The present invention relates to wideband wireless communication systems, and particularly to a wide band frequency agile MIMO antenna for cognitive radio platforms, compact wireless devices, and LTE mobile handsets.
Higher data rates are required in each upcoming wireless communication system generation, and hence are a topic of continuous attention. New trends and standards are continuously adopted to meet this high throughput requirement. New services and applications are continuously being added to bring multimedia and high definition video to user terminals. Existing technologies, such as Long Term Evolution (LTE), broadband LTE services, and 4G commercial services, are implemented in wireless communication devices to meet such demands.
To enhance the capacity of a communication system, it is necessary to implement the multiband or wideband system with reconfigurable characteristics.
Thus, a wide band frequency agile MIMO antenna solving the aforementioned problems is desired.
The wide band frequency agile MIMO antenna is a 4-element, reconfigurable, multi-input multi-output (MIMO) antenna system. Frequency agility in the design is achieved using varactor diodes tuned for various capacitance loadings. The MIMO antennas operate over a wide band, covering several well-known wireless standards between 1610-2710 MHz. The present design is simple in structure with low profile antenna elements. The design is prototyped on commercial plastic material with board dimensions 60×100×0.8 mm3 and is highly suitable to be used in frequency reconfigurable and cognitive radio-based wireless handheld devices.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The wide band frequency agile MIMO antenna 100 is a 4-element wide band modified monopole reconfigurable MIMO antenna system covering several wireless standard frequency bands. The present design is a frequency reconfigurable MIMO antenna system with reconfigurability being achieved by using varactor diodes. The MIMO antenna system is operable over a wide band, covering several well-known wireless standards between 1610-2710 MHz. This includes GSM-1800/GSM-1900, PCS (1850˜1990 MHz) and UMTS (1885-2200 MHz), LTE 1800/1900/2100/2300/2600 MHz bands, along with several other bands. The present design is compact, low profile, and planar in structure so that the antenna can be easily integrated in small wireless handheld devices and mobile terminals with a small form factor. The present design provides enhanced radiation characteristics by optimizing the GND plane to act as a reflector. This improved radiation characteristic enhances MIMO performance by reducing field coupling between various antenna elements.
An electrically connected extension bar 566 extends from the monopole's linear element between the board width edge and the electrically connected meander line 333, the electrically connected extension bar 566 running parallel to the board width edge and orthogonal to the monopole linear element, and having a space 16 between it and a parallel flange or leg of the meander line 333 of approximately 2.4 mm. The distance 17 between the electrically connected extension bar 566 and the board width edge is approximately 5.4 mm. There is a gap between the opposite flange or leg of the eccentric channel-shaped meander line 333 and the medial end of the monopole linear element (the end most distal from the board width edge). The gap dimension 12 is approximately 1.12 mm. The eccentric channel meander line 333 includes a flange or leg extending towards the gap 12 and having a length 15, which is approximately 5.3 mm.
A SubMiniature version A (SMA) coaxial connector 5 feeds monopole linear element 62 at the board width edge of the monopole linear element 62 to provide a system input to the monopole linear element 62. A SMA coaxial connector 6 feeds monopole linear element 2 at the board width edge of the monopole linear element 2 to provide a system input to monopole linear element 2. A SMA coaxial connector 7 feeds monopole linear element 3 at the board width edge of the monopole linear element 3 to provide a system input to monopole linear element 3. A SMA coaxial connector 8 feeds monopole linear element 4 at the board width edge of the monopole linear element 4 to provide a system input to monopole linear element 4. The distance 14 from the lengthwise edge of the board to the centerline of the SMA is approximately 7.16 mm. The distance 20 between the centerline of SMA connectors 5 and 6 is approximately 45.68 mm. As shown in
Reconfigurability is achieved using varactor diodes. The varactor diode bias circuits are shown on the top layer D of the board. The varactor diodes 29, which are disposed between their respective stubs and eccentric channel-shaped meander lines 333, each have a bias circuit 300, as shown in
A single varactor diode 29 is used by each antenna element, respectively, to load the antenna with various capacitances to achieve the frequency agility in the design. All antenna elements of a single design are exactly similar in structure. The linear elements 62, 2, 3, 4, the extension bars 566, the stubs, and the meander lines 333 are all planar copper strips formed by etching or removing the remaining copper cladding on the top face of the board.
For antenna operation, the reverse bias voltage applied to varactor diode 29 was varied between 0˜6 volts. The capacitance of varactor diode 29 has a significant effect on its resonant frequency. The resonant frequency was smoothly changed over the frequency band 1610˜2710 MHz. The capacitance of the diode 29 was varied from 0.5 pF to 8 pF. A significant bandwidth is achieved at all resonating bands. The minimum −6 dB operating bandwidth was 520 MHz. The simulated reflection coefficients are shown in plot 400 of
The 3D gain patterns of the present reconfigurable MIMO antenna system were computed using ANSYS® High Frequency Structure Simulator (HFSS). The gain patterns for four antenna elements at 2000 MHz reveal tilting that can provide enhanced MIMO features with its low correlation coefficient.
Specific absorption rate (SAR) is a measure of the rate at which energy is absorbed by the human body when exposed to a radio frequency (RF) electromagnetic field. It is amount of energy absorbed by human tissues. It is defined as the power absorbed per mass of tissue and has units of watts per kilogram (W/kg). The SAR values are computed for human head phantom and are plotted for the desired range of frequency band, as shown in plot 700 of
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
8421686 | Soler Castany | Apr 2013 | B2 |
20070229357 | Zhang et al. | Oct 2007 | A1 |
20100231461 | Tran | Sep 2010 | A1 |
20120139793 | Sharawi | Jun 2012 | A1 |
20140159971 | Hall et al. | Jun 2014 | A1 |
20150263423 | Park et al. | Sep 2015 | A1 |
20160006116 | Sharawi et al. | Jan 2016 | A1 |
20160036127 | Desclos et al. | Feb 2016 | A1 |
20160043477 | Montgomery et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
2500209 | Sep 2013 | GB |
Entry |
---|
Hussain, R., Sharawi, M.S., “A low profile compact reconfigurable MIMO antenna for cognitive radio applications”, 2015 9th European Conference on Antennas and Propagation (EuCAP), (May 13-17, 2015). |