58, and/or the tactile components 60) may be removably stored when not in use and/or for transport between training/recruiting locations.


It should be noted that prior to commencing a virtual reality welding-like experience, the weld training device 30, the vision device 32, the coupons 54, and the various other virtual reality accessories 34 may be removed from the storage space 52 and communicatively coupled to the portable welding system 10 via wired connections 26 and/or wireless connections. For example, the weld training device 30 may be plugged into one or more inputs 62 of the enclosure 12 that engage with the computer 13. As a further example, in other situations, the weld training device 30 may be wirelessly coupled or paired with the computer 13 prior to use. Likewise, the VR vision device 32 may be removed from the storage space 52 and plugged into the one or more inputs 62 of the enclosure 12, and may be operatively configured to provide information to the computer 13 via the wired connections 36 or wireless connections. In some embodiments, the power source of the enclosure 12 may be plugged into an outlet to provide a direct source of power to the components of the system 10, and/or to charge a battery source (e.g., battery pack, rechargeable battery, disposable/replaceable batteries) disposed within the power source 18. Further, in some embodiments, the components of the welding system 10 may receive power from the power source 18 (e.g., converted power if necessary), or an individual battery or any other suitable powering mechanism may power each component of the system 10. It should be noted that in certain embodiments, the components of the weld training system 10 may operate on the portable battery source (e.g., battery pack, rechargeable battery, disposable/replaceable batteries) alone, independent of an external power source, thus providing greater mobility and portability to the system 10. For example, the power source 18 may be may be removably disposed within the interior volume 11 of the portable, self-contained enclosure 12 to provide power to the one or more components as they are moved from one location to another by the user.


Once the system 10 is powered and configured for a virtual and/or simulated welding experience, the welding operator may perform virtual and/or simulated welds on the work surface 26 (e.g., welding surface 26). The work surface 26 may include the coupon attachment 28, which allows one or more coupons to snap into the work surface 26. In some situations, the coupons enable the position and/or orientation of a work piece to be provided to the welding software of the portable welding system 10 to calibrate the welding system 10. One or more coupons 54 may be selected by the welding operator and may be used by the welding system 10 to calibrate the position and/or orientation of the work surface 26 relative to the sensing device 16 without a separate calibration device. In certain embodiments, the coupons 54 attached to the coupon attachment 28 may be positioned at predetermined locations on the welding surface 26. Furthermore, the welding software may be programmed to use the predetermined locations to determine the position and/or the orientation of the work surface 26. Further, it should be noted that in some embodiments, when the one or more coupons 54 are snapped into the coupon attachment 28 on the work surface 26, the weld training system 10 may not need to be calibrated before the virtual welding-like process.


During the virtual welding-like process, the welding operator may be immersed within the virtual reality environment via the various virtual reality components and attachments within the system 10. For example, the weld training device 30 may be utilized to create a virtual reality or simulated weld on the work surface 26. The VR vision device 32 may be utilized to visualize the virtual welding-like process, including visualizing the VR weld formed on the work surface 26. In certain embodiments, other virtual reality accessories 34 may be engaged to further enhance the virtual reality welding environment. For example, various visual components 56 may include glasses or attachments to the vision device 32 that enable the welding operator to see both real and virtual reality components of the welding environment. Further, various auditory components 58, such as additional speakers or headphones, may be utilized to simulate the sounds of a typical welding process. In addition, various tactile components 60, such as virtual reality control devices (e.g., VR gloves) having wired connections 36 and/or wireless communications with the computer 13, may be utilized to further create a virtual reality welding-like experience that closely mimics the welding operator's true tactile motions.


As noted above, the enclosure 12 configured to house the components of the welding system 10 is a portable, self-contained enclosure 12 that is easy to transport between various training and/or recruiting locations. Indeed, the dimensions of the portable, self-contained enclosure 12 may be such that any operator and/or user are capable of transporting the enclosure 12 without the need of external machines. For example, in some situations, the portable, self-contained enclosure 12 is a suitcase like structure that may be lifted, carried, wheeled, rolled, or otherwise moved from one location to another by one or more operators or users. As can be appreciated by one skilled in the art, the enclosure 12 has attachments (not illustrated) that improve mobility, such as wheel attachments, handles, extendable handles, buckles, straps, etc., that allow the enclosure 12 to be transported, for example, by a user and/or operator. Further, it should be noted that while the enclosure 12 has features that enable configuration with external devices, in certain embodiments, the enclosure 12 is self-contained such that the weld training system 10 is fully operational independent of any external devices, such as external displays, external computing systems, or external power sources. In some situations, the portable, self-contained enclosure 12 may be divided into one or more portable, self-contained enclosures 12, each configured to house or removably enclose for transport one or more components of the weld training system 10. In such situations, the components disposed within each enclosure 12 may communicate via wired and/or wireless communications.


In particular, the enclosure 12 includes one or more hinges 62 that enable the enclosure 12 to securely contain the components within during transport or when not in use. For example, a first hinge 64 is utilized to fold the work surface 26 into a cover 68 (e.g., lid, top, etc.) of the enclosure 12. As a further example, a second hinge 68 is utilized to secure the cover 68 of the enclosure 12 to an enclosure body 70. In certain embodiments, the work surface 26 may be spatially rearranged within the weld training system 10 based on the desired functionality. For example, in certain embodiments, the work surface 26 may be coupled (e.g., clip-on attachments, fasteners, retaining devices, removable hinges, etc.) vertically and/or horizontally within the enclosure 12 based on the welding experience desired by the user. Further, the work surface 26 may be detached and stored within the storage space 52 during transport or when it is not in use.


As noted above, the enclosure 12 is formed of any sturdy material (e.g., plastic, metal, etc.) that protects the components within from various elements (e.g., water, impact, stacking, dust, etc.) during transport and operation. Indeed, the enclosure 12 may be physically robust enough that it enables a welding operator to assume real welding positions against the enclosure 12. For example, the welding operator may lean against the enclosure 12 while creating a virtual reality weld on the work surface 26 for stability, and the enclosure 12 may be physically robust enough to withstand such force without moving. It should be noted that the enclosure 12 may be formed of any material, and in any shape, so long as the enclosure 12 is large enough to fit the desired components required for the portable weld training system 10 and sturdy enough to withstand typical forces encountered during the welding process.



FIG. 3 is an embodiment of a screen 82 illustrating data corresponding to a virtual and/or simulated weld, such as those generated by the portable weld training system 10, in accordance with aspects of the present disclosure. The screen 82 may be produced by the welding software disposed on the portable welding system 10, and may be displayed on the display 14, the external display 38, and/or the vision device 32. The screen 82 illustrates parameters that may be graphically displayed to a welding operator before, during, and/or after performing a simulated and/or virtual welding operation. For example, the parameters may include a work angle 84, a travel angle 86, a contact tip to work piece distance 88 (e.g., CTWD 88), a welding torch travel speed 90, a proximity of the welding torch in relation to the work piece 92, a simulated welding voltage 94, a simulated welding current 96, a welding torch orientation, a welding torch position, an aim of the welding torch, a video replay of the simulation and/virtual reality weld 98, and so forth.


