Embodiments of the present disclosure generally relate to testing of high-power radio frequency (RF) power sources and impedance matching networks, and, in particular, to manufacturing qualification and diagnostic testing of an RF power source and impedance matching network adapted for generating a plasma in chamber.
Reliably forming high aspect ratio features is one of the key technology challenges for manufacturing the next generation of semiconductor devices. High aspect ratio openings used to form the features are typically formed using a plasma-assisted etch process, such as a reactive ion etch (RIE) process capable of directionally controlled (i.e., anisotropic) material removal to transfer a pattern from a mask layer to exposed portions of the substrate surface there beneath. For plasma etching and other plasma utilizing processes, process uniformity and repeatability within a chamber, from chamber to chamber and processing system to processing system are important parameters for controlling semiconductor device yield and semiconductor device performance tolerance so that the formed semiconductor devices are able to perform as desired.
In plasma reactors, a radio frequency (RF) power source provides RF power to the plasma reactor chamber, for generating plasma therein, via an impedance matching network coupled between the RF power source and the plasma reactor chamber. The RF impedance of a plasma is a complex and highly variable function of many process parameters and conditions. The impedance matching network maximizes power transfer from the RF power source to the plasma in the reactor chamber. This is accomplished when the output impedance of the impedance matching network is equal to the complex conjugate of the input impedance of the plasma in the reactor chamber. The impedance matching network transforms the impedance of the plasma in the reactor chamber to the characteristic operating output impedance of the RF power source, e.g., 50 ohms, for optimal RF power transfer therefrom.
The RF impedance matching network is an electrical circuit disposed between the RF power source and the plasma reactor to optimize RF power transfer efficiency. In high-volume manufacturing, a qualification process is required to validate that the product will meet a design specification. A complex dummy load test is typically implemented to verify if the RF impedance matching network can tune at a desired frequency to a desired complex impedance accurately.
Multiple RF power sources at different frequencies may sometimes be utilized with plasma reactors. This includes multiple RF power sources each having an associated frequency dependent matching network. The frequency dependent matching networks may be connected to the plasma chamber at a common output point. Band pass filters may be included between each frequency dependent matching network and the plasma chamber to provide isolation for the different RF power sources.
Accurate characterization of an impedance matching network is critically important for providing reliable, efficient, and predictable plasma processes. Typically, characterization of an impedance matching network is performed with a dummy load having a complex impedance that may be coupled to the output of the impedance matching network in place of the plasma chamber.
A traditional complex impedance dummy load is thus used for such verification purposes. However, the traditional complex impedance dummy load is typically designed for only a specific impedance at a single frequency and multiple complex impedance dummy loads are required if a multipoint test is required. Also, these tests may require labor-intensive processes because an appropriate complex impedance dummy load is required to be installed manually for every RF matching network under test. In addition, an extra vector network analyzer test is sometimes needed to test RF filters, which may require technical expertise for equipment calibration and operation.
Hence, there is a need for a wideband variable impedance load operable over a plurality of frequencies for high volume manufacturing qualification and diagnostics of RF power sources and associated impedance matching networks used in plasma processes for deposition and/or etching used in the formation of, for example but is not limited to, semiconductor integrated circuits, display panels and solar panels.
Embodiments of the disclosure include a wideband radio frequency (RF) variable impedance test load adapted for coupling to an RF power source used to generate a plasma in a plasma processing chamber. The RF variable impedance test load comprises a variable impedance network having a first node that may be adapted for coupling to a resistance, adjustable tuning elements for transforming the resistance coupled to the first node into a plurality of impedances at a second node, wherein the second node may be configured to be coupled to an RF power source. A test unit controller coupled to the adjustable tuning elements such that the test unit controller controls adjustment of the adjustable tuning elements for selected ones of the plurality of impedances at the second node.
Embodiments of the disclosure include a system for analyzing, qualifying or testing a radio frequency (RF) power source and impedance matching network used to generate a plasma in a plasma processing chamber with an RF variable impedance test load. The radio frequency (RF) power source including an RF generator and an impedance matching networking having an input coupled to an output of the RF generator. The wideband RF variable impedance test load includes a variable impedance network having a first node that may be adapted for coupling to a resistance, adjustable tuning elements for transforming the resistance coupled to the first node into a plurality of impedances at a second node, wherein the second node may be configured to be coupled to the output of the impedance matching networking. A test unit controller may be coupled to the adjustable tuning elements such that the controller controls adjustment of the adjustable tuning elements for selected ones of the plurality of impedances at the second node.
Embodiments of the disclosure include a method for analyzing, qualifying or testing, with a radio frequency (RF) variable impedance test load, an RF impedance matching network and components thereof used for generating a plasma in a plasma processing chamber. A resistance may be coupled to a first node of a variable impedance that transforms the resistance into a plurality of load impedances at a second node of the variable impedance network by adjusting tuning elements of the variable impedance network with a controller. The second node may be monitored by RF voltage and current sensors, and a frequency detector whose values may be used to determine impedances of the plurality of load impedances. RF power may be generated at a frequency with an RF generator having an output at a first impedance. An impedance matching network may be coupled between the output of the RF generator and the second node of the variable impedance network. The impedance of the RF generator may be matched to the plurality of load impedances at the second node of the variable impedance network with the impedance matching network.
Embodiments of the disclosure include a method for analyzing, qualifying or testing, with a radio frequency (RF) variable impedance test load, an RF impedance matching network and components thereof used for generating a plasma in a plasma processing chamber. An RF generator delivers a first RF signal through the RF impedance matching network to a first node of the variable impedance network that includes a controller, a second node that is adapted for coupling to a resistance element, adjustable tuning elements for transforming the resistance of the resistance element coupled to the second node into a plurality of load impedances at the first node, and an RF voltage sensor, an RF current sensor and a frequency detector that may be coupled between the first node and the adjustable tuning elements. Matching a first impedance of the RF generator to one of the plurality of load impedances created at the first node of the variable impedance network, where the one of the plurality of load impedances is created by adjusting one or more of the adjustable tuning elements of the impedance matching network. Comparing a signal generated by at least one of the RF voltage sensor, RF current sensor and frequency detector, while the first impedance of the RF generator is matched to the one of the plurality of load impedances, to at least one of RF voltage sensor data, RF current sensor data and frequency detector data stored in memory. Qualifying the impedance matching network if the signal from the RF voltage sensor, RF current sensor and frequency sensor are within a range set relative to the respective at least one of RF voltage sensor data, RF current sensor data and frequency detector data stored in memory.
Embodiments of the disclosure include a system for analyzing, qualifying or testing radio frequency (RF) components, comprising a variable impedance network. The variable impedance network includes a first node that is adapted for coupling to a first resistance element; and adjustable tuning elements for transforming the resistance coupled to the first node into a plurality of impedances at a second node, wherein the second node is configured to be coupled to an RF power source; and a test unit controller coupled to the adjustable tuning elements, wherein the test unit controller controls adjustment of the adjustable tuning elements for selected ones of the plurality of impedances at the second node.
Embodiments of the disclosure include a system for analyzing, qualifying or testing a radio frequency (RF) components, comprising: a radio frequency (RF) power source comprising an RF generator; and an impedance matching network having an output and input coupled to an output of the RF generator; a wideband RF variable impedance test load comprising: a variable impedance network comprising: a first node that is adapted for coupling to a resistance; and adjustable tuning elements for transforming the resistance coupled to the first node into a plurality of impedances at a second node, wherein the second node is configured to be coupled to the output of the impedance matching networking; and a test unit controller coupled to the adjustable tuning elements, wherein the test unit controller controls adjustment of the adjustable tuning elements for selected ones of the plurality of impedances at the second node.
Embodiments of the disclosure include a method of analyzing, qualifying or testing radio frequency (RF) components, comprising: delivering, by use of an RF generator, a first RF signal through an impedance matching network to a first node of the variable impedance network. The variable impedance network comprises: a controller; a second node that is adapted for coupling to a resistance element; adjustable tuning elements for transforming the resistance of the resistance element coupled to the second node into a plurality of load impedances at the first node; and an RF voltage sensor, an RF current sensor, and a frequency detector that are each coupled between the first node and the adjustable tuning elements. Then by matching, by use of the impedance matching network, a first impedance of the RF generator to one of the plurality of load impedances created at the first node of the variable impedance network, wherein the one of the plurality of load impedances is created by adjusting one or more of the adjustable tuning elements; and qualifying the impedance matching network or RF voltage sensor if a signal from the RF voltage sensor, the RF current sensor or the frequency sensor are within a range set relative to at least one of RF voltage sensor data, RF current sensor data and frequency detector data stored in memory, while the first impedance of the RF generator is matched to the one of the plurality of load impedances.
