Solar energy may be harvested by a solar cell as a renewable way to create electricity. The solar cell channels received photons generated in the sun in the form of a light ray (also called a “solar ray”). Ideally, the photon is directed into a semiconductor body that contains a photovoltaic junction. Some of the photons that enter into the depletion zone of the photovoltaic junction will be absorbed therein, and the resulting energy imparted by the absorption will result in an electron-hole pair. An electromagnetic field causes the electrons to be swept towards one electrode, and holes to be swept to the opposite electrode. When the solar cell is exposed to the sun, a regular influx of solar power causes a corresponding generation of electrical power with some efficiency.
There are a variety of ways that a solar photon approaching a solar cell might not be converted into electricity, thereby reducing its potential electrical power generation. The first way is reflection off of the surface of the solar cell back into the environment. For instance, a solar cell is often said to be able to receive solar cells that are incident on the solar cell within a certain range of angles. The wider that angle, the better the solar cell is at receiving solar power throughout the day, given that the suns position changes throughout the day and year.
Another way that efficiency may be reduced is if the solar photon fails to enter the semiconductor body, or is otherwise absorbed in a manner not to be converted into an electron-hole pair. Even if the photon causes an electromagnetic pair, if the pair was not generated in a depletion region, the pair may quickly recombine. Furthermore, power may still be reduced if there is considerable net resistance between the location that the electron-hole pair was generated in the depletion region, and the electrodes that are coupled to the semiconductor body.
Thus, solar cell technology presents a number of challenges to be solved. However, the advancement of solar cell technology has the potential to significantly improve the environment for current and future generations as it represents a clean way to provide for human power appetites and needs.
At least one embodiment described herein relates to a three dimensional solar cell composed of a semiconductor body. The semiconductor body has a substantially flat bottom surface, and shaped trenches formed in an arrayed manner along the top side of the semiconductor body. Thus, multiple pillars are thereby formed in the semiconductor body extending toward the top side of the semiconductor body. A light collecting material fills the shaped trenches along the top side of the semiconductor body and forms a substantially flat light receiving top surface parallel to the bottom surface of the semiconductor body. Each of at least some of the trenches are structured such that there exists at least one point on the substantially flat light receiving surface that if a light ray is incident on that point, the light ray, if remaining within the corresponding trench, as opposed to entering the semiconductor body, will be redirected upwards at least after a fourth reflection on neighboring pillars.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In order to describe the manner in which the above-recited and other advantages and features can be obtained, a more particular description of various embodiments will be rendered by reference to the appended drawings. Understanding that these drawings depict only sample embodiments and are not therefore to be considered to be limiting of the scope of the invention, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Embodiments described herein include a three dimensional solar cell designs with a wide collection angle. Such a wide collection angle may permit the solar cell to be also very efficient. The solar cell designs described have two aspects; one being optical and the other being electrical. These two aspects contribute to high efficiency. On the optical aspect, high efficiency may be enabled by reducing back reflection and having more complete trapping of the incident radiation over a wide and adjustable angular range. On the electrical aspect, high efficiency may be achieved through efficient collection and extraction of the charge carriers, and by keeping ohmic losses (due to contacts and material) very low. Finally, the designs may be manufactured at relatively low cost. These two aspects of optical and electrical design are described in the following sections.
Solar Design
The described solar cell optical designs have advantages in that the solar cell traps the incident solar radiation over a wide angular range of incident light. Thus, more solar radiation is trapped inside the solar cell at a wide range of positions of the sun. In other words, more solar radiation is captured whenever the sun is shining (i.e., yearlong and all day long). This advantage is achieved by shaping the solar cell. Furthermore, while this is possible to achieve using several different shapes, the principles described herein are not limited to any one given design. Nevertheless, for illustrative purposes, one possible design is shown in
The three dimensional solar cell 100 includes a semiconductor body 110 (as an example formed of silicon) have a substantially flat bottom surface 101. In this description and in the claims the descriptors “bottom” and “top” are merely terms of convention used to distinguish one surface or side from another, though the “top” portion of the solar cell will be positioned to receive sunlight, and thus would most often be positioned upwards to receive sunlight. An electrical contact 104 of one polarity (e.g., a p contact in this case) is coupled along the flat bottom surface 101 of the semiconductor body 110. Positions of the other contact (e.g., the n contact) will be described in subsequent figures.
Shaped trenches 121 (including trenches 121A, 121B, 121C, 121D and 121E) are formed along a top side 102 of the semiconductor body 110 opposite the bottom surface 101. Thus, the semiconductor body 110 forms an array of pillars 111 (including illustrated pillars 111A, 111B, 111C and 111D) between each neighboring shaped trench. In this manner, the semiconductor body 110 has multiple arrayed pillars 111 extending toward the top side 102 of the semiconductor body 110.
A light collecting transparent material 103 (such as SiO2) fills the arrayed shaped trenches 121 along the top side 102 of the semiconductor body 110. The light collecting material 103 further forms a substantially flat light receiving top surface 105 substantially parallel to the bottom surface 101 of the semiconductor body 110. Each of the arrayed pillars 111 have sidewalls contacting the light collecting transparent material 103.