As illustrated, graphically illustrated parameters may include an indication 100 of a current value of a parameter (e.g., while performing a welding assignment). Furthermore, a graph 102 may show a history of the value of the parameter, and a score 104 may show an overall percentage that corresponds to how much time during the welding assignment that the welding operator was within a range of acceptable values. As noted above, a video replay 98 of a welding assignment may be provided on the screen 82. The video replay 98 may show live video of a welding operator performing the simulated weld, live video of the welding operator performing a virtual reality weld, a live video of the simulated or virtual reality weld itself, a video of the welding parameters, a video of the simulated and/or virtual reality welding environment, and so forth.


In some embodiments, a time 106 during a weld may be selected by a welding operator. By selecting the time 106, the welding operator may view the video replay 106 in conjunction with the welding parameters as they were at the selected time 106 in order to establish a correlation between the welding parameters and the video replay 98. The welding software may be configured to recreate welding data based at least partly on welding parameter data, to synchronize the video replay 98 with the recreated welding data, and to provide the synchronized video replay 98 and recreated welding data to the display 14 or the external display 38. Further, in some embodiments, a summary of the post-welding data and/or score may be displayed on a summary page 108 for each welding operator 110. It should be noted that in some situations, the display 82 may display a comparison of total scores for each welding individual 110. Indeed, the weld training system may include or utilize any number of weld training features (e.g., a total welding score) or techniques (e.g., comparing weld training information) previously disclosed in U.S. patent application Ser. No. 13/838,158, filed Mar. 15, 2013, which is hereby incorporated by reference.


While only certain features have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the scope of the claims.

Claims
  • 1. A weld training system, comprising: a weld training device configured to perform a simulated welding procedure on a simulated weld joint;a work surface comprising the simulated weld joint;a sensing device configured to track weld training device location information during the simulated welding procedure;a visual interface configured to display results of the simulated welding procedure based on the weld training device location information; andan enclosure comprising an interior volume configured to house within its interior the visual interface, the work surface, and the sensing device, wherein the work surface is coupled to the enclosure.
  • 2. The system of claim 1, wherein the enclosure is portable and configured to house the visual interface and the work surface within the interior of the enclosure during the simulated welding procedure.
  • 3. The system of claim 2, wherein the enclosure is further configured to be transported by an operator of the weld training system.
  • 4. The system of claim 2, wherein the enclosure is self-contained and configured to perform a simulated welding procedure independently of at least one of an external computing system, an external display, or an external power source.
  • 5. The system of claim 1, wherein the weld training device comprises a simulated welding torch configured to simulate welding functions of a real-world welding torch.
  • 6. The system of claim 1, wherein the enclosure is in an open position during the simulated welding procedure.
  • 7. The system of claim 1, wherein the enclosure comprises a cover and a body coupled via a hinge, and wherein when the enclosure is in an open position the work surface is accessible to perform the simulated welding procedure.
  • 8. A weld training system, comprising: a weld training device configured to perform a simulated welding procedure on a simulated weld joint;a work surface comprising the simulated weld joint;a sensing device configured to track weld training device location information during the simulated welding procedure;a visual interface configured to display results of the simulated welding procedure based on the weld training device location information; andan enclosure comprising an interior volume configured to house within its interior the visual interface, the work surface, and the sensing device, wherein the work surface and the visual interface are attached to the enclosure during the simulated welding procedure.
  • 9. The system of claim 1, wherein the enclosure is a suitcase-type enclosure in which two portions forming the enclosure are coupled via hinges.
  • 10. The system of claim 1, wherein the display comprises a touch screen display.
  • 11. The system of claim 1, wherein the visual interface comprises a virtual reality vision device.
  • 12. The system of claim 11, wherein the virtual reality vision device comprises at least one of goggles, a helmet, or a head-piece.