Embodiments of the disclosure include a method of analyzing, qualifying or testing radio frequency (RF) components, comprising: delivering, by use of an RF generator, a first RF signal through an impedance matching network to a first node of the variable impedance network, wherein the variable impedance network comprises: a controller; a second node that is adapted for coupling to a resistance element; adjustable tuning elements for transforming the resistance of the resistance element coupled to the second node into a plurality of load impedances at the first node; and an RF voltage sensor, an RF current sensor, and a frequency detector that are each coupled between the first node and the adjustable tuning elements; matching, by use of the impedance matching network, a first impedance of the RF generator to a first impedance of the plurality of load impedances created at the first node of the variable impedance network, wherein the first impedance of the plurality of load impedances is created by adjusting one or more of the adjustable tuning elements; and qualifying the impedance matching network or RF voltage sensor if a signal from the RF voltage sensor, the RF current sensor or the frequency sensor are within a range set relative to at least one of RF voltage sensor data, RF current sensor data and frequency detector data stored in memory, while the first impedance of the RF generator is matched to the first impedance of the plurality of load impedances. The method may also further comprise delivering, by use of an RF generator, a second RF signal through an impedance matching network to the first node of the variable impedance network; matching, by use of the impedance matching network, a second impedance of the RF generator to a second impedance of the plurality of load impedances created at the first node of the variable impedance network, wherein the second impedance of the plurality of load impedances is created by adjusting the one or more of the adjustable tuning elements; and wherein the qualifying the impedance matching network or RF voltage sensor further comprises qualifying the impedance matching network or RF voltage sensor if a signal from the RF voltage sensor, the RF current sensor or the frequency sensor is within a range set relative to at least one of RF voltage sensor data, RF current sensor data and frequency detector data stored in memory while the first impedance of the RF generator is matched to the first impedance of the plurality of load impedances and the second impedance of the RF generator is matched to the second impedance of the plurality of load impedances.
So that the manner in which the above recited features of the present disclosure can be better understood in detail, a more particular description of the disclosure, briefly summarized herein, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, and may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments of the present disclosure generally relate to apparatus and methods for testing and verification of equipment used in the manufacture of semiconductor devices. More specifically, embodiments provided herein generally include apparatus and methods for testing and verifying operation of radio frequency (RF) power generation and impedance matching equipment used for generating a plasma in a plasma chamber during semiconductor processing therein.
Embodiments for a wideband variable impedance load for high volume manufacturing qualifications and diagnostics of a radio frequency (RF) power source and impedance matching network are disclosed herein. The wideband variable impedance load may comprise a fixed value resistor operable at a plurality of frequencies and coupled with a variable impedance network capable of transforming the fixed value resistor into a plurality of complex impedances over a wide range of frequencies, e.g., from about 100 kHz to about 250 Mhz. The variable impedance network may comprise various adjustable and/or switched fixed value elements, e.g., variable value capacitors and switched fixed value inductors and capacitors to cover such a wide range of frequencies and impedances.
As used herein a “plurality of impedances” and a “plurality of frequencies” may be interpreted to be in context different impedances at different frequencies, different impedances at the same frequency, or different frequencies at the same impedance. The term “wideband” may be interpreted to mean over a wide range of different frequencies, and “wide range” may be interpreted to mean over a large number of different values. The terms “recording” and “storing in a memory” e.g., data, may be used interchangeably herein.
An adjustable wideband complex impedance load is disclosed that may be used in high-volume qualification testing of high-power RF generators and impedance matching networks, for example but not limited to, for plasma processing chambers. The adjustable wideband complex impedance load is capable of being set to a plurality of different complex impedances over a wide range of different frequencies. Change of impedance may be rapid, automatic and resettable from configuration settings stored in a memory and/or with a user interface. These configuration settings may be inductance and capacitance value settings of a variable impedance load in relation to desired complex impedances at test frequencies. This variable impedance load may be used for match and sensor qualifications in an automatic and/or manual test environment. Programs may be derived to run test, qualification and troubleshooting of RF generators and associated impedance matching networks at the factory during equipment testing, qualification and/or at vendor/customer manufacturing facilities during equipment testing and/or trouble shooting.
Built-in radio frequency (RF) voltage and current sensors measure RF voltage and RF current, and phase angle is determined therefrom as disclosed herein for determining load impedances as they change in real time during equipment testing, qualification and/or at vendor/customer manufacturing facilities during equipment testing and/or trouble shooting. Phase angle is determined by the lead or lag times between the RF voltage V(t) and RF current I(t) waveforms and is expressed in degrees θ. RF power P(t) is the product of voltage and current, or P(t)=V(t)*I(t), while the respective RMS (root-mean-square) values after sensor detection are P=V*I*cos θ, where θ is the phase angle between the voltage and current waveforms. Using Ohm's Law Z(t)=V(t)/I(t) or Z may be expressed as Z=R+jX, where R=Z cos θ and jX=Z sin θ. jX=jωL−j/ωC, where ω=2πf, f is in frequency, C is in farads and L is in henrys. R is resistance in ohms and jX is reactance in ohms, where +jX is inductive reactance and −jX is capacitive reactance. Power is frequency independent and impedance is frequency dependent.
Embodiments disclosed herein provide for the necessary equipment hardware, e.g., inductors, variable capacitance capacitors, a high-power RF dummy load (e.g., water cooled resistor) and RF sensors necessary for all match and sensor qualification requirements. Operation and control of the wideband complex impedance load disclosed herein may be adapted for remote, automated computer control such as, for example but is not limited to, Ethernet for Control Automation Technology (EtherCAT) or (ECAT) compliance and communications with user interfaces, e.g., laptop computer, and plasma chamber tools. A manual/fully automatic wideband complex impedance load may be adapted for use as a portable system for field testing and equipment debugging at any location.
Referring now to the drawings, the details of example embodiments are schematically illustrated. Like elements in the drawings will be represented by like numbers, and similar elements will be represented by like numbers with a different lower-case letter suffix.
Referring to
A radio frequency power source 130 may comprise a radio frequency generator 132, forward and reverse RF power sensors 134 and/or voltage and current sensors, and an impedance matching network 136. An output of the impedance matching network 136 may be coupled to an input of the variable impedance network 106 through the RF voltage and current sensors 108. Measurement of forward and reverse RF power with the forward and reverse RF power sensors 134 may be used to derive standing wave ratio (SWR). In some example embodiments described hereinafter, the radio frequency power source 130 may be a device under test (DUT).
A user interface 140, e.g., computer (laptop), may communicate with the test unit controller 112 of the wideband variable impedance test load 100, and to the RF generator 132, the forward and reverse RF power sensors 134 and the impedance matching network 136. A more detailed description of the test unit controller 112 is shown in
The test unit controller 112 may communicate with and control motorized variable capacitors (
Referring to
Referring to
Referring to
Plasma Chamber Process Simulation
Impedance, frequency and power associated with a plasma chamber process may be measured with RF voltage, RF current, RF frequency and RF power sensors, and the values therefrom may be recorded during a representative plasma chamber process using a qualified radio frequency power source and operational plasma chamber doing a demonstrative plasma process. The recorded RF voltage, RF current, RF frequency and RF power readings may then be used to create a test program for simulation of the representative plasma chamber process by controlling operation of the wideband variable impedance test load 100 in combination with an RF power source 130 under test. The operating parameters of a known good and properly operational radio frequency power source may also be recorded for comparison with subsequently measured parameters of another radio frequency power source 130 under test. A library of different plasma chamber process simulations may be created for testing of RF power sources and/or impedance matching networks under many different operating requirements and conditions. The library of different chamber process simulations and related data may be used to train one or more artificial intelligence (AI) or machine learning (ML) software application running in the test unit controller that may be able to diagnose issues with a component under test and/or help determine that the component under test is able to function within an acceptable range of performance.
When a radio frequency power source 130 to be tested is coupled to the wideband variable impedance test load 100 running the process simulation test programs, the wideband variable impedance test load 100 will simulate (appear to be) a plasma chamber by replicating the recorded plasma process parameters. All operational parameters of the RF power source 130 under test may be measured and stored during the simulated plasma process. For example, operation of the RF generator 132, RF power sensors 134 and impedance matching network 136 comprising the RF power source 130 under test may be monitored and recorded for proper operation thereof. The readings from the RF voltage and current sensors 108, RF frequency detector 110 and RF power 104 sensor may further be used for test verification purposes of the RF power source 130 under test. The readings from the RF voltage and current sensors 108, RF frequency detector 110 and RF power 104 sensor may be stored as RF voltage sensor data, RF current sensor data, frequency detector data and RF power data in memory 116. The measured and stored readings and/or operational parameters may then be compared to operational parameters from a qualified (known good) RF power source previously recorded, and a determination made of the calibration and operability of the radio frequency power source 130 under test based upon the process simulation test results.
The variable impedance matching network 106 may be adapted to transform the 50-ohm resistor 102 to the required simulated (measured) chamber impedance. Capacitance/inductance values may be calculated to make this impedance transformation. For example, once the capacitance values required for impedance transformation are determined then the variable capacitors (VC1, VC2, VC3) may be positionally set to obtain those capacitance values, for example but not limited to, with a position/capacitance lookup table.
Qualification Test Procedures
Referring to
The wideband variable impedance test load 100a may be configured to provide a testing environment that may test over wide frequency/impedance ranges and may be used for RF power source 130 testing and debugging. The wideband variable impedance test load 100a may be fully and automatically controlled by the remote tool controller 450 and be tuned to different selected load impedances, for example but not limited to plasma chamber testing. The wideband variable impedance test load 100a may also be used for new RF power match equipment qualification in high volume manufacturing.
