This invention relates generally to well logging apparatus, and more particularly to well logging apparatus that include a gadolinium optical interface.
Modern petroleum drilling operations require large quantities of information relating to geological formations and conditions through which the drill is passing. This collection of information is commonly referred to as logging and can be performed by a number of methods. Oil well logging has been known for many years as a technique for providing information to a driller regarding the particular earth formations being drilled. In conventional wireline logging, a probe or sonde housing information sensors is lowered into a bore hole after some or all of the well has been drilled, and is used to determine certain characteristics of the formations traversed by the bore hole. The sonde is supported by a conductive wireline, which attaches to the sonde at the upper end. Power is transmitted to the sensors through the conductive wireline. Also, the instrumentation in the sonde communicates information to the surface by electrical signals transmitted through the wireline.
One known method of oil well logging includes a fast neutron source in the logging tool. Neutrons from this source are scattered and absorbed in the well bore environment producing gamma rays. These gamma rays are detected by Nal scintillation crystals in the tool and give information on physical traits of the well bore environment. Light produced from scintillations in Nal is transmitted through an optical interface to a photo-multiplier tube. Despite shielding the surfaces of the Nal scintillator that do not couple to the photo-multiplier tube, neutrons can enter through the optical interface. Thermalized neutrons activate the iodine in the Nal scintillation crystals, which then decays with a half life of 25 minutes. As these decays occur, the Nal scintillator detects the radiation emitted and an elevated background count is created. This background count disturbs and skews the measurements of interest.
One known approach to exclude neutrons from the optical end of the Nal scintillator is to wrap the entire photo-multiplier tube in cadmium. This approach has several disadvantages. Cadmium has only moderate capability at absorbing thermal neutrons. Therefore, the detector must be reduced in length to provide space for the amount of cadmium needed to effectively shield neutrons. Also, cadmium is a known carcinogen and is toxic. The cadmium wrapping is external to the detector thereby limiting the space available for the sensor in the logging tool.
In one aspect, a well logging apparatus is provided that includes a probe having a detector assembly. The detector assembly includes a scintillator having a scintillation crystal capable of producing light when exposed to gamma rays, a photo-multiplier, and an optical interface positioned between the scintillator and the photo-multiplier. The optical interface optically couples the scintillator and the photo-multiplier. The optical interface includes a gadolinium doped filter glass.
In another aspect, a detector assembly for a well logging tool is provided. The detector assembly includes a scintillator having a scintillation crystal capable of producing light when exposed to gamma rays, a photo-multiplier, and an optical interface positioned between the scintillator and the photo-multiplier. The optical interface optically couples the scintillator and the photo-multiplier. The optical interface includes a gadolinium doped filter glass.
In another aspect, a well logging apparatus is provided. The well logging apparatus includes a probe housing and a detector assembly positioned in the probe housing. The detector assembly includes a scintillator having a scintillation crystal capable of producing light when exposed to gamma rays, a photo-multiplier, and an optical interface positioned between the scintillator and the photo-multiplier. The optical interface optically couples the scintillator and the photo-multiplier. The optical interface includes a gadolinium doped filter glass.
A detector assembly for a well logging probe is described in detail below. The logging probe includes a fast neutron source that produce neutrons that are scattered and absorbed in the well bore environment producing gamma rays. The detector assembly includes an optical interface positioned between and optically coupling a scintillator and a photo-multiplier tube. The scintillator includes a scintillation crystal, for example a Nal scintillation crystal, that produce light when exposed to gamma rays. The optical interface includes a gadolinium (Gd) doped filter glass which prevents neutrons from entering the detector through the optical interface and activating the iodine in the Nal crystal, which then decays. Any iodine decay emits radiation which is detected by the scintillator and produces a elevated background count. This elevated background can skew the measurements of gamma rays by the detector. The elimination of neutron activation of iodine by the Gd doped filter glass facilitated the production of accurate measurements by the well logging probe.
Referring now to the drawings, like reference numerals have been used to refer to like parts in
Exemplary embodiments of the detector assembly for a well logging probe are described above in detail. The configurations are not limited to the specific embodiments described herein, but rather, components of the configuration may be utilized independently and separately from other components described herein. Each detector assembly component can also be used in combination with other detector assembly components.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4454424 | Strauss et al. | Jun 1984 | A |
4590370 | Mills, Jr. et al. | May 1986 | A |
4849036 | Powell et al. | Jul 1989 | A |
5796109 | Frederick et al. | Aug 1998 | A |
5892460 | Jerabek et al. | Apr 1999 | A |
6075611 | Dussan V. et al. | Jun 2000 | A |
6137621 | Wu | Oct 2000 | A |
6419013 | Milne et al. | Jul 2002 | B1 |
6437336 | Pauwels et al. | Aug 2002 | B1 |
6445187 | Montgomery et al. | Sep 2002 | B1 |
6738720 | Odom et al. | May 2004 | B2 |
Number | Date | Country |
---|---|---|
231693 | Aug 1987 | EP |
1403661 | Mar 2004 | EP |
57-149846 | Sep 1982 | JP |
9-208255 | Aug 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20040119008 A1 | Jun 2004 | US |