  • 13. A weld training system, comprising: a weld training device configured to perform a simulated welding procedure on a simulated weld joint;a work surface comprising the simulated weld joint;a sensing device configured to track weld training device location information during the simulated welding procedure;a visual interface configured to display results of the simulated welding procedure based on the weld training device location information; andan enclosure comprising an interior volume configured to house within its interior the visual interface, the work surface, and the sensing device, wherein the sensing device is coupled to the enclosure.
RELATED APPLICATIONS

This patent is a continuation of U.S. patent application Ser. No. 15/840,104, filed Dec. 13, 2017, entitled “Weld Training System and Method,” now U.S. Pat. No. 10,861,345, which is a continuation of U.S. patent application Ser. No. 14/462,286, filed Aug. 18, 2014, entitled “Weld Training System and Method,” now U.S. Pat. No. 9,875,665. The entireties of U.S. patent application Ser. No. 15/840,104 and U.S. patent application Ser. No. 14/462,286 are incorporated herein by reference.

US Referenced Citations (447)
Number Name Date Kind
1340270 Emil May 1920 A
2045800 Walther Jun 1936 A
2045801 Richter Jun 1936 A
2045802 Walther Jun 1936 A
2333192 Moberg Oct 1942 A
2351910 Blankenbuehler Jun 1944 A
3391691 Young Jul 1968 A
3679865 Jesnitzer Jul 1972 A
3867769 Schow Feb 1975 A
4028522 Chihoski Jun 1977 A
4041615 Whitehill Aug 1977 A
4044377 Bowerman Aug 1977 A
4124944 Blair Nov 1978 A
4132014 Schow Jan 1979 A
4144766 Wehrmeister Mar 1979 A
4224501 Lindbom Sep 1980 A
4253648 Meeks Mar 1981 A
4294440 Severt Oct 1981 A
4375026 Kearney Feb 1983 A
4375165 Desterke Mar 1983 A
4389561 Weman Jun 1983 A
4396945 Dimatteo Aug 1983 A
4412121 Kremers Oct 1983 A
4452589 Denison Jun 1984 A
4459114 Barwick Jul 1984 A
4471207 Hawkes Sep 1984 A
4484059 Lillquist Nov 1984 A
4518361 Conway May 1985 A
4541055 Wolfe Sep 1985 A
4555614 Morris Nov 1985 A
4577499 Silke Mar 1986 A
4590356 Povlick May 1986 A
4591689 Brown May 1986 A
4594497 Takahashi Jun 1986 A
4595186 Reed Jun 1986 A
4595368 Cole Jun 1986 A
4595820 Richardson Jun 1986 A
4609806 Grabkowski Sep 1986 A
4628176 Kojima Dec 1986 A
4638146 Koyama Jan 1987 A
4677277 Cook Jun 1987 A
4680014 Paton Jul 1987 A
4689021 Vasiliev Aug 1987 A
4716273 Paton Dec 1987 A
4721947 Brown Jan 1988 A
4728768 Cueman Mar 1988 A
4739404 Richardson Apr 1988 A
4767109 Raketich Aug 1988 A
4829365 Eichenlaub May 1989 A
4830261 Mello May 1989 A
4867685 Brush Sep 1989 A
4868649 Gaudin Sep 1989 A
4877940 Bangs Oct 1989 A
4881678 Gaudin Nov 1989 A
4920249 McLaughlin Apr 1990 A
4931018 Herbst et al. Jun 1990 A
4937427 McVicker Jun 1990 A
4943702 Richardson Jul 1990 A
4954690 Kensrue Sep 1990 A
4992881 Tomasek Feb 1991 A
4996409 Paton Feb 1991 A
5061841 Richardson Oct 1991 A
5103376 Blonder Apr 1992 A
5185561 Good Feb 1993 A
5208436 Blankenship May 1993 A
5211564 Martinez May 1993 A
5231928 Phillips Aug 1993 A
5243265 Matsuura Sep 1993 A
5283418 Bellows Feb 1994 A
5302799 Kennedy Apr 1994 A
5304774 Durheim Apr 1994 A
5306893 Morris Apr 1994 A
5320538 Baum Jun 1994 A
5343011 Fujii Aug 1994 A
5380978 Pryor Jan 1995 A
5397872 Baker Mar 1995 A
5404181 Hung Apr 1995 A
5426732 Boies Jun 1995 A
5448405 Clausen Sep 1995 A
5464957 Kidwell Nov 1995 A
5508757 Chen Apr 1996 A
5514846 Cecil May 1996 A
5517420 Kinsman May 1996 A
5521843 Hashima May 1996 A
5533146 Iwai Jul 1996 A
5543863 Lin Aug 1996 A
5546476 Mitaka Aug 1996 A
5571431 Lantieri Nov 1996 A
5592241 Kita Jan 1997 A
5617335 Hashima Apr 1997 A
5659479 Duley Aug 1997 A
5668612 Hung Sep 1997 A
5674415 Leong Oct 1997 A
5675229 Thorne Oct 1997 A
5681490 Chang Oct 1997 A
5708253 Bloch Jan 1998 A
5709219 Chen Jan 1998 A
5747042 Choquet May 1998 A
5823785 Matherne, Jr. Oct 1998 A
5832139 Batterman Nov 1998 A
5845053 Watanabe Dec 1998 A
5856844 Batterman Jan 1999 A
5930093 Morrissett Jul 1999 A
5961859 Chou Oct 1999 A
5973677 Gibbons Oct 1999 A
5999909 Rakshit Dec 1999 A
6003052 Yamagata Dec 1999 A
6018729 Zacharia Jan 2000 A
6019359 Fly Feb 2000 A
6024273 Ludewig Feb 2000 A
6033226 Bullen Mar 2000 A
6039494 Pearce Mar 2000 A
6046754 Stanek Apr 2000 A
6049059 Kim Apr 2000 A
6051805 Vaidya Apr 2000 A
6101455 Davis Aug 2000 A
6107601 Shimagama Aug 2000 A
6130407 Villafuerte Oct 2000 A
6136946 Yao Oct 2000 A
6153848 Nagae Nov 2000 A
6155475 Ekelof Dec 2000 A
6163946 Pryor Dec 2000 A
6226395 Gilliland May 2001 B1
6236017 Smartt et al. May 2001 B1
6242711 Cooper Jun 2001 B1
6271500 Hirayama Aug 2001 B1
6288359 Koch Sep 2001 B1
6290740 Schaefer Sep 2001 B1
6301763 Pryor Oct 2001 B1
6315186 Friedl Nov 2001 B1
6329635 Leong Dec 2001 B1
6337458 Lepeltier Jan 2002 B1
6371765 Wall Apr 2002 B1
6417894 Goff Jul 2002 B1
6441342 Hsu Aug 2002 B1
6445964 White Sep 2002 B1
6469752 Ishikawa Oct 2002 B1
6476354 Jank Nov 2002 B1
6479793 Wittmann Nov 2002 B1
6506997 Matsuyama Jan 2003 B2
6516300 Rakshit Feb 2003 B1
6572379 Sears Jun 2003 B1
6583386 Ivkovich Jun 2003 B1
6596972 Di Novo Jul 2003 B1
6614002 Weber Sep 2003 B2
6621049 Suzuki Sep 2003 B2
6622906 Kushibe Sep 2003 B1
6647288 Madill Nov 2003 B2
6670574 Bates Dec 2003 B1
6697761 Akatsuka Feb 2004 B2
6703585 Suzuki Mar 2004 B2
6710298 Eriksson Mar 2004 B2
6728582 Wallack Apr 2004 B1
6734393 Friedl May 2004 B1
6744011 Hu Jun 2004 B1
6748249 Eromaki Jun 2004 B1
6750428 Okamoto Jun 2004 B2
6753909 Westerman Jun 2004 B1
6768974 Nanjundan Jul 2004 B1
6795068 Marks Sep 2004 B1
6839049 Koizumi Jan 2005 B1
6857553 Hartman Feb 2005 B1
6868726 Lemkin Mar 2005 B2
6910971 Alsenz Jun 2005 B2
6927360 Artelsmair Aug 2005 B2