Real time readings at certain time intervals of the devices under test (DUT), e.g., RF voltage and current sensors 608 and real time phase derived therefrom, and tuning element positions of the impedance matching network 436 may be recorded along with a “time stamp” for each reading recorded. Temperature measurements from temperature sensors 114 may also be recorded and time stamped during a qualification test, along with RF generator power outputs correlated with DUT temperatures. From the recorded RF voltage, current, phase and time stamps thereof, impedance traces may be derived. An “impedance trace” is defined herein as a change in impedance over a time period. Tuning element position changes over a time period may be referred to as “tuning element position traces.” Similarly RF voltage, current, phase, and power traces may be defined from the measured/calculated and stored values thereof correlated with the associate time stamps.
These derived traces may be used for dynamic qualification testing of the DUT. For example, dynamic qualification testing may be used to simulate impedance transition states such as the response time of an impedance matching network to an impedance change (from variable impedance network 106) by characterizing the time required for tuning element positions of the impedance matching network 436 to change to a new value to match the impedance change. Temperature rise over time (temperature trace) resulting from RF power supplied to the impedance matching network 436 may also be used to compensate for variation in temperature of the one or more affected components over time that are under test and thus in determining qualification of a DUT. Swept frequencies (varies from low to high frequencies) of RF power from a test RF generator may be used for testing RF filters. A variable frequency RF generator may be used for testing impedance matching networks over both impedance and frequencies ranges (traces).
Referring to
In step 508, tuning elements of the variable impedance network 106 may be adjusted for desired test load impedances as calculated from the RF voltage and current measured by the RF voltage and current sensors 108. The frequency would be known from the frequency setting of the RF generator 132 or may be measured by the frequency detector 110. In step 510, the tuning element positions of the variable impedance network 106 and the calibrated standard (qualified) match for each of the test load impedances at the target frequencies may be recorded (stored in memory 116). Optionally, recording a plurality of tuning element positions (position traces) of the calibrated standard (qualified) match during position transitions may be time stamped for creating and comparing response times thereof. These test load impedances may then be used as testing points for the qualification of other unqualified impedance matching networks 436 that are under test. As is discussed further below, the stored test load impedances may include data relating to the various component settings and impedances traces over time as a way to determine if the matching networks 436 is functioning correctly and/or predict any possible future device component failures. The stored information may be stored in memory as a lookup table or a real-time map measured using a network analyzer. The stored information may include RF voltage data, RF current data and/or frequency data, which was previously collected by the RF voltage and current sensors 108 and frequency detector 110 and stored in memory. In step 512, an impedance matching network 436 under test is mounted to and in RF communications with the variable impedance load 100a (variable impedance network 106). In step 514, an automatic testing procedure may be performed on the impedance matching network under test using the recorded (stored) tuning element positions of the variable impedance network.
In step 516, the tuning element positions of the impedance matching network 436 under test (DUT) may be recorded for each of the test load impedances presented during testing. Optionally, recording a plurality of tuning element positions (position traces) of the match DUT during position transitions may be time stamped for creating and comparing the response times (position traces) of the match DUT to the position traces of the previously recorded calibrated standard (qualified) match. In step 518, the recorded tuning element positions of the impedance matching network 436 under test for each of the test load impedances may be compared to the recorded (stored) tuning element positions of the calibrated standard (qualified) match at those same test load impedances. The position traces for of both the match DUT and qualified match may be compared for dynamic position qualification of the match DUT. In step 520, if the comparisons between the tuning element positions, and optionally dynamic position transition times, of the qualified match 638 and the impedance matching network 436 under test are within certain acceptable values, then the impedance matching network 436 under test may be deemed “qualified.” If not, then the impedance matching network 436 is not qualified and must be repaired and/or recalibrated (reworked). Similar testing may be used to verify tuning element match ranges and synchronizations of the adjustable tuning element positions with expected capacitance/inductance values.
Sensor Calibration
Referring to
Referring to
In step 708, tuning elements of the variable impedance network 106 may be adjusted for desired test load impedances as calculated from the RF voltage and current measured by the qualified RF voltage and current sensors 638. The frequency would be known from the frequency setting of the RF generator 132 or may be measured by the frequency detector 110. In step 710, the tuning element positions of the variable impedance network 106 for each of the test load impedances at the target frequencies may be recorded (stored in memory 116). Optionally, recording a plurality of tuning element positions (position traces) of the variable impedance network 106 during position transitions may be time stamped for creating and comparing response times thereof. These test load impedances may then be used as testing points for the calibration and qualification of RF voltage and current sensors 608 under test. In step 712, RF voltage and current sensors 608 under test may be mounted to and in RF communications with the variable impedance load 100b (variable impedance network 106). In step 714, an automatic testing procedure may be performed on RF voltage and current sensors 608 under test using the recorded (stored) tuning element positions of the variable impedance network.
In step 716, the information from the RF sensors 608 under test and the qualified RF voltage and current sensors 638 may be recorded for each of the test load impedances presented during testing (recorded tuning element positions). Optionally, recording a plurality of sensor readings (current and voltage) of the RF sensors under test during position transitions of the tuning elements that may be time stamped for subsequent voltage and current traces of the RF sensors under test. In step 718, the information from RF voltage and current sensors 608 under test may be compared with the RF voltage data and RF current data collected from qualified (calibrated) RF voltage and current sensors 638. Optionally, comparison of the dynamic voltage and current traces of the RF voltage and current sensors 608 under test and the qualified (calibrated) RF voltage and current sensors 638 may be determined. In step 720, if the recorded sensor value comparisons between the qualified (calibrated) RF voltage and current sensors 638 and the RF voltage and current sensors 608 under test are within certain acceptable values, and optionally RF voltage and current trace times, then the RF voltage and current sensors 608 under test are deemed calibrated or “qualified.” If not, then the RF voltage and current sensors 608 under test are not qualified and must be repaired and/or recalibrated (reworked).
Match Tuning and Filter Performance Qualifications
Referring to
Dynamic Qualification Test Procedures
Each of the aforementioned qualification test procedure steps may be performed using multiple settings of the tuning element positions of the variable impedance network over certain periods of time, e.g., real-time complex impedance control over time. Thus producing impedance traces, e.g., a series of a single-point impedance settings stored over a period of time. Such impedance traces, when measured in combination with a qualified impedance matching network and/or qualified RF voltage and current sensors, may be stored in a memory of a test unit controller and/or a tool controller. The stored impedance traces over time may then be used for dynamically testing and analysis of a device under test (DUT). Impedance traces may converted and/or stored in memory so that the tuning element positions of the variable impedance network over certain periods of time may be used to adjust portions of the testing process and/or determine how a DUT is performing. Therefore, the various dynamic parameters of a DUT may be evaluated by using the recorded impedance traces. The dynamic measurements may thus provide additional process qualification criteria to assure that the DUT is functioning as expected and as desired over a wider range of process settings.
In some embodiments, the test unit controller and/or a tool controller may be configured to run test sequences on the DUT autonomously. During these test sequences the test unit controller and/or tool controller may be configured to adjust, for example, the RF power level and frequency of the RF signal provided from the RF source, and adjust the impedances created by the variable impedance network by adjusting the settings of the tuning element positions over certain periods of time. The test unit controller and/or tool controller may also be configured to receive feedback from the RF voltage and current sensors 108, frequency detector 110 and/or a temperature sensor to improve the control of the impedance created by the variable impedance network during the testing of the DUT.
For example, but is not limited to, instantaneous and measured response times of the variable capacitors VC1, VC2 and VC3; and test repeatability of the settings for the variable capacitors VC1, VC2 and VC3 may be used to improve the DUT qualification process and/or determine how a DUT is performing. Temperature profiles of the impedance matching network taken over time and at various RF power levels may also be collected. Frequency sweeping by the RF generator may be used for testing of impedance matching networks, RF filters and RF sensors/detectors. Dynamic testing repeatability of an impedance matching network and/or RF voltage and current sensors may be determined.
Measured impedances values, impedance traces and/or tuning element positions of the variable impedance network over certain periods of time may be stored in the test unit controller and/or tool controller and be used to perform dynamic testing and qualification of DUTs. The measured impedance values, impedance traces and or tuning element positions information may be stored in memory, a lookup table, or a map measured using a network analyzer for analysis purposes. Varying RF power levels, RF frequencies and test load impedances (tuning element positions of the variable impedance network) over time, while monitoring RF sensor (voltage and current) readings, phase, frequency and temperature of DUTs then comparing the resulting measurements with the same measurements previously made from a qualified matching network and RF sensors stored in a memory may be used to determine whether the DUT meets desired qualification standards. The tool controller may run test sequences autonomously, including but not limited to, changing power level, frequency and load impedances. Feedback control of the variable impedance network, along with real-time temperature monitoring and compensation, may be used to improve the accuracy of the impedance set by the variable load impedance during testing and thus improve the DUT qualification process.
