The present invention relates generally to CMOS device fabrication processes and, more particularly, to a wet etchant composition and method for etching oxides of hafnium and zirconium.
Fabrication of a metal-oxide-semiconductor (MOS) integrated circuit involves numerous processing steps. A gate dielectric, typically formed from silicon dioxide, is formed on a semiconductor substrate which is doped with either n-type or p-type impurities. For each MOS field effect transistor (MOSFET) being formed, a gate electrode is formed over the gate dielectric, and dopant impurities are introduced into the substrate to form source and drain regions. A pervasive trend in modern integrated circuit manufacture is to produce transistors having feature sizes as small as possible. Many modern day semiconductor microelectronic fabrication processes form features having less than 0.25 critical dimensions, for example in future processes even less than 0.13 microns. As feature size decreases, the size of the resulting transistor as well as transistor features also decrease. Fabrication of smaller transistors allows more transistors to be placed on a single monolithic substrate, thereby allowing relatively large circuit systems to be incorporated on a single die area.
In semiconductor microelectronic device fabrication, polysilicon and silicon dioxide (SiO2) are commonly used to respectively form gate electrodes and gate dielectrics for metal-oxide-semiconductor (MOS) transistors. As device dimensions have continued to scale down, the thickness of the SiO2 gate dielectric layer has also decreased to maintain the same capacitance between the gate and channel regions. A thickness of the gate oxide layer of less than 2 nanometers (nm) will be required to meet smaller device design constraints. A problem with using SiO2 as the gate dielectric is that thin SiO2 oxide films may break down when subjected to electric fields expected in some operating environments, particularly for gate oxides less than about 50 Angstroms thick. In addition, electrons more readily pass through an insulating gate dielectric as it gets thinner due to what is frequently referred to as the quantum mechanical tunneling effect. In this manner, a tunneling current, produces a leakage current passing through the gate dielectric between the semiconductor substrate and the gate electrode, increasingly adversely affecting the operability of the device.
Because of high direct tunneling currents, SiO2 films thinner than 1.5 nm cannot be used as the gate dielectric in CMOS devices. There are currently intense efforts to replace SiO2 with high-k (high dielectric constant) dielectrics, including for example, TiO2, Ta2O5, ZrO2, Y2O3, La2O5, HfO2, and their aluminates and silicates attracting the greatest attention. A higher dielectric constant gate dielectric allows a thicker gate dielectric to be formed which dramatically reduces tunneling current and consequently gate leakage current, thereby overcoming a severe limitation in the use of SiO2 as the gate dielectric. While silicon dioxide (SiO2) has a dielectric constant of approximately 4, other candidate high-k dielectrics have significantly higher dielectric constant values of, for example, 20 or more. Using a high-k material for a gate dielectric allows a high capacitance to be achieved even with a relatively thick dielectric. Typical candidate high-k dielectric gate oxide materials have high dielectric constant in the range of about 20 to 40.
There have been, however, difficulties in removing or etching certain high-k dielectric materials, particularly, oxides of hafnium and zirconium, for example hafnium dioxide and zirconium dioxide. Chemical etchants used with high-k materials may cause damage to associated oxide materials making high temperature rapid thermal oxidation (RTO) processes necessary to repair such damage which in turn may adversely affect the crystallinity or level of defects at the gate dielectric/silicon or silicon dioxide interface thereby degrading electrical performance. For example, typically a shallow trench isolation (STI) electrical isolation structure is formed adjacent a CMOS structure to electrically isolate the various CMOS devices. A high-k dielectric layer is formed over the silicon substrate including the STI trench which has been previous backfilled with SiO2. In a subsequent etching step to remove a portion of the high-k gate dielectric surrounding the gate structure to reveal the silicon substrate, for example to form a metal silicide layer, a high selectivity of etching of the high-k gate dielectric to SiO2 is required to avoid etching the STI oxide which tends to form etching divots at the STI trench corner regions thereby degrading electrical isolation performance. In addition, high-k dielectrics such as oxides of zirconium and hafnium are increasingly advantageously used as etching stop layers due to their etching resistance. Prior art processes for removing oxides of hafnium and zirconium have use sulfuric acid heated to temperatures of between about 150° C. and about 180° C. The selectivity in the etching rate of the oxides of hafnium and zirconium, for example hafnium dioxide (HfO2) and zirconium dioxide (ZrO2), with respect to SiO2, is about 0.6 to about 1 with an etching rate of about 1 Angstrom/min. As a result, etching rates and selectivity to underlying SiO2 layers for etching of oxides of hafnium and zirconium is not optimal, successful etching operations optimally requiring higher etching rates and selectivity with respect to SiO2 thereby allowing reduced processing times and larger processing windows without the formation of etching divots. In addition, the added cost of implementing adequate environmental and safety protective measures for handling hot sulfuric acid as well as providing acid resistant processing tools is undesirable.