6937329 Esmiller Aug 2005 B2
6967635 Hung Nov 2005 B2
6977357 Hsu Dec 2005 B2
6995536 Challoner Feb 2006 B2
7015419 Hackl Mar 2006 B2
7025053 Altamirano Apr 2006 B1
7032814 Blankenship Apr 2006 B2
7045742 Feichtinger May 2006 B2
7081888 Cok Jul 2006 B2
7120473 Hawkins Oct 2006 B1
7132617 Lee Nov 2006 B2
7132623 Demiranda Nov 2006 B2
7150047 Fergason Dec 2006 B2
7173215 Kapoor Feb 2007 B1
7181413 Hadden Feb 2007 B2
7226176 Huang Jun 2007 B1
7261261 Ligertwood Aug 2007 B2
7342210 Fergason Mar 2008 B2
7358458 Daniel Apr 2008 B2
7465230 Lemay Dec 2008 B2
7474760 Hertzman Jan 2009 B2
7523069 Friedl et al. Apr 2009 B1
7564005 Cabanaw Jul 2009 B2
7574172 Clark et al. Aug 2009 B2
7577285 Schwarz Aug 2009 B2
D614217 Peters Apr 2010 S
7698094 Aratani Apr 2010 B2
D615573 Peters May 2010 S
7766213 Henrikson Aug 2010 B2
7789811 Cooper Sep 2010 B2
7826984 Sjostrand Nov 2010 B2
7831098 Melikian Nov 2010 B2
7839416 Ebensberger Nov 2010 B2
7845560 Emanuel Dec 2010 B2
D631074 Peters Jan 2011 S
7899618 Ledet Mar 2011 B2
8019144 Sugihara Sep 2011 B2
8044942 Leonhard Oct 2011 B1
8046178 Dai Oct 2011 B2
8100694 Portoghese Jan 2012 B2
8110774 Huonker Feb 2012 B2
8235588 Louban Aug 2012 B2
8248324 Nangle Aug 2012 B2
8274013 Wallace Sep 2012 B2
8393519 Allehaux Mar 2013 B2
8406682 Elesseily Mar 2013 B2
8431862 Kachline Apr 2013 B2
8432476 Ashforth Apr 2013 B2
8502866 Becker Aug 2013 B2
8512043 Choquet Aug 2013 B2
8541746 Andres Sep 2013 B2
8657605 Wallace Feb 2014 B2
8681178 Tseng Mar 2014 B1
8692157 Daniel Apr 2014 B2
8698843 Tseng Apr 2014 B2
8747116 Zboray et al. Jun 2014 B2
8777629 Kreindl Jul 2014 B2
8803908 Van Osten Aug 2014 B2
8834168 Peters Sep 2014 B2
8851896 Wallace Oct 2014 B2
8860760 Chen Oct 2014 B2
8911237 Postlethwaite Dec 2014 B2
8915740 Zboray Dec 2014 B2
8946595 Ishida Feb 2015 B2
8953033 Yamane Feb 2015 B2
8953909 Guckenberger Feb 2015 B2
8987628 Daniel et al. Mar 2015 B2
8990842 Rowley Mar 2015 B2
8992226 Leach Mar 2015 B1
9011154 Kindig Apr 2015 B2
9012802 Daniel Apr 2015 B2
9050678 Daniel Jun 2015 B2
9050679 Daniel Jun 2015 B2
9089921 Daniel Jul 2015 B2
9196169 Wallace Nov 2015 B2
9218745 Choquet Dec 2015 B2
9230449 Conrardy Jan 2016 B2
9269279 Penrod et al. Feb 2016 B2
9293056 Zboray Mar 2016 B2
9293057 Zboray Mar 2016 B2
9318026 Peters Apr 2016 B2
9330575 Peters May 2016 B2
9336686 Peters May 2016 B2
9402122 Richardson Jul 2016 B2
9573215 Pfeifer Feb 2017 B2
20010026445 Naghi Oct 2001 A1
20010032508 Lemkin Oct 2001 A1
20020017752 Levi Feb 2002 A1
20020043607 Tajima Apr 2002 A1
20020071550 Pletikosa Jun 2002 A1
20020105797 Navid Aug 2002 A1
20020114653 Gatta Aug 2002 A1
20020148745 Chang Oct 2002 A1
20020153354 Norby Oct 2002 A1
20030011673 Eriksson Jan 2003 A1
20030092496 Alsenz May 2003 A1
20030172032 Choquet Sep 2003 A1
20040058703 Eromaki Mar 2004 A1
20040068335 Ferla Apr 2004 A1
20040069754 Bates Apr 2004 A1
20040175684 Kaasa Sep 2004 A1
20040223148 Takemura Nov 2004 A1
20040227730 Sugihara Nov 2004 A1
20040251910 Smith Dec 2004 A1
20050006363 Hsu Jan 2005 A1
20050012598 Berquist Jan 2005 A1
20050016979 Stein Jan 2005 A1
20050017152 Fergason Jan 2005 A1
20050073506 Durso Apr 2005 A1
20050099102 Villarreal May 2005 A1
20050127052 Spencer Jun 2005 A1
20050133488 Blankenship Jun 2005 A1
20050135682 Abrams Jun 2005 A1
20050179654 Hawkins Aug 2005 A1
20050197115 Clark et al. Sep 2005 A1
20050207102 Russo Sep 2005 A1
20050227635 Hawkins Oct 2005 A1
20050256611 Pretlove Nov 2005 A1
20060010551 Bishop Jan 2006 A1
20060081740 Bellavance Apr 2006 A1
20060136183 Choquet Jun 2006 A1
20060151446 Schneider Jul 2006 A1
20060163228 Daniel Jul 2006 A1
20060173619 Brant Aug 2006 A1
20060212169 Luthardt Sep 2006 A1
20060241432 Herline Oct 2006 A1
20070038400 Lee Feb 2007 A1
20070051711 Kachline Mar 2007 A1
20070114215 Bill May 2007 A1
20070115202 Kiesenhofer May 2007 A1
20070164006 Burgstaller Jul 2007 A1
20070187378 Karakas Aug 2007 A1
20070188606 Atkinson Aug 2007 A1
20070221636 Monzyk Sep 2007 A1
20070247793 Carnevali Oct 2007 A1
20070248261 Zhou Oct 2007 A1
20070264620 Maddix Nov 2007 A1
20070278196 James Dec 2007 A1
20070291166 Misawa Dec 2007 A1
20080030631 Gallagher Feb 2008 A1
20080038702 Choquet Feb 2008 A1
20080061113 Seki Mar 2008 A9
20080077422 Dooley Mar 2008 A1
20080124698 Ebensberger May 2008 A1
20080128395 Aigner Jun 2008 A1
20080149602 Lenzner Jun 2008 A1
20080149608 Albrecht Jun 2008 A1
20080158502 Becker Jul 2008 A1
20080168290 Jobs Jul 2008 A1
20080169277 Achtner Jul 2008 A1
20080234960 Byington Sep 2008 A1
20080314887 Stoger Dec 2008 A1
20090005728 Weinert Jan 2009 A1
20090057286 Ihara Mar 2009 A1
20090109128 Nangle Apr 2009 A1
20090146359 Canfield Jun 2009 A1
20090152251 Dantinne Jun 2009 A1
20090161212 Gough Jun 2009 A1
20090173726 Davidson et al. Jul 2009 A1
20090189974 Deering Jul 2009 A1
20090200281 Hampton Aug 2009 A1
20090200282 Hampton Aug 2009 A1
20090230107 Ertmer Sep 2009 A1
20090231423 Becker Sep 2009 A1
20090249606 Diez Oct 2009 A1
20090283021 Wong Nov 2009 A1
20090298024 Batzler Dec 2009 A1
20090323121 Valkenburg Dec 2009 A1
20100020483 Ma Jan 2010 A1
20100048273 Wallace Feb 2010 A1
20100062405 Zboray Mar 2010 A1
20100062406 Zboray Mar 2010 A1
20100088793 Ghisleni Apr 2010 A1
20100123664 Shin May 2010 A1
20100133247 Mazumder Jun 2010 A1
20100145520 Gerio Jun 2010 A1
20100201803 Melikian Aug 2010 A1
20100207620 Gies Aug 2010 A1
20100224610 Wallace Sep 2010 A1
20100238119 Dubrovsky Sep 2010 A1