In one example of a dynamic qualification testing process, the test unit controller and/or tool controller may be used to measure and qualify the dynamic response of a DUT. Initially, during the dynamic qualification testing a plurality of position settings of at least one of the variable capacitors VC1, VC2 and VC3 of the variable impedance network may be stored in memory so that the variable capacitor settings may be used to test a series of selected complex load impedances during a future testing sequence. Next, a calibrated standard match may be connected to the output of an RF source and the input of the variable impedance network that may be connected to load resistor. Then RF power may be applied through the calibrated standard match, variable impedance network and load resistor, while the RF voltage and current sensors, frequency sensors and temperature sensors collect data as the complex impedance is varied in real time using the previously stored the variable capacitor settings. During the testing of the calibrated standard match, feedback may be provided by the sensors to allow the test unit controller and/or a tool controller to control the settings of the variable capacitors and/or RF generator frequency to form load impedance traces, while the variable capacitor positions, response time, RF voltage data, RF current data, frequency data is collected. The formed load impedance traces may then be stored in memory. Then the dynamic qualification testing process may be performed a plurality of times on a DUT using an automatic testing procedure that utilizes one or more stored impedance traces for qualification of the DUT.
Additionally, in some other embodiments, a dynamic qualification testing process may use prior formed impedance traces to qualify a DUT. The impedance trace data may be determined and/or predicted from data collected during prior test runs. Alternately, a user may define impedance traces by uploading prior collected data or by use of a user interface. Initially, during the dynamic qualification testing a plurality of position settings of at least one of the variable capacitors VC1, VC2 and VC3 of the variable impedance network may be stored in memory so that the variable capacitor settings may be used to test a series of selected complex load impedances during a future testing sequence. The created impedance trace may be stored in memory as a lookup table or a map measured using a network analyzer. Next, a DUT is connected to the output of an RF source and the input of the variable impedance network that is connected to a load resistor. Then the dynamic qualification testing process may be performed a plurality of times on the DUT using an automatic testing procedure that utilizes one or more of the stored impedance traces. During the testing of the DUT, feedback may be provided by the sensors to allow the test unit controller and/or a tool controller to control the settings of the variable capacitors and/or RF generator frequency to form DUT impedance traces, while the variable capacitor positions, response time, RF voltage data, RF current data, frequency data and/or temperature data is collected in real time. The formed DUT impedance traces may then be stored in memory. The collected data, which includes the DUT impedance traces, may then be compared with stored qualification data to determine if the DUT has met a desired set of criteria.
The present disclosure has been described in terms of one or more embodiments, and it should be appreciated that many equivalents, alternatives, variations, and modifications, aside from those expressly stated, are possible and within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4070589 | Martinkovic | Jan 1978 | A |
4340462 | Koch | Jul 1982 | A |
4464223 | Gorin | Aug 1984 | A |
4504895 | Steigerwald | Mar 1985 | A |
4585516 | Corn et al. | Apr 1986 | A |
4683529 | Bucher, II | Jul 1987 | A |
4931135 | Horiuchi et al. | Jun 1990 | A |
4992919 | Lee et al. | Feb 1991 | A |
5099697 | Agar | Mar 1992 | A |
5140510 | Myers | Aug 1992 | A |
5242561 | Sato | Sep 1993 | A |
5449410 | Chang et al. | Sep 1995 | A |
5451846 | Peterson et al. | Sep 1995 | A |
5464499 | Moslehi et al. | Nov 1995 | A |
5554959 | Tang | Sep 1996 | A |
5565036 | Westendorp et al. | Oct 1996 | A |
5595627 | Inazawa et al. | Jan 1997 | A |
5597438 | Grewal et al. | Jan 1997 | A |
5610452 | Shimer et al. | Mar 1997 | A |
5698062 | Sakamoto et al. | Dec 1997 | A |
5716534 | Tsuchiya et al. | Feb 1998 | A |
5770023 | Sellers | Jun 1998 | A |
5796598 | Nowak et al. | Aug 1998 | A |
5810982 | Sellers | Sep 1998 | A |
5830330 | Lantsman | Nov 1998 | A |
5882424 | Taylor et al. | Mar 1999 | A |
5928963 | Koshiishi | Jul 1999 | A |
5933314 | Lambson et al. | Aug 1999 | A |
5935373 | Koshimizu | Aug 1999 | A |
5948704 | Benjamin et al. | Sep 1999 | A |
5997687 | Koshimizu | Dec 1999 | A |
6043607 | Roderick | Mar 2000 | A |
6051114 | Yao et al. | Apr 2000 | A |
6055150 | Clinton et al. | Apr 2000 | A |
6074518 | Imafuku et al. | Jun 2000 | A |
6089181 | Suemasa et al. | Jul 2000 | A |
6099697 | Hausmann | Aug 2000 | A |
6110287 | Arai et al. | Aug 2000 | A |
6117279 | Smolanoff et al. | Sep 2000 | A |
6125025 | Howald et al. | Sep 2000 | A |
6133557 | Kawanabe et al. | Oct 2000 | A |
6136387 | Koizumi | Oct 2000 | A |
6187685 | Hopkins et al. | Feb 2001 | B1 |
6197151 | Kaji et al. | Mar 2001 | B1 |
6198616 | Dahimene et al. | Mar 2001 | B1 |
6201208 | Wendt et al. | Mar 2001 | B1 |
6214162 | Koshimizu | Apr 2001 | B1 |
6232236 | Shan et al. | May 2001 | B1 |
6252354 | Collins et al. | Jun 2001 | B1 |
6253704 | Savas | Jul 2001 | B1 |
6277506 | Okamoto | Aug 2001 | B1 |
6309978 | Donohoe et al. | Oct 2001 | B1 |
6313583 | Arita et al. | Nov 2001 | B1 |
6355992 | Via | Mar 2002 | B1 |
6358573 | Raoux et al. | Mar 2002 | B1 |
6367413 | Sill et al. | Apr 2002 | B1 |
6392187 | Johnson | May 2002 | B1 |
6395641 | Savas | May 2002 | B2 |
6413358 | Donohoe | Jul 2002 | B2 |
6423192 | Wada et al. | Jul 2002 | B1 |
6433297 | Kojima et al. | Aug 2002 | B1 |
6435131 | Koizumi | Aug 2002 | B1 |
6451389 | Amann et al. | Sep 2002 | B1 |
6456010 | Yamakoshi et al. | Sep 2002 | B2 |
6483731 | Isurin et al. | Nov 2002 | B1 |
6490536 | Ellingboe | Dec 2002 | B1 |
6535785 | Johnson et al. | Mar 2003 | B2 |
6621674 | Zahringer et al. | Sep 2003 | B1 |
6664739 | Kishinevsky et al. | Dec 2003 | B1 |