As can be seen in the cross section of
The incoming angular positions of incoming solar rays (also called herein the “collection angle”) change as a function of time. This angular position is represented in
Therefore, if we call the maximum collection angle βinmax, we obtain the following Equation 2:
For example, even if collection angle β is 90°, βin would be 42° if the passivating material is SiO2 or a polymer of refraction index (n1) of 1.5.
In each of the examples provided herein, each the shaped pillars have at least a portion of a sidewall surface that is facing towards the light receiving surface so as to be at an acute angle with respect to the light receiving top surface. In the example of
The shaped trenches 111 are shaped in such a way that the first reflection of the solar ray provides a further horizontal vector to the reflection so as to encourage multiple opportunities for the solar ray to be absorbed into a pillar for possible conversion into an electron-hole pair. Furthermore, each of the shaped trenches are structured such that upon some number of reflections, the solar ray is actually directed upwards. For instance, solar ray 141 of
The solar ray 142, on the other hand, has a finite intake angle and first reflects off of a top portion 132 of the sidewall of the pillar 111B in
Once the rays hit the solar cell, there are several different trajectories that a ray can follow. The ray can be trapped inside the shaped trench making several reflections with the sidewalls of the trench as shown in
Again, the solar ray may enter either the trench or the silicon pillar, exit from the other side of the trench or pillar, and continue doing so. The shaping of the silicon is important to fully achieve this, but there is significant leeway in this design. As the solar ray bounces back and forth in the trench, each time the solar ray reflects, the amplitude of the solar ray diminishes. Assuming negligible absorption due to material filling the trench (SiO2, polymer or any other low index suitable dielectric), the reflection coefficient at each reflection can be estimated using the well-known Fresnel's equations. These equations depend on the angle of incidence, indices of silicon and the trough material and polarization.
The coefficient for each reflection for TE and TM polarizations are ΓiTE(θi) and ΓiTM(θi) respectively. Here θi, is the angle of incident at ith reflection. After k reflections the fraction of the ray that reflects back will be the product of the reflection coefficient of each reflection which can be concisely written as
Since each one of these reflection coefficients is less than 1, their product will be much less than 1 after a certain number of reflections. This number is usually less than four and after at most four reflections, the solar ray amplitude becomes negligible. Therefore to trap and absorb all the incident radiation there should be at most four reflections within a trench. Furthermore not all the reflections should point down.
Some of the reflections can direct the rays upwards towards the top of the trench as long as the total touches on the trench walls are four or more as indicated in
Rays entering silicon pillars at each reflection will exit from the other side at the same angle after some absorption and back reflection into the silicon pillar. Therefore, after two reflections, the reduction in the solar ray amplitude for such a solar ray will be more than the reduction of a given solar ray that stays in the trench. Therefore if a solar ray goes through two trenches, its amplitude will be become negligible. The angle of the solar ray in the next trench will be the same as the angle of the ray in the first trench as shown in
All these discussions illustrate that a given ray that enters the surface of the solar cell does not likely reflect back. Instead, the ray bounces around inside the cell such that part of the spectrum that can be absorbed by silicon and converted into electricity will be absorbed and converted. Furthermore, a thin layer of silicon may be used to accomplish this. For instance, the depth of the trenches may be made shallow since some reflections occur on the way down, and some on the way up. Furthermore, in each of the designs of
Electrical Design
The electrical design is important to efficiently collect electron-hole pairs generated in the cell. In this design, electrons are the minority carriers, although the principles described herein may also apply if holes arc the minority carriers. If the electrons reach the n+ silicon layer with minimal recombination, collection efficiency will be very high. Since most of the absorption takes place in the silicon pillars and since these pillars are quite narrow, the collection efficiency is significantly increased. Furthermore as mentioned above, the underlying silicon portion does not need to be thick. Hence, generated carriers can again be collected relatively efficiently. For instance, the pillars may be thin in the horizontal direction, with the average width at the midpoints being perhaps less than a half width, full width or twice the average width of the trenches at that midpoint.
The p electrode (which is an ohmic contact) is on the bottom side of the wafer. The n electrode (which is also an ohmic contact) can be folded to the back side or can be made on the top surface using several different approaches.
Fabrication Considerations
The shaping of the silicon in the described designs described can be done using dry and wet chemical etching. In dry etching, by adjusting the pressure of the plasma, some sidewall angle can be introduced. Even a sidewall angle such as 10-20° is enough to realize the type of design shown in
After an initial masking, the silicon is shaped by etching. This is followed by n+ diffusion and surface passivation. After that, the contact openings and metallization top surface are filled either by flowable oxide or a polymer. Finally, the p contact is deposited on the bottom side of the solar cell, thereby completing fabrication. These steps are compatible with regular solar cell fabrication. Only the surface texturing and anti-reflection coating steps are replaced by the initial shaped etching of silicon.
The resulting cells are very similar to the cells introduced earlier in
Accordingly, a wide angle and efficient solar cell design has been described. The foregoing detailed description of various embodiments is provided by way of example and not limitation. Accordingly, the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/026914 | 2/20/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61601796 | Feb 2012 | US | |
61671612 | Jul 2012 | US |