20100245273 Hwang Sep 2010 A1
20100283588 Gomez Nov 2010 A1
20100291313 Ling Nov 2010 A1
20100314362 Albrecht Dec 2010 A1
20110000892 Mueller Jan 2011 A1
20110006047 Penrod Jan 2011 A1
20110091846 Kreindl Apr 2011 A1
20110092828 Spohn Apr 2011 A1
20110117527 Conrardy May 2011 A1
20110176720 Vanosten Jul 2011 A1
20110183304 Wallace Jul 2011 A1
20110198329 Davidson Aug 2011 A1
20110220616 Mehn Sep 2011 A1
20110220619 Mehn Sep 2011 A1
20110240605 Takayama Oct 2011 A1
20110249090 Moore Oct 2011 A1
20110284508 Miura Nov 2011 A1
20110286005 Yamamoto Nov 2011 A1
20110290765 Albrecht Dec 2011 A1
20110313731 Vock Dec 2011 A1
20120007748 Forgues Jan 2012 A1
20120048838 Ishida Mar 2012 A1
20120072021 Walser Mar 2012 A1
20120077174 Depaul Mar 2012 A1
20120105476 Tseng May 2012 A1
20120113512 Tsanev May 2012 A1
20120122062 Yang et al. May 2012 A1
20120175834 Hamm Jul 2012 A1
20120180180 Steve Jul 2012 A1
20120188365 Stork Jul 2012 A1
20120189993 Kindig Jul 2012 A1
20120205359 Daniel Aug 2012 A1
20120231894 Nicora Sep 2012 A1
20120248080 Hutchison Oct 2012 A1
20120248083 Garvey Oct 2012 A1
20120291172 Wills Nov 2012 A1
20120298640 Conrardy Nov 2012 A1
20120323496 Burroughs Dec 2012 A1
20130040270 Albrecht Feb 2013 A1
20130081293 Delin Apr 2013 A1
20130182070 Peters Jul 2013 A1
20130189656 Zboray Jul 2013 A1
20130189657 Wallace Jul 2013 A1
20130189658 Peters Jul 2013 A1
20130200882 Almalki Aug 2013 A1
20130206741 Pfeifer et al. Aug 2013 A1
20130209976 Postlethwaite Aug 2013 A1
20130262000 Hutchison et al. Oct 2013 A1
20130264315 Hung Oct 2013 A1
20130264322 Bornemann Oct 2013 A1
20130288211 Patterson Oct 2013 A1
20130326842 Pearson Dec 2013 A1
20140008088 Chellew Jan 2014 A1
20140017642 Postlethwaite Jan 2014 A1
20140042135 Daniel et al. Feb 2014 A1
20140042137 Daniel et al. Feb 2014 A1
20140069899 Mehn Mar 2014 A1
20140131337 Williams May 2014 A1
20140134579 Becker May 2014 A1
20140134580 Becker May 2014 A1
20140184496 Gribetz Jul 2014 A1
20140220522 Peters Aug 2014 A1
20140234813 Peters Aug 2014 A1
20140263224 Becker Sep 2014 A1
20140263227 Daniel et al. Sep 2014 A1
20140267773 Jeung Sep 2014 A1
20140272835 Becker Sep 2014 A1
20140272836 Becker Sep 2014 A1
20140272837 Becker Sep 2014 A1
20140272838 Becker Sep 2014 A1
20140315167 Kreindl Oct 2014 A1
20140322684 Wallace Oct 2014 A1
20140346158 Matthews Nov 2014 A1
20140346163 Rajagopalan Nov 2014 A1
20140346793 Destories Nov 2014 A1
20140374396 Luo et al. Dec 2014 A1
20150056584 Boulware Feb 2015 A1
20150056585 Boulware Feb 2015 A1
20150072323 Postlethwaite Mar 2015 A1
20150154884 Salsich Jun 2015 A1
20150170539 Barrera Jun 2015 A1
20150190875 Becker Jul 2015 A1
20150190876 Becker Jul 2015 A1
20150190887 Becker Jul 2015 A1
20150190888 Becker Jul 2015 A1
20150194072 Becker Jul 2015 A1
20150194073 Becker Jul 2015 A1
20150209887 Delisio Jul 2015 A1
20150235565 Postlethwaite Aug 2015 A1
20150248845 Postlethwaite Sep 2015 A1
20150325153 Albrecht Nov 2015 A1
20150352653 Albrecht Dec 2015 A1
20150375323 Becker Dec 2015 A1
20150375324 Becker Dec 2015 A1
20150375327 Becker Dec 2015 A1
20150379894 Becker Dec 2015 A1
20160039034 Becker Feb 2016 A1
20160039053 Becker Feb 2016 A1
20160093233 Boulware Mar 2016 A1
20160203734 Boulware Jul 2016 A1
20160203735 Boulware Jul 2016 A1
20160236303 Matthews Aug 2016 A1
Foreign Referenced Citations (66)
Number Date Country
2311685 Dec 2001 CA
2517874 Dec 2001 CA
2549553 Jul 2004 CA
2554498 Apr 2006 CA
1866317 Nov 2006 CN
1909020 Feb 2007 CN
201181527 Jan 2009 CN
102049595 May 2011 CN
102165505 Aug 2011 CN
202200202 Apr 2012 CN
103038804 Apr 2013 CN
202877704 Apr 2013 CN
202010011064 Oct 2010 DE
102010038902 Feb 2012 DE
0323277 Jul 1989 EP
0878263 Nov 1998 EP
0963744 Dec 1999 EP
1029306 Aug 2000 EP
1295195 Jun 2001 EP
1573699 Sep 2005 EP
1797545 Jun 2007 EP
1864744 Dec 2007 EP
2415560 Feb 2014 EP
2438440 Jan 2014 ES
1456780 Jul 1966 FR
2827066 Jan 2003 FR
2454232 May 2009 GB
H11146387 May 1999 JP
2000298427 Oct 2000 JP
2004181493 Jul 2004 JP
2007021542 Feb 2007 JP
2009125790 Jun 2009 JP
100876425 Dec 2008 KR
972552 Nov 1982 SU
1354234 Nov 1987 SU
1489933 Jun 1989 SU
1638145 Mar 1991 SU
9958286 Nov 1999 WO
03019349 Jan 2003 WO
2004057554 Jul 2004 WO
2005102230 Nov 2005 WO
2005110658 Nov 2005 WO
2006004427 Jan 2006 WO
2006034571 Apr 2006 WO
2007009131 Jan 2007 WO
2007044135 Apr 2007 WO
2008076777 Jun 2008 WO
2009022443 Feb 2009 WO
2009053829 Apr 2009 WO
2009060231 May 2009 WO
2009092944 Jul 2009 WO
2009146359 Dec 2009 WO
2010000003 Jan 2010 WO
2010020867 Feb 2010 WO
2010020869 Feb 2010 WO
2010020870 Feb 2010 WO
2010111722 Oct 2010 WO
2011112493 Sep 2011 WO
2011150165 Dec 2011 WO
2012036710 Mar 2012 WO
2012137060 Oct 2012 WO
2013023012 Feb 2013 WO
2013138831 Sep 2013 WO
2014007830 Jan 2014 WO
2014074296 May 2014 WO
2014140719 Sep 2014 WO
Non-Patent Literature Citations (129)
Entry
“Low Cost Virtual Reality Welding Training System,” NSRP Joint Panel Meeting, Apr. 21, 2010, http://www.nsrp.org/6-Presentations/Joint/042110_Low_Cost_Virtual_Reality_Welder_Training_System_Fast.pdf.
“NJC Technology Displayed at ShipTech 2005”, Welding Journal, vol. 84, No. 3, Mar. 2005, p. 54, https://app.aws.org/w/r/www/wj/2005/03/WJ_2005_03.pdf.
“Sheet Metal Conference XXII,” Conference Program, American Welding Society, May 2006, Detroit.
“SOLDAMATIC: Augmented Training Technology for Welding,” Seabery Augmented Training Technology, Seabery Soluciones, 2011.