6733624 | Koshiishi et al. | May 2004 | B2 |
6740842 | Johnson et al. | May 2004 | B2 |
6741446 | Ennis | May 2004 | B2 |
6777037 | Sumiya et al. | Aug 2004 | B2 |
6808607 | Christie | Oct 2004 | B2 |
6818103 | Scholl et al. | Nov 2004 | B1 |
6818257 | Amann et al. | Nov 2004 | B2 |
6830595 | Reynolds, III | Dec 2004 | B2 |
6830650 | Roche et al. | Dec 2004 | B2 |
6849154 | Nagahata et al. | Feb 2005 | B2 |
6861373 | Aoki et al. | Mar 2005 | B2 |
6863020 | Mitrovic et al. | Mar 2005 | B2 |
6896775 | Chistyakov | May 2005 | B2 |
6902646 | Mahoney et al. | Jun 2005 | B2 |
6917204 | Mitrovic et al. | Jul 2005 | B2 |
6947300 | Pai et al. | Sep 2005 | B2 |
6962664 | Mitrovic | Nov 2005 | B2 |
6970042 | Glueck | Nov 2005 | B2 |
6972524 | Marakhtanov et al. | Dec 2005 | B1 |
7016620 | Maess et al. | Mar 2006 | B2 |
7046088 | Ziegler | May 2006 | B2 |
7059267 | Hedberg et al. | Jun 2006 | B2 |
7104217 | Himori et al. | Sep 2006 | B2 |
7115185 | Gonzalez et al. | Oct 2006 | B1 |
7126808 | Koo et al. | Oct 2006 | B2 |
7147759 | Chistyakov | Dec 2006 | B2 |
7151242 | Schuler | Dec 2006 | B2 |
7166233 | Johnson et al. | Jan 2007 | B2 |
7183177 | Al-Bayati et al. | Feb 2007 | B2 |
7206189 | Reynolds, III | Apr 2007 | B2 |
7218503 | Howald | May 2007 | B2 |
7218872 | Shimomura | May 2007 | B2 |
7226868 | Mosden et al. | Jun 2007 | B2 |
7265963 | Hirose | Sep 2007 | B2 |
7274266 | Kirchmeier | Sep 2007 | B2 |
7305311 | van Zyl | Dec 2007 | B2 |
7312974 | Kuchimachi | Dec 2007 | B2 |
7408329 | Wiedemuth et al. | Aug 2008 | B2 |
7415940 | Koshimizu et al. | Aug 2008 | B2 |
7440301 | Kirchmeier et al. | Oct 2008 | B2 |
7452443 | Gluck et al. | Nov 2008 | B2 |
7479712 | Richert | Jan 2009 | B2 |
7509105 | Ziegler | Mar 2009 | B2 |
7512387 | Glueck | Mar 2009 | B2 |
7535688 | Yokouchi et al. | May 2009 | B2 |
7586099 | Eyhorn et al. | Sep 2009 | B2 |
7586210 | Wiedemuth et al. | Sep 2009 | B2 |
7588667 | Cerio, Jr. | Sep 2009 | B2 |
7601246 | Kim et al. | Oct 2009 | B2 |
7609740 | Glueck | Oct 2009 | B2 |
7618686 | Colpo et al. | Nov 2009 | B2 |
7633319 | Arai | Dec 2009 | B2 |
7645341 | Kennedy et al. | Jan 2010 | B2 |
7651586 | Moriya et al. | Jan 2010 | B2 |
7652901 | Kirchmeier et al. | Jan 2010 | B2 |
7692936 | Richter | Apr 2010 | B2 |
7700474 | Cerio, Jr. | Apr 2010 | B2 |
7705676 | Kirchmeier et al. | Apr 2010 | B2 |
7706907 | Hiroki | Apr 2010 | B2 |
7718538 | Kim et al. | May 2010 | B2 |
7740704 | Strang | Jun 2010 | B2 |
7758764 | Dhindsa et al. | Jul 2010 | B2 |
7761247 | van Zyl | Jul 2010 | B2 |
7782100 | Steuber et al. | Aug 2010 | B2 |
7791912 | Walde | Sep 2010 | B2 |
7795817 | Nitschke | Sep 2010 | B2 |
7808184 | Chistyakov | Oct 2010 | B2 |
7821767 | Fujii | Oct 2010 | B2 |
7825719 | Roberg et al. | Nov 2010 | B2 |
7858533 | Liu et al. | Dec 2010 | B2 |
7888240 | Hamamjy et al. | Feb 2011 | B2 |
7898238 | Wiedemuth et al. | Mar 2011 | B2 |
7929261 | Wiedemuth | Apr 2011 | B2 |
RE42362 | Schuler | May 2011 | E |
7977256 | Liu et al. | Jul 2011 | B2 |
7988816 | Koshiishi et al. | Aug 2011 | B2 |
7995313 | Nitschke | Aug 2011 | B2 |
8044595 | Nitschke | Oct 2011 | B2 |
8052798 | Moriya et al. | Nov 2011 | B2 |
8055203 | Choueiry et al. | Nov 2011 | B2 |
8083961 | Chen et al. | Dec 2011 | B2 |
8110992 | Nitschke | Feb 2012 | B2 |
8128831 | Sato et al. | Mar 2012 | B2 |
8129653 | Kirchmeier et al. | Mar 2012 | B2 |
8133347 | Gluck et al. | Mar 2012 | B2 |
8133359 | Nauman et al. | Mar 2012 | B2 |
8140292 | Wendt | Mar 2012 | B2 |
8217299 | Ilic et al. | Jul 2012 | B2 |
8221582 | Patrick et al. | Jul 2012 | B2 |
8236109 | Moriya et al. | Aug 2012 | B2 |
8284580 | Wilson | Oct 2012 | B2 |
8313612 | McMillin et al. | Nov 2012 | B2 |
8313664 | Chen et al. | Nov 2012 | B2 |
8333114 | Hayashi | Dec 2012 | B2 |
8361906 | Lee et al. | Jan 2013 | B2 |
8382999 | Agarwal et al. | Feb 2013 | B2 |
8383001 | Mochiki et al. | Feb 2013 | B2 |
8384403 | Zollner et al. | Feb 2013 | B2 |
8391025 | Walde et al. | Mar 2013 | B2 |
8399366 | Takaba | Mar 2013 | B1 |
8419959 | Bettencourt et al. | Apr 2013 | B2 |
8422193 | Tao et al. | Apr 2013 | B2 |
8441772 | Yoshikawa et al. | May 2013 | B2 |
8456220 | Thome et al. | Jun 2013 | B2 |
8460567 | Chen | Jun 2013 | B2 |
8466622 | Knaus | Jun 2013 | B2 |
8542076 | Maier | Sep 2013 | B2 |
8551289 | Nishimura et al. | Oct 2013 | B2 |
8568606 | Ohse et al. | Oct 2013 | B2 |
8603293 | Koshiishi et al. | Dec 2013 | B2 |
8632537 | McNall, III et al. | Jan 2014 | B2 |
8641916 | Yatsuda et al. | Feb 2014 | B2 |
8685267 | Yatsuda et al. | Apr 2014 | B2 |
8704607 | Yuzurihara et al. | Apr 2014 | B2 |
8716114 | Ohmi et al. | May 2014 | B2 |
8716984 | Mueller et al. | May 2014 | B2 |
8735291 | Ranjan et al. | May 2014 | B2 |
8796933 | Hermanns | Aug 2014 | B2 |
8809199 | Nishizuka | Aug 2014 | B2 |
8821684 | Ui et al. | Sep 2014 | B2 |
8828883 | Rueger | Sep 2014 | B2 |
8845810 | Hwang | Sep 2014 | B2 |
8852347 | Lee et al. | Oct 2014 | B2 |
8884523 | Winterhalter et al. | Nov 2014 | B2 |
8884525 | Hoffman et al. | Nov 2014 | B2 |
8889534 | Ventzek et al. | Nov 2014 | B1 |
8895942 | Liu et al. | Nov 2014 | B2 |
8907259 | Kasai et al. | Dec 2014 | B2 |
8916056 | Koo et al. | Dec 2014 | B2 |
8926850 | Singh et al. | Jan 2015 | B2 |
8963377 | Ziemba et al. | Feb 2015 | B2 |
8979842 | McNall, III et al. | Mar 2015 | B2 |
8993943 | Pohl et al. | Mar 2015 | B2 |
9011636 | Ashida | Apr 2015 | B2 |
9039871 | Nauman et al. | May 2015 | B2 |
9042121 | Walde et al. | May 2015 | B2 |
9053908 | Sriraman et al. | Jun 2015 | B2 |
9059178 | Matsumoto et al. | Jun 2015 | B2 |
9087798 | Ohtake et al. | Jul 2015 | B2 |
9101038 | Singh et al. | Aug 2015 | B2 |
9105447 | Brouk et al. | Aug 2015 | B2 |
9105452 | Jeon et al. | Aug 2015 | B2 |
9123762 | Lin et al. | Sep 2015 | B2 |
9129776 | Finley et al. | Sep 2015 | B2 |
9139910 | Lee et al. | Sep 2015 | B2 |
9147555 | Richter | Sep 2015 | B2 |
9150960 | Nauman et al. | Oct 2015 | B2 |
9159575 | Ranjan et al. | Oct 2015 | B2 |
9208992 | Brouk et al. | Dec 2015 | B2 |
9209032 | Zhao et al. | Dec 2015 | B2 |
9209034 | Kitamura et al. | Dec 2015 | B2 |
9210790 | Hoffman et al. | Dec 2015 | B2 |
9224579 | Finley et al. | Dec 2015 | B2 |
9226380 | Finley | Dec 2015 | B2 |
9228878 | Haw et al. | Jan 2016 | B2 |
9254168 | Palanker | Feb 2016 | B2 |
9263241 | Larson et al. | Feb 2016 | B2 |
9287086 | Brouk et al. | Mar 2016 | B2 |
9287092 | Brouk et al. | Mar 2016 | B2 |