For example referring to
Therefore it would be advantageous to the semiconductor micro-fabrication processing art to develop a lower cost and more effective wet etching composition and method for etching high-k materials including oxides of hafnium and zirconium.
It is therefore an object of the invention to provide a lower cost and more effective wet etching composition and method for etching high-k materials including oxides of hafnium and zirconium while overcoming other shortcomings and deficiencies of the prior art.
To achieve the foregoing and other objects, and in accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention provides a wet etchant solution composition and method for etching oxides of hafnium and zirconium.
In a first embodiment, the composition includes at least one solvent present at greater than about 50 weight percent with respect to an arbitrary volume of the wet etchant solution; at least one chelating agent present at about 0.1 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution; and, at least one halogen containing acid present from about 0.0001 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution.
In related embodiments, the wet etchant solution further includes at least one surfactant present at about 0.1 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution.
In other related embodiments, the at least one solvent includes at least one of H2O, HClO4, an alcohol, tetrahydrofuran (THF), sulfuric acid (H2SO4) and dimethyl sulfoxide (DMSO). Further, the at least one chelating agent is selected from the group consisting of diamines and beta-diketones. Further yet, the at least one surfactant is selected from the group consisting of polyols. Yet further, the at least one halogen containing acid includes at least one of HF, HBr, HI, and H3ClO4.
In another aspect of the invention a method is provided for wet etching oxides of hafnium and zirconium in a semiconductor micro-fabrication process including providing a material layer comprising an oxide of one of at least one of hafnium and zirconium overlying a silicon dioxide containing material layer; and, wet etching the material layer with a wet etching solution comprising at least a solvent and a halogen containing acid formed to have a first etching rate with respect to the material layer that is at least about a factor of 2.5 greater than a second etching rate with respect to the silicon dioxide.
These and other embodiments, aspects and features of the invention will be better understood from a detailed description of the preferred embodiments of the invention which are further described below in conjunction with the accompanying Figures.
Although the method and composition of the present invention is explained with reference to the wet etching of oxides of hafnium and zirconium, it will be appreciated that the wet etching composition of the present invention may be used for the wet etching of any material where wet etching may advantageously be performed in semiconductor micro-fabrication process having a comparable etching rate and a selectivity to SiO2. In addition, although the method of the present invention is explained with reference to forming a gate structure, it will be appreciated that the wet etchant composition of the present invention may be used in any semiconductor feature manufacturing process to selectively remove layers of material, for example an etch stop layer, preferably including oxides of hafnium and zirconium, overlying an SiO2 containing material layer. The term “substrate” is defined to mean any semiconductive substrate material including conventional semiconductor wafers.
In a first embodiment according to the present invention a wet etching composition for etching oxides of hafnium and zirconium, preferably at least one of hafnium dioxide and zirconium dioxide is provided. In a first embodiment, the wet etching composition comprises greater than about 50 wt % of one or more solvents, about 0 wt % to about 10 wt % of one or more chelating agents, 0 wt % to about 10 wt % of one or more surfactants and about 0.0001 wt. % to about 10 wt. % of one or more halogen containing acids. It will be appreciated that the etching rate of oxides of hafnium and zirconium will depend in part on the manner of formation of the oxides and in part on the wet etchant composition including the type of halogen containing acids, chelating agents, and solvents. For example, the polarity of the solvents may affect the rate of molecular diffusion and the subsequent interaction of the chelating agent or the acid with the etching target surface. In addition, it will be appreciated that surfactants in some cases will aide the etching action by facilitating the interaction of the acid and chelating agents with the targeted etching surface.