“Virtual Reality Program to Train Welders for Shipbuilding”, American Welding Society, Navy Joining Center, https://app.aws.org/wj/2004/04/052/.
“Virtual Reality Welder Training Initiatives: Virtual Welding Lab Pilot,” Paul D. Camp Community College, Advanced Science & Automation Corporation, Northrop Grumman Newport News, Nov. 22, 2006, http://www.nsrp.org/6-Presentations/WD/103106_Virtual_Reality_Welder.pdf.
“Virtual Welding—A Low Cost Virtual Reality Welder Training System”, Interim Status Report # 4, Technology Investment Agreement 2008-600, Feb. 18, 2009, http://www.nsrp.org/3-Key_Deliverables/FY08_Low-Cost_Virtual_Reality_Welder_Trainer/FY08_Low-Cost_Virtual_Reality_Welder_Trainer-Interim2.pdf.
“Virtual Welding: A Low Cost Virtual Reality Welder Training System,” NSRP ASE, Feb. 19, 2009, http://www.nsrp.org/6-Presentations/WD/020409_Virtual_Welding_Wilbur.pdf.
“Vision for Welding Industry,” American Welding Society, Apr. 22, 1999, http://www.aws.org/library/doclib/vision.pdf.
“Welding in Defense Industry,” American Welding Society conference schedule, 2004. https://app.aws.org/conferences/defense/live_index.html.
“Welding Technology Roadmap,” prepared by Energetics, Inc., Columbia, MD, in cooperation with The American Welding Society and The Edison Welding Institute, Sep. 2000.
123arc.com—“Weld into the future”; 2000.
Advance Program of American Welding Society Programs and Events, Nov. 11-14, 2007, Chicago.
Aiteanu, Dorin, and Axel Graser, “Computer-Aided Manual Welding Using an Augmented Reality Supervisor,” Sheet Metal Welding Conference XII, Livoinia, MI, May 9-12, 2006, pp. 1-14.
Aiteanu, Dorin, et al., “A Step Forward in Manual Welding: Demonstration of Augmented Reality Helmet,” Institute of Automation, University of Bremen, Germany, 2003.
Aiteanu et al., Generation and Rendering of a Virtual Welding Seam in an Augmented Reality Training Envionment, Proceedings of the Sixth IASTED International Conference Visualization, Imaging, and Image Proceeding, Aug. 28-30, 2006, Palma de Mallorca, Spain ISBN Hardcapy: 0-88986-598-1 /CD: 0-88986-600-7 (8 pages).
American Welding Society Forms: typical Procedure Qualification Record and Welding Procedure Specification forms.
American Welding Society's Virtual Welding Trailer to Debut at FABTECH Careers in Welding Trailer Appeals to New Generation of Welders, Miami, Florida, Nov. 3, 2011.
ArcSentry Weld Monitoring System, Version 3, Users Manual, Native American Technologies, Golden, CO, Dec. 10, 1999.
ARVIKA Forum Vorstellung Projeckt PAARA, BMW Group Virtual Reality Center, Nuernberg, 2003.
Ascension Technology Corporation: Tracking 3D Worlds: http://ascension-tech.com/, Dec. 1996.
Barckhoff, J.R.; “Total Welding Managemet,” American Welding Society, 2005.
Bender Shipbuilding and Repair, Co., “Virtual Welding—A Low Cost Virtual Reality Welder Training System”, Technical Proposal, Jan. 23, 2008.
Byrd, Alex Preston, “Identifying the effects of human factors and training methods on a weld training program” (2014). Graduate Theses and Dissertations. Paper 13991.
Canadan Office Action Appln No. 2,955,778 dated Nov. 9, 2017.
Central Welding Supply http://www.welders-direct.com/ Feb. 29, 2000.
Cho, Min Hyn, Numerical Simulation F Arc Welding Process and its Application Dissertation for Ohio State University by Min Hyun Cho, M.S. 2006: See Internet as this document is security protected) ohttps://etd.ohiolink.edu/ap:0:0:APPLICATION_PROCESS=DOWNLOAD_ETD_SUB_DOC_ACCNUM:::F1501_ID:osu1155741113, attachment.
Choquet, Claude, ARC+ & ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies; Jul. 2010.
Choquet, Claude, ARC+: Today's Virtual Reality Solution for Welders, Jun. 1, 2008.
Cybernetics: Enhancing Human Performance found in the DTIC Review dated Mar. 2001, p. 186/19. See http://www.dtic.mil/dtic/tr/fulltext/u2/a385219.pdf.
Echtler, Florian, Fabian Stuurm, Kay Kindermann, Gudrun Klinker, Joachim Stilla, Jorn Trilk, Hesam Najafi, “The Intelligent Welding Gun: Augmented Reality for Experimental Vehicle Construction,” Virtual and Augmented Reality Applications in Manufacturing, Ong S.K and Nee A.Y.C., eds., Springer Verlag, 2003, pp. 1-27.
Evaluating Two Novel Tactile Feedback Devices, by Thomas Hulin, Phillipp Kremer, Robert Scheibe, Simon Schaetzle and Carsten Preusche presented at the 4th International Conference on Enactive Interfaces, Grenoble, France, Nov. 19 -22, 2007.
EWI, “EWI ArcCheck,” marketing brochure, Columbus, Ohio, 1 page.
EWI, “EWI SkillBuilder,” marketing brochure, Columbus, Ohio, 1 page.
Fast et al., “National Shipbuilding Research Program (NSRP) ASE Technology Investment Agreement on Virtual Welding—A Low Cost Virtual Reality Welder Training System”, Feb. 29, 2012.
Fast et al., Virtual Training for Welding, Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004); 0-7695-2191-6/04; 2004.
Fast, Kenneth, Jerry Jones, and Valerie Rhoades; “Virtual Welding—A Low Cost Virtual Reality Welder Training System Phase II,” National Shipbuilding Research Program (NSRP), NSRP ASE Technology Investment Agreement No. 2010-357, Feb. 29, 2012, http://www.nsrp.org/3-RA-Panel_Final_Reports/FY08_Virtual_Welder_Final_Report.pdf.
Fite-Georgel, Pierre; “Is there a Reality in Industrial Augmented Reality?” 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2011.
Fridenfalk et al., Design and Validation of a Universal 6D Seam Tracking System in Robotic Welding Based on Laser Scanning, Industrial Robotics: Programming, Simulation, and Application, ISBN 3-86611-286-6, pp. 702, ARS/pIV, Germany, Dec. 2006, edited by Kin Huat.
Fronius “The Ghost”: http://www.fronius.com/cps/rde/xchg/SID-3202EAB7-AE082518/fronius_interational/hs.xsl/79_15490_ENG_HTML.htm; 2006.
Fronius International GmbH—Focus on Welding—Fronius Virtual Welding; http://www.fronius.com/cps/rde/xchg/SID-99869147-0110E322/fronius_intenational/hs.xsl/79_15490_ENG_HML.htm; 2006.
Fronius Perfect Welding; 06,3082, EN v01 2010 aw05; Virtual Welding—The training method of the future; Feb. 20, 2012.
ftp://www.hitl.washington.edu/pub/scivw/publications/IDS-pdf/HAPTIC1.PDF, (University of Washington): Table 11, Tactile Feedback Actuator Technologies, p. 119, below the table is a. Based on Hasser (1995, 1996).