9287098 | Finley | Mar 2016 | B2 |
9306533 | Mavretic | Apr 2016 | B1 |
9309594 | Hoffman et al. | Apr 2016 | B2 |
9313872 | Yamazawa et al. | Apr 2016 | B2 |
9355822 | Yamada et al. | May 2016 | B2 |
9362089 | Brouk et al. | Jun 2016 | B2 |
9373521 | Mochiki et al. | Jun 2016 | B2 |
9384992 | Narishige et al. | Jul 2016 | B2 |
9396960 | Ogawa et al. | Jul 2016 | B2 |
9404176 | Parkhe et al. | Aug 2016 | B2 |
9412613 | Manna et al. | Aug 2016 | B2 |
9435029 | Brouk et al. | Sep 2016 | B2 |
9483066 | Finley | Nov 2016 | B2 |
9490107 | Kim et al. | Nov 2016 | B2 |
9495563 | Ziemba et al. | Nov 2016 | B2 |
9496150 | Mochiki et al. | Nov 2016 | B2 |
9503006 | Pohl et al. | Nov 2016 | B2 |
9520269 | Finley et al. | Dec 2016 | B2 |
9530667 | Rastogi et al. | Dec 2016 | B2 |
9536713 | Van Zyl et al. | Jan 2017 | B2 |
9544987 | Mueller et al. | Jan 2017 | B2 |
9558917 | Finley et al. | Jan 2017 | B2 |
9564287 | Ohse et al. | Feb 2017 | B2 |
9570313 | Ranjan et al. | Feb 2017 | B2 |
9576810 | Deshmukh et al. | Feb 2017 | B2 |
9576816 | Rastogi et al. | Feb 2017 | B2 |
9577516 | Van Zyl | Feb 2017 | B1 |
9583357 | Long et al. | Feb 2017 | B1 |
9593421 | Baek et al. | Mar 2017 | B2 |
9601283 | Ziemba et al. | Mar 2017 | B2 |
9601319 | Bravo et al. | Mar 2017 | B1 |
9607843 | Rastogi et al. | Mar 2017 | B2 |
9620340 | Finley | Apr 2017 | B2 |
9620376 | Kamp et al. | Apr 2017 | B2 |
9620987 | Alexander et al. | Apr 2017 | B2 |
9637814 | Bugyi et al. | May 2017 | B2 |
9644221 | Kanamori et al. | May 2017 | B2 |
9651957 | Finley | May 2017 | B1 |
9655221 | Ziemba et al. | May 2017 | B2 |
9663858 | Nagami et al. | May 2017 | B2 |
9666446 | Tominaga et al. | May 2017 | B2 |
9666447 | Rastogi et al. | May 2017 | B2 |
9673027 | Yamamoto et al. | Jun 2017 | B2 |
9673059 | Raley et al. | Jun 2017 | B2 |
9685297 | Carter et al. | Jun 2017 | B2 |
9706630 | Miller et al. | Jul 2017 | B2 |
9711331 | Mueller et al. | Jul 2017 | B2 |
9711335 | Christie | Jul 2017 | B2 |
9728429 | Ricci et al. | Aug 2017 | B2 |
9734992 | Yamada et al. | Aug 2017 | B2 |
9741544 | Van Zyl | Aug 2017 | B2 |
9754768 | Yamada et al. | Sep 2017 | B2 |
9761419 | Nagami | Sep 2017 | B2 |
9761459 | Long et al. | Sep 2017 | B2 |
9767988 | Brouk et al. | Sep 2017 | B2 |
9786503 | Raley et al. | Oct 2017 | B2 |
9799494 | Chen et al. | Oct 2017 | B2 |
9805916 | Konno et al. | Oct 2017 | B2 |
9805965 | Sadjadi et al. | Oct 2017 | B2 |
9812305 | Pelleymounter | Nov 2017 | B2 |
9831064 | Konno et al. | Nov 2017 | B2 |
9837285 | Tomura et al. | Dec 2017 | B2 |
9840770 | Klimczak et al. | Dec 2017 | B2 |
9852889 | Kellogg et al. | Dec 2017 | B1 |
9852890 | Mueller et al. | Dec 2017 | B2 |
9865471 | Shimoda et al. | Jan 2018 | B2 |
9865893 | Esswein et al. | Jan 2018 | B2 |
9870898 | Urakawa et al. | Jan 2018 | B2 |
9872373 | Shimizu et al. | Jan 2018 | B1 |
9881820 | Wong et al. | Jan 2018 | B2 |
9922802 | Hirano et al. | Mar 2018 | B2 |
9922806 | Tomura et al. | Mar 2018 | B2 |
9929004 | Ziemba et al. | Mar 2018 | B2 |
9941097 | Yamazawa et al. | Apr 2018 | B2 |
9941098 | Nagami | Apr 2018 | B2 |
9960763 | Miller et al. | May 2018 | B2 |
9972503 | Tomura et al. | May 2018 | B2 |
9997374 | Takeda et al. | Jun 2018 | B2 |
10020800 | Prager et al. | Jul 2018 | B2 |
10026593 | Alt et al. | Jul 2018 | B2 |
10027314 | Prager et al. | Jul 2018 | B2 |
10041174 | Matsumoto et al. | Aug 2018 | B2 |
10042407 | Grede et al. | Aug 2018 | B2 |
10063062 | Voronin et al. | Aug 2018 | B2 |
10074518 | Van Zyl | Sep 2018 | B2 |
10085796 | Podany | Oct 2018 | B2 |
10090191 | Tomura et al. | Oct 2018 | B2 |
10102321 | Povolny et al. | Oct 2018 | B2 |
10109461 | Yamada et al. | Oct 2018 | B2 |
10115567 | Hirano et al. | Oct 2018 | B2 |
10115568 | Kellogg et al. | Oct 2018 | B2 |
10134569 | Albarede et al. | Nov 2018 | B1 |
10176970 | Nitschke | Jan 2019 | B2 |
10176971 | Nagami | Jan 2019 | B2 |
10181392 | Leypold et al. | Jan 2019 | B2 |
10199246 | Koizumi et al. | Feb 2019 | B2 |
10217618 | Larson et al. | Feb 2019 | B2 |
10217933 | Nishimura et al. | Feb 2019 | B2 |
10224822 | Miller et al. | Mar 2019 | B2 |
10229819 | Hirano et al. | Mar 2019 | B2 |
10249498 | Ventzek et al. | Apr 2019 | B2 |
10268846 | Miller et al. | Apr 2019 | B2 |
10269540 | Carter et al. | Apr 2019 | B1 |
10276420 | Ito et al. | Apr 2019 | B2 |
10282567 | Miller et al. | May 2019 | B2 |
10283321 | Yang et al. | May 2019 | B2 |
10290506 | Ranjan et al. | May 2019 | B2 |
10297431 | Zelechowski et al. | May 2019 | B2 |
10304661 | Ziemba et al. | May 2019 | B2 |
10304668 | Coppa et al. | May 2019 | B2 |
10312048 | Dorf et al. | Jun 2019 | B2 |
10312056 | Collins et al. | Jun 2019 | B2 |
10320373 | Prager et al. | Jun 2019 | B2 |
10332730 | Christie | Jun 2019 | B2 |
10340123 | Ohtake | Jul 2019 | B2 |
10348186 | Schuler et al. | Jul 2019 | B2 |
10354839 | Alt et al. | Jul 2019 | B2 |
10373755 | Prager et al. | Aug 2019 | B2 |
10373804 | Koh et al. | Aug 2019 | B2 |
10373811 | Christie et al. | Aug 2019 | B2 |
10381237 | Takeda et al. | Aug 2019 | B2 |
10382022 | Prager et al. | Aug 2019 | B2 |
10387166 | Preston et al. | Aug 2019 | B2 |
10388544 | Ui et al. | Aug 2019 | B2 |
10389345 | Ziemba et al. | Aug 2019 | B2 |
10410877 | Takashima et al. | Sep 2019 | B2 |
10431437 | Gapiski et al. | Oct 2019 | B2 |
10438797 | Cottle et al. | Oct 2019 | B2 |
10446453 | Coppa et al. | Oct 2019 | B2 |
10447174 | Porter, Jr. et al. | Oct 2019 | B1 |
10448494 | Dorf et al. | Oct 2019 | B1 |
10448495 | Dorf et al. | Oct 2019 | B1 |
10453656 | Carducci et al. | Oct 2019 | B2 |
10460910 | Ziemba et al. | Oct 2019 | B2 |
10460911 | Ziemba et al. | Oct 2019 | B2 |
10460916 | Boyd, Jr. et al. | Oct 2019 | B2 |
10483089 | Ziemba et al. | Nov 2019 | B2 |
10483100 | Ishizaka et al. | Nov 2019 | B2 |
10510575 | Kraus et al. | Dec 2019 | B2 |
10522343 | Tapily et al. | Dec 2019 | B2 |
10535502 | Carducci et al. | Jan 2020 | B2 |
10546728 | Carducci et al. | Jan 2020 | B2 |
10553407 | Nagami et al. | Feb 2020 | B2 |
10555412 | Dorf et al. | Feb 2020 | B2 |
10580620 | Carducci et al. | Mar 2020 | B2 |
10593519 | Yamada et al. | Mar 2020 | B2 |
10607813 | Fairbairn et al. | Mar 2020 | B2 |
10607814 | Ziemba et al. | Mar 2020 | B2 |
10658189 | Hatazaki et al. | May 2020 | B2 |
10659019 | Slobodov et al. | May 2020 | B2 |
10665434 | Matsumoto et al. | May 2020 | B2 |
10666198 | Prager et al. | May 2020 | B2 |
10672589 | Koshimizu et al. | Jun 2020 | B2 |