The solvents are preferably but not limited to at least one of H2O, HClO4, alcohol, including methyl, primary, secondary, tertiary, allyl and benzyl alcohols, tetrahydrofuran (THF), Dimethyl sulfoxide (DMSO), sulfuric acid (H2SO4), and dimethyl sulfoxide (DMSO).
The chelating agents, if used, are preferably but not limited to at least one of diamines, beta-diketones, and ethylene-diamine-tetra-acetic acid (EDTA). Other chelating agents that may suitably be used include ammonium salts including ammonium tartrate, ammonium citrate, ammonium formate; ammonium glucomate; inorganic ammonium salts, such as ammonium fluoride, ammonium nitrate, ammonium thiosulfate, ammonium persulfate, ammonium bicarbonate, ammonium phosphate, and the like. Exemplary diamines include ethylene diamine, and 2-methylene-amino-propylene-diamine. Other complexing agents may be used as chelating agents to chelate oxides of hafnium and zirconium include tri- and polycarboxylic acids and salts with secondary or tertiary hydroxyl groups in an alpha position relative to a carboxyl group such as citric acid and citrates.
The surfactants, if used are preferably but not limited to at least one polyols. Polyols are defined as structures with two OH groups on adjacent carbons, for example including glycol and glycerol otherwise referred to as 1,2 propanediol and 1,2,3 propanetriol respectively. The halogen containing acids are preferably hydrogen fluoride (HF), hydrogen bromide (HBr), hydrogen iodide (HI), and H3ClO4. For example an exemplary wet etching composition includes about 10 wt % HF and about 90 wt % ethanol. Another exemplary wet etching composition includes 10 wt % HF, 3 wt % glycol, 3 wt % EDTA, and about 84 wt % ethanol.
In an exemplary implementation of the wet etching composition of the present invention, referring to
Still referring to
Referring to
In an exemplary application using the wet etchant solution composition according to preferred embodiments of the present invention the wet etchant solution is preferably maintained at a temperature of from about 23° C. to about 60° C. Preferably the wet etchant solution is formulated to have an etching rate of the gate dielectric layer with respect to the silicon dioxide of about 2.5 or greater. Preferably the etching rate of the gate dielectric layer is greater than about 5 Angstroms per minute.
According to the wet etching composition of the present invention it has been found that a gate dielectric layer including HfO2 or ZrO2 can be advantageously etched with a high selectivity to SiO2 for example, greater than about 2.5 with respect to a an SiO2 etching rate. As such, etching divots into the edge portions of the STI trench oxide 28C are advantageously avoided thereby improving electrical isolation performance and reliability.
It will be appreciated that the wet etching composition of the present invention may advantageously be used in a variety of semiconductor micro-fabrication processes, for example where a high-k dielectric including oxides of hafnium and zirconium are used as etch stop layers and where the wet etching composition is advantageously used to remove the etch stop layer over a silicon oxide containing layer or structure, for example, an STI structure backfilled with STI oxide or an inter-metal dielectric (IMD) layer.
While the embodiments illustrated in the Figures and described above are presently preferred, it should be understood that these embodiments are offered by way of example only. The invention is not limited to a particular embodiment, but extends to various modifications, combinations, and permutations as will occur to the ordinarily skilled artisan that nevertheless fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6476454 | Suguro | Nov 2002 | B2 |
6586293 | Hasegawa | Jul 2003 | B1 |
6743529 | Saito et al. | Jun 2004 | B2 |
6790782 | Yang et al. | Sep 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20040067657 A1 | Apr 2004 | US |