GAWDA—Welding & Gases Today Online GAWDA Media Blog; Will Games Turn Welding into a Virtual Market? Friday, Dec. 2, 2011; http://www.weldingandgasestoday.org/blogs/Devin-OToole/index.php/ta . . . .
Gundersen, O., et al. “The Use of an Integrated Multiple Neural Network Structure for Simultaneous Prediction of Weld Shape, Mechanical Properties, and Distortion in 6063-T6 and 6082-T6 Aluminum Assemblies”, Mathematical Modelling of Weld Phenomena, vol. 5, Maney Publishing, 2001.
Haptic Feedback for Virtual Reality by Grigore C. Burdea dated 1996.
Hashimoto, Nobuyoshi et al., “Training System for Manual Arc Welding by Using Mixed Reality: Reduction of Position-Perception Error of Electrode Tip,” Journal of the Japan Society for Precision Engineering, vol. 72, pp. 249-253, 2006.
Hemez, Francois M., Scott W. Doebling, “Uncertainty, Validation of Computer Models an the Myth of Numerical Predictability,” Engineering Analysis Group (ESA-EA), Los Alamos National Laboratory, dated 2004.
Hillers, B, and Axel Graeser, “Direct welding arc observation withouth harsh flicker,” FABTECH International and AWS Welding Show, 2007.
Hillers, B, and Axel Graeser, “Real time Arc-Welding Video Observation System,” 62nd International Conference of IIW, Jul. 12-17, 2009, Singapore, 2009.
Hillers, B., et al.; “TEREBES: Welding Helmet with AR Capabilites,” Institute of Automation, University of Bremen, and Institute of Industrial Engineering and Ergonomics, RWTH Aachen Universty, 2004.
Hillers, Bernd, Dorin Aiteanu, Axel Graser, “Augmented Reality-Helmet for the Manual Welding Process,” Virtual and Augmented Reality Applications in Manufacturing, Institute of Automation, Universtity of Bremen, 2004.
Himperich, Frederick, “Applications in Augmented Reality in the Automotive Industry,” Fachgebiet Augmented Reality, Department of Informatics, Jul. 4, 2007, p. 1-21.
Hodgson, et al. “Virtual Reality in the Wild: A Self-Contained and Wearable Simulation System.” IEEE Virtual Reality, Mar. 4-8, 2012, Orange County, CA USA.
http://www.123arc.com “Simulation and Certification”; 2000.
Image from Sim Welder.com—R-V's Welder Training Goes Virtual, www.rvii.com/PDF/simwelder.pdf; Jan. 2010.
Impact Spring 2012 vol. 12, No. 2, Undergraduate Research in Information Technology Engineering, University of Virginia School of Engineering & Applied Science; 2012.
Impact Welding: miscellaneous examples from current and archived website, trade shows, etc. See, e.g., http://www.impactwelding.com.
Integrated Microelectromechanical Gyroscopes; Journal of Aerospace Engineering, Apr. 2003 pp. 65-75 (p. 65) by Huikai Xie and Garry K. Fedder.
International Search Report for PCT application No. PCT/US2009/045436, dated Nov. 9, 2009, 3 pgs.
International Search Report for PCT application No. PCT/US2012/050059, dated Nov. 27, 2012, 16 pgs.
International Search Report for PCT application No. PCT/US2013/038371, dated Jul. 31, 2013, 8 pgs.
International Search Report for PCT application No. PCT/US2013/066037, dated Mar. 11, 2014, 10 pgs.
International Search Report for PCT application No. PCT/US2013/066040, dated Mar. 11, 2014, 12 pgs.
International Search Report for PCT application No. PCT/US2014/018107, dated Jun. 2, 2014, 3 pgs.
International Search Report for PCT application No. PCT/US2014/018109, dated Jun. 2, 2014, 4 pgs.
International Search Report for PCT application No. PCT/US2014/018113, dated Jun. 2, 2014, 3pgs.
International Search Report for PCT application No. PCT/US2014/018114, dated Jun. 2, 2014, 4 pgs.
International Search Report for PCT application No. PCT/US2014/065498, dated May 11, 2015, 13 pgs.
International Search Report for PCT application No. PCT/US2014/065506, dated Jun. 26, 2015, 16 pgs.
International Search Report for PCT application No. PCT/US2014/065512, dated Jun. 8, 2015, 17 pgs.
International Search Report for PCT application No. PCT/US2014/065525, dated Jul. 23, 2015, 16 pgs.
International Search Report for PCT application No. PCT/US2014/067951, dated Feb. 24, 2015, 10 pgs.
International Search Report for PCT application No. PCT/US2015/037410, dated Nov. 6, 2015, 10 pgs.
International Search Report for PCT application No. PCT/US2015/037439, dated Nov. 3, 2015, 12 pgs.
International Search Report for PCT application No. PCT/US2015/037440, dated Nov. 3, 2015, 12 pgs.
International Search Report for PCT application No. PCT/US2015/039680, dated Sep. 23, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2014/018103, dated Jun. 30, 2014, 13 pgs.
International Search Report from PCT application No. PCT/US2015/043370, dated Dec. 4, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2015/058563, dated Jan. 29, 2016, 13 pgs.
International Search Report from PCT application No. PCT/US2015/058567, dated May 6, 2016, 15 pgs.
International Search Report from PCT application No. PCT/US2015/058569, dated Feb. 10, 2016, 12 pgs.
International Search Report from PCT application No. PCT/US2015/058660, dated Feb. 2, 2016, 14 pgs.
International Search Report from PCT application No. PCT/US2015/058664, dated Apr. 25, 2016, 17 pgs.
International Search Report from PCT application No. PCT/US2015/058666, dated Feb. 1, 2016, 11 pgs.
International Search Report from PCT application No. PCT/US2015/058667, dated Feb. 5, 2016, 14 pgs.
International Search Report from PCT application No. PCT/US2016/023612, dated Jul. 18, 2016,11 pgs.
Jo et al., Visualization of Virtual Weld Beads, VRST 2009, Kyoto, Japan, Nov. 18-20, 2009; Electronics and Telecommunications Research Institute (ETRI) ACM 978-1 60558-869-8/09/0011.
Kiwinakiful; Holographic TV coming 2012 (as seen on BBC); http://www.youtube.com/watch?v=Ux6aD6vE9sk&feature=related, Jul. 2, 2011.
Kobayashi, Kazuhiko et al., “Modified Training System for Manual Arc Welding by Using Mixed Reality and Investigation of Its Effectiveness,” Journal of the Japan Society for Precision Engineering, vol. 70, pp. 941-945, 2004.
Kobayashi, Kazuhiko et al., “Simulator of Manual Metal Arc Welding with Haptic Display,” Chiba University, ICAT 2001, Dec. 2001.
Kobayashi, Kazuhiko et al., “Skill Training System of Manual Arc Welding by Means of Face-Shield HMD and Virtual Electrode,” Chiba University, Japan, R. Nakatsu et al. (eds.), Entertainment Computing, Springer Science+Business Media, New York, 2003.