10672596 | Brcka | Jun 2020 | B2 |
10672616 | Kubota | Jun 2020 | B2 |
10685807 | Dorf et al. | Jun 2020 | B2 |
10707053 | Urakawa et al. | Jul 2020 | B2 |
10707054 | Kubota | Jul 2020 | B1 |
10707055 | Shaw et al. | Jul 2020 | B2 |
10707086 | Yang et al. | Jul 2020 | B2 |
10707090 | Takayama et al. | Jul 2020 | B2 |
10707864 | Miller et al. | Jul 2020 | B2 |
10714372 | Chua et al. | Jul 2020 | B2 |
10720305 | Van Zyl | Jul 2020 | B2 |
10734906 | Miller et al. | Aug 2020 | B2 |
10748746 | Kaneko et al. | Aug 2020 | B2 |
10755894 | Hirano et al. | Aug 2020 | B2 |
10763150 | Lindley et al. | Sep 2020 | B2 |
10773282 | Coppa et al. | Sep 2020 | B2 |
10774423 | Janakiraman et al. | Sep 2020 | B2 |
10777388 | Ziemba et al. | Sep 2020 | B2 |
10790816 | Ziemba et al. | Sep 2020 | B2 |
10791617 | Dorf et al. | Sep 2020 | B2 |
10796887 | Prager et al. | Oct 2020 | B2 |
10804886 | Miller et al. | Oct 2020 | B2 |
10811227 | Van Zyl et al. | Oct 2020 | B2 |
10811228 | Van Zyl et al. | Oct 2020 | B2 |
10811229 | Van Zyl et al. | Oct 2020 | B2 |
10811230 | Ziemba et al. | Oct 2020 | B2 |
10811296 | Cho et al. | Oct 2020 | B2 |
10847346 | Ziemba et al. | Nov 2020 | B2 |
10892140 | Ziemba et al. | Jan 2021 | B2 |
10892141 | Ziemba et al. | Jan 2021 | B2 |
10896807 | Fairbairn et al. | Jan 2021 | B2 |
10896809 | Ziemba et al. | Jan 2021 | B2 |
10903047 | Ziemba et al. | Jan 2021 | B2 |
10904996 | Koh et al. | Jan 2021 | B2 |
10916408 | Dorf et al. | Feb 2021 | B2 |
10923320 | Koh et al. | Feb 2021 | B2 |
10923321 | Dorf et al. | Feb 2021 | B2 |
10923367 | Lubomirsky et al. | Feb 2021 | B2 |
10923379 | Liu et al. | Feb 2021 | B2 |
10971342 | Engelstaedter et al. | Apr 2021 | B2 |
10978274 | Kubota | Apr 2021 | B2 |
10978955 | Ziemba et al. | Apr 2021 | B2 |
10985740 | Prager et al. | Apr 2021 | B2 |
10991553 | Ziemba et al. | Apr 2021 | B2 |
10991554 | Zhao et al. | Apr 2021 | B2 |
10998169 | Ventzek et al. | May 2021 | B2 |
11004660 | Prager et al. | May 2021 | B2 |
11011349 | Brouk et al. | May 2021 | B2 |
11075058 | Ziemba et al. | Jul 2021 | B2 |
11095280 | Ziemba et al. | Aug 2021 | B2 |
11101108 | Slobodov et al. | Aug 2021 | B2 |
11108384 | Prager et al. | Aug 2021 | B2 |
11476090 | Ramaswamy et al. | Oct 2022 | B1 |
20010003298 | Shamouilian et al. | Jun 2001 | A1 |
20010009139 | Shan et al. | Jul 2001 | A1 |
20010033755 | Ino et al. | Oct 2001 | A1 |
20020069971 | Kaji et al. | Jun 2002 | A1 |
20020078891 | Chu et al. | Jun 2002 | A1 |
20030026060 | Hiramatsu et al. | Feb 2003 | A1 |
20030029859 | Knoot et al. | Feb 2003 | A1 |
20030049558 | Aoki et al. | Mar 2003 | A1 |
20030052085 | Parsons | Mar 2003 | A1 |
20030079983 | Long et al. | May 2003 | A1 |
20030091355 | Jeschonek et al. | May 2003 | A1 |
20030137791 | Arnet et al. | Jul 2003 | A1 |
20030151372 | Tsuchiya et al. | Aug 2003 | A1 |
20030165044 | Yamamoto | Sep 2003 | A1 |
20030201069 | Johnson | Oct 2003 | A1 |
20040021094 | Johnson et al. | Feb 2004 | A1 |
20040040665 | Mizuno et al. | Mar 2004 | A1 |
20040040931 | Koshiishi et al. | Mar 2004 | A1 |
20040066601 | Larsen | Apr 2004 | A1 |
20040112536 | Quon | Jun 2004 | A1 |
20040223284 | Iwami et al. | Nov 2004 | A1 |
20050022933 | Howard | Feb 2005 | A1 |
20050024809 | Kuchimachi | Feb 2005 | A1 |
20050039852 | Roche et al. | Feb 2005 | A1 |
20050092596 | Kouznetsov | May 2005 | A1 |
20050098118 | Amann et al. | May 2005 | A1 |
20050151544 | Mahoney et al. | Jul 2005 | A1 |
20050152159 | Isurin et al. | Jul 2005 | A1 |
20050286916 | Nakazato et al. | Dec 2005 | A1 |
20060075969 | Fischer | Apr 2006 | A1 |
20060130767 | Herchen | Jun 2006 | A1 |
20060139843 | Kim | Jun 2006 | A1 |
20060158823 | Mizuno et al. | Jul 2006 | A1 |
20060171848 | Roche et al. | Aug 2006 | A1 |
20060219178 | Asakura | Oct 2006 | A1 |
20060278521 | Stowell | Dec 2006 | A1 |
20070113787 | Higashiura et al. | May 2007 | A1 |
20070114981 | Vasquez et al. | May 2007 | A1 |
20070152678 | Matoba | Jul 2007 | A1 |
20070196977 | Wang et al. | Aug 2007 | A1 |
20070284344 | Todorov et al. | Dec 2007 | A1 |
20070285869 | Howald | Dec 2007 | A1 |
20070297118 | Fujii | Dec 2007 | A1 |
20080012548 | Gerhardt et al. | Jan 2008 | A1 |
20080037196 | Yonekura et al. | Feb 2008 | A1 |
20080048498 | Wiedemuth et al. | Feb 2008 | A1 |
20080106842 | Ito et al. | May 2008 | A1 |
20080135401 | Kadlec et al. | Jun 2008 | A1 |
20080160212 | Koo et al. | Jul 2008 | A1 |
20080185537 | Walther et al. | Aug 2008 | A1 |
20080210545 | Kouznetsov | Sep 2008 | A1 |
20080236493 | Sakao | Oct 2008 | A1 |
20080252225 | Kurachi et al. | Oct 2008 | A1 |
20080272706 | Kwon et al. | Nov 2008 | A1 |
20080289576 | Lee et al. | Nov 2008 | A1 |
20090016549 | French et al. | Jan 2009 | A1 |
20090059462 | Mizuno et al. | Mar 2009 | A1 |
20090078678 | Kojima et al. | Mar 2009 | A1 |
20090133839 | Yamazawa et al. | May 2009 | A1 |
20090236214 | Janakiraman et al. | Sep 2009 | A1 |
20090295295 | Shannon et al. | Dec 2009 | A1 |
20100018648 | Collins et al. | Jan 2010 | A1 |
20100025230 | Ehiasarian et al. | Feb 2010 | A1 |
20100029038 | Murakawa | Feb 2010 | A1 |
20100072172 | Ui et al. | Mar 2010 | A1 |
20100101935 | Chistyakov et al. | Apr 2010 | A1 |
20100118464 | Matsuyama | May 2010 | A1 |
20100154994 | Fischer et al. | Jun 2010 | A1 |
20100193491 | Cho et al. | Aug 2010 | A1 |
20100271744 | Ni et al. | Oct 2010 | A1 |
20100276273 | Heckman et al. | Nov 2010 | A1 |
20100321047 | Zollner et al. | Dec 2010 | A1 |
20100326957 | Maeda et al. | Dec 2010 | A1 |
20110096461 | Yoshikawa et al. | Apr 2011 | A1 |
20110100807 | Matsubara et al. | May 2011 | A1 |
20110143537 | Lee et al. | Jun 2011 | A1 |
20110157760 | Willwerth et al. | Jun 2011 | A1 |
20110177669 | Lee et al. | Jul 2011 | A1 |
20110177694 | Chen et al. | Jul 2011 | A1 |
20110214811 | Ashida | Sep 2011 | A1 |
20110234201 | Tanaka | Sep 2011 | A1 |
20110238360 | Tanaka | Sep 2011 | A1 |
20110259851 | Brouk et al. | Oct 2011 | A1 |
20110281438 | Lee et al. | Nov 2011 | A1 |
20110298376 | Kanegae et al. | Dec 2011 | A1 |
20120000421 | Miller et al. | Jan 2012 | A1 |
20120052599 | Brouk et al. | Mar 2012 | A1 |
20120081350 | Sano et al. | Apr 2012 | A1 |
20120088371 | Ranjan et al. | Apr 2012 | A1 |
20120097908 | Willwerth et al. | Apr 2012 | A1 |
20120171390 | Nauman et al. | Jul 2012 | A1 |
20120319584 | Brouk et al. | Dec 2012 | A1 |
20130026381 | Huang et al. | Jan 2013 | A1 |
20130059448 | Marakhtanov et al. | Mar 2013 | A1 |