Kooima, Robert; Kinect +3D TV=Virtual Reality; http://www.youtube.com/watch?v=2MX1RinEXUM&feature=related, Feb. 26, 2011.
Leap Motion; https://www.leapmotion.com/, May 2012.
Lincoln Electric VRTEX Virtual Reality Arc Welding Trainer; http://www.lincolnelectric.com/en-us/equipment/training-equipment/pages/vrtex360.aspx; 1999.
Maccormick, John; How does the Kinect work?; http://users.dickinson.edu/˜jmac/selected-talks/kinect.pdf, Dec. 1, 2011.
NAMeS Users Guide, N A Tech Neural Applications, Copyright 1997, 1998, 1999, 2000 Golden, CO (123 pages).
NAMeS, Native American Technologies Weld Measuring Software, Users Guide, 2000.
National Science Foundation—Where Discoveries Begin—Science and Engineering's Most Powerful Statements Are Not Made From Words Alone—Entry Details for NSF International Science & Engineering Visualization Challenge, Public Voting ended on Mar. 9, 2012; Velu the welder by Muralitharan Vengadasalam—Sep. 30, 2011; https://nsf-scivis.skild.com/skild2/NationalScienceFoundation/viewEntryDetail.action?pid . . . .
Native American Technologies, “ArcDirector Weld Controller” web page, http://web.archive.org/web/20020608125127/http://www.natech-inc.com/arcdirector/index.html, published Jun. 8, 2002.
Native American Technologies, “ArcSentry Weld Quality Monitoring System” web page, http://web.archive.org/web/20020608124903/http://www.natech-inc.com/arcsentry1/index.html, published Jun. 8, 2002.
Native American Technologies, “P/NA.3 Process Modelling and Optimization” web pages, http://web.archive.org/web/20020608125619/http://www.natech-inc.com/pna3/index.html, published Jun. 8, 2002.
Native American Technologies, “Process Improvement Products” web page, http://web.archive.org/web/20020608050736/http://www.natech-inc.com/products.html, published Jun. 8, 2002.
Natural Point, Trackir; http://www.naturalpoint.com/trackir/, Dec. 2003.
NZ Manufacturer Game promotes welding trade careers; http://nzmanufacturer.co.nz/2011/11/gme-promotes-welding-trade-careers/ . . . Compentenz Industry Training; www.competenz.org.nz; Game promotes welding trade careers, Nov. 7, 2011.
OptiTrack: Motion Capture Systems: http://www.naturalpoint.com/optitrack/, Mar. 2005.
Penrod, Matt; “New Welder Training Tools,” EWI PowerPoint presentation, 2008.
PhaseSpace: Optical Motion Capture: http://phasespace.com/, 2009.
Playstation; Move Motion Controller: http://us.playstation.com/ps3/playstation-move/, Mar. 2010.
Polhemus: Innovation in Motion: http://polhemus.com/?page=researchandtechnology, 1992.
Porter et al, EWI-CRP Summary Report SR0512, Jul. 2005—Virtual Reality Welder Training.
Porter, Nancy C., Edison Welding Institute; J. Allan Cote, General Dynamics Electrict Boat; Timothy D. Gifford, VRSim; and Wim Lam, FCS Controls—Virtual Reality Welder Training—Project No. S1051 Navy Man Tech Program; Project Review for Ship Tech 2005, —Mar. 1, 2005, Biloxi, MS, http://www.nsrp.org/6-Presentations/WD/Virtual_Welder.pdf.
Porter, Nancy C., Edison Welding Institute; J.Allan Cote, General Dynamics Electric Boat; Timoty D. Gifford, VRSim; and Wim Lam, FCS Controls—Virtual Reality Welder Training—Session 5; Joining Technologies for Naval Applications; 2007.
Quebec International, May 28, 2008 ‘Video Game’ Technology to Fill Growing Need; http://www.mri.gouv.qc.ca/portail/_scripts/actualities/viewnew.sap?NewID=5516.
Ryu, Jonghyun, Jaehoon Jung, Seojoon Kim, and Seungmoon Choi, “Perceptually Transparent Vibration Rendering Using a Vibration Motor for Haptic Interaction,” 16 IEEE International Conference on Robot & Human Interactive Communication, Jeju, Korea, Aug. 26-29, 2007.
Sandor, Christian, Gudrun Klinker, “PAARTI: Development of an Intelligent Welding Gun for BMW,” PIA 2003, Tokyo, Japan, Technical University of Munich Department of Informatics, Oct. 7, 2003.
Sandor, Christian, Gudrun Klinker; “Lessons Learned in Designing Ubiquitous Augmented Reality User Interfaces,” Emerging Technologies of Augmented Reality Interfaces, Eds. Haller, M, Billinghurst, M., and Thomas, B., Idea Group Inc., 2006.
ShotOfFuel; Wii Head Tracking for 3D, http://www.youtube.com/watch?v=1x5ffF-0Wr4, Mar. 19, 2008.
Stone, R. T., K. Watts, and P. Zhong, “Virtual Reality Integrated Welder Training, Welding Research,” Welding Journal, vol. 90, Jul. 2011, pp. 136-s-141-s, https://app.aws.org/wj/supplement/wj201107_s136.pdf.
TCS News & Events: Press Release: TCS wins the “People Choice” award from National Science Foundation, USA, pp. 1-6; Press Release May 21, 2012; http://www.tsc.com/news_events/press_releases/Pages/TCS_People_Choice_award_Natio . . . .
TeachWELD: Welding Simulator/Hands-On Learning for Welding: http://realityworks.com/products/teachweld-welding-simulator; 2012.
The Rutgers Master II—New Design Force-Feedback Glove by Mourad Bouzit, Member, IEEE,Grigore Burdea, Senior Member, IEEE, George Popescu, Member, IEEE, and Rares Bolan, Student Member, found in IEEE/ASME Transactions on Mechatronics, vol. 7, No. 2, Jun. 2002.
thefabricator.com—Arc Welding Article; Heston, Tim, Virtual welding—Training in a virtual environment gives welding students a leg up—Mar. 11, 2008.
Tschirner, Petra, Hillers, Bernd, and Graeser, Axel; “A Concept for the Application of Augmented Reality in Manual Gas Metal Arc Welding,” Proceedings of the International Symposium on Mixed and Augmented Reality, 2002.
Vicon: Motion Capture Systems: http://vicon.com/, Dec. 1998.
Virtual Reality Training Manual Module 1—Training Overview—A Guide for Gas Metal Arc Welding—EWI 2006.
VRTEX 360 Operator's Manual, Lincoln Electric, Oct. 2012.
VRTEX 360, Lincoln Electric, Dec. 2009.
Welding Journal, American Welding Society, Nov. 2007, https://app.aws.org/wj/2007/11/WJ_2007_11.pdf.
Related Publications (1)
Number Date Country
20210090454 A1 Mar 2021 US
Continuations (2)
Number Date Country
Parent 15840104 Dec 2017 US
Child 17115281 US
Parent 14462286 Aug 2014 US
Child 15840104 US