20130087447 | Bodke et al. | Apr 2013 | A1 |
20130175575 | Ziemba et al. | Jul 2013 | A1 |
20130213935 | Liao et al. | Aug 2013 | A1 |
20130214828 | Valcore, Jr. et al. | Aug 2013 | A1 |
20130340938 | Tappan et al. | Dec 2013 | A1 |
20130344702 | Nishizuka | Dec 2013 | A1 |
20140057447 | Yang et al. | Feb 2014 | A1 |
20140061156 | Brouk et al. | Mar 2014 | A1 |
20140062495 | Carter et al. | Mar 2014 | A1 |
20140077611 | Young et al. | Mar 2014 | A1 |
20140109886 | Singleton et al. | Apr 2014 | A1 |
20140117861 | Finley et al. | May 2014 | A1 |
20140125315 | Kirchmeier et al. | May 2014 | A1 |
20140154819 | Gaff et al. | Jun 2014 | A1 |
20140177123 | Thach et al. | Jun 2014 | A1 |
20140203821 | Yamamoto | Jul 2014 | A1 |
20140238844 | Chistyakov | Aug 2014 | A1 |
20140262755 | Deshmukh et al. | Sep 2014 | A1 |
20140263182 | Chen et al. | Sep 2014 | A1 |
20140273487 | Deshmukh et al. | Sep 2014 | A1 |
20140305905 | Yamada et al. | Oct 2014 | A1 |
20140356984 | Ventzek et al. | Dec 2014 | A1 |
20140361690 | Yamada et al. | Dec 2014 | A1 |
20150002018 | Lill et al. | Jan 2015 | A1 |
20150043123 | Cox | Feb 2015 | A1 |
20150076112 | Sriraman et al. | Mar 2015 | A1 |
20150084509 | Yuzurihara et al. | Mar 2015 | A1 |
20150111394 | Hsu et al. | Apr 2015 | A1 |
20150116889 | Yamasaki et al. | Apr 2015 | A1 |
20150130354 | Leray et al. | May 2015 | A1 |
20150130525 | Miller et al. | May 2015 | A1 |
20150170952 | Subramani et al. | Jun 2015 | A1 |
20150181683 | Singh et al. | Jun 2015 | A1 |
20150235809 | Ito et al. | Aug 2015 | A1 |
20150256086 | Miller et al. | Sep 2015 | A1 |
20150303914 | Ziemba et al. | Oct 2015 | A1 |
20150315698 | Chistyakov | Nov 2015 | A1 |
20150318846 | Prager et al. | Nov 2015 | A1 |
20150325413 | Kim et al. | Nov 2015 | A1 |
20150366004 | Nangoy et al. | Dec 2015 | A1 |
20160004475 | Beniyama et al. | Jan 2016 | A1 |
20160020072 | Brouk et al. | Jan 2016 | A1 |
20160027678 | Parkhe et al. | Jan 2016 | A1 |
20160056017 | Kim et al. | Feb 2016 | A1 |
20160064189 | Tandou et al. | Mar 2016 | A1 |
20160196958 | Leray et al. | Jul 2016 | A1 |
20160241234 | Mavretic | Aug 2016 | A1 |
20160284514 | Hirano et al. | Sep 2016 | A1 |
20160314946 | Pelleymounter | Oct 2016 | A1 |
20160322242 | Nguyen et al. | Nov 2016 | A1 |
20160327029 | Ziemba et al. | Nov 2016 | A1 |
20160351375 | Valcore, Jr. et al. | Dec 2016 | A1 |
20160358755 | Long et al. | Dec 2016 | A1 |
20170011887 | Deshmukh et al. | Jan 2017 | A1 |
20170018411 | Sriraman et al. | Jan 2017 | A1 |
20170022604 | Christie et al. | Jan 2017 | A1 |
20170029937 | Chistyakov et al. | Feb 2017 | A1 |
20170069462 | Kanarik et al. | Mar 2017 | A1 |
20170076962 | Engelhardt | Mar 2017 | A1 |
20170098527 | Kawasaki et al. | Apr 2017 | A1 |
20170098549 | Agarwal | Apr 2017 | A1 |
20170110335 | Yang et al. | Apr 2017 | A1 |
20170110358 | Sadjadi et al. | Apr 2017 | A1 |
20170113355 | Genetti et al. | Apr 2017 | A1 |
20170115657 | Trussell et al. | Apr 2017 | A1 |
20170117172 | Genetti et al. | Apr 2017 | A1 |
20170154726 | Prager et al. | Jun 2017 | A1 |
20170162417 | Ye et al. | Jun 2017 | A1 |
20170163254 | Ziemba et al. | Jun 2017 | A1 |
20170169996 | Ui et al. | Jun 2017 | A1 |
20170170449 | Alexander et al. | Jun 2017 | A1 |
20170178917 | Kamp et al. | Jun 2017 | A1 |
20170221682 | Nishimura et al. | Aug 2017 | A1 |
20170236688 | Caron et al. | Aug 2017 | A1 |
20170236741 | Angelov et al. | Aug 2017 | A1 |
20170236743 | Severson et al. | Aug 2017 | A1 |
20170243731 | Ziemba et al. | Aug 2017 | A1 |
20170250056 | Boswell et al. | Aug 2017 | A1 |
20170263478 | McChesney et al. | Sep 2017 | A1 |
20170278665 | Carter et al. | Sep 2017 | A1 |
20170287791 | Coppa et al. | Oct 2017 | A1 |
20170311431 | Park | Oct 2017 | A1 |
20170316935 | Tan et al. | Nov 2017 | A1 |
20170330734 | Lee et al. | Nov 2017 | A1 |
20170330786 | Genetti et al. | Nov 2017 | A1 |
20170334074 | Genetti et al. | Nov 2017 | A1 |
20170358431 | Dorf et al. | Dec 2017 | A1 |
20170366173 | Miller et al. | Dec 2017 | A1 |
20170372912 | Long et al. | Dec 2017 | A1 |
20180019100 | Brouk et al. | Jan 2018 | A1 |
20180076032 | Wang et al. | Mar 2018 | A1 |
20180102769 | Prager et al. | Apr 2018 | A1 |
20180139834 | Nagashima et al. | May 2018 | A1 |
20180166249 | Dorf et al. | Jun 2018 | A1 |
20180189524 | Miller et al. | Jul 2018 | A1 |
20180190501 | Ueda | Jul 2018 | A1 |
20180204708 | Tan et al. | Jul 2018 | A1 |
20180205369 | Prager et al. | Jul 2018 | A1 |
20180218905 | Park et al. | Aug 2018 | A1 |
20180226225 | Koh et al. | Aug 2018 | A1 |
20180226896 | Miller et al. | Aug 2018 | A1 |
20180253570 | Miller et al. | Sep 2018 | A1 |
20180286636 | Ziemba et al. | Oct 2018 | A1 |
20180294566 | Wang et al. | Oct 2018 | A1 |
20180309423 | Okunishi et al. | Oct 2018 | A1 |
20180331655 | Prager et al. | Nov 2018 | A1 |
20180350649 | Gomm | Dec 2018 | A1 |
20180366305 | Nagami et al. | Dec 2018 | A1 |
20180374672 | Hayashi et al. | Dec 2018 | A1 |
20190027344 | Okunishi et al. | Jan 2019 | A1 |
20190080884 | Ziemba et al. | Mar 2019 | A1 |
20190090338 | Koh et al. | Mar 2019 | A1 |
20190096633 | Pankratz et al. | Mar 2019 | A1 |
20190157041 | Zyl et al. | May 2019 | A1 |
20190157042 | Van Zyl et al. | May 2019 | A1 |
20190157044 | Ziemba et al. | May 2019 | A1 |
20190172685 | Van Zyl et al. | Jun 2019 | A1 |
20190172688 | Ueda | Jun 2019 | A1 |
20190180982 | Brouk et al. | Jun 2019 | A1 |
20190198333 | Tokashiki | Jun 2019 | A1 |
20190259562 | Dorf et al. | Aug 2019 | A1 |
20190267218 | Wang et al. | Aug 2019 | A1 |
20190277804 | Prager et al. | Sep 2019 | A1 |
20190295769 | Prager et al. | Sep 2019 | A1 |
20190295819 | Okunishi et al. | Sep 2019 | A1 |
20190318918 | Saitoh et al. | Oct 2019 | A1 |
20190333741 | Nagami et al. | Oct 2019 | A1 |
20190341232 | Thokachichu et al. | Nov 2019 | A1 |
20190348258 | Koh et al. | Nov 2019 | A1 |
20190348263 | Okunishi | Nov 2019 | A1 |
20190363388 | Esswein et al. | Nov 2019 | A1 |
20190385822 | Marakhtanov et al. | Dec 2019 | A1 |
20190393791 | Ziemba et al. | Dec 2019 | A1 |
20200016109 | Feng et al. | Jan 2020 | A1 |
20200020510 | Shoeb et al. | Jan 2020 | A1 |
20200024330 | Chan-Hui et al. | Jan 2020 | A1 |
20200035457 | Ziemba et al. | Jan 2020 | A1 |
20200035458 | Ziemba et al. | Jan 2020 | A1 |
20200035459 | Ziemba et al. | Jan 2020 | A1 |
20200036367 | Slobodov et al. | Jan 2020 | A1 |
20200037468 | Ziemba et al. | Jan 2020 | A1 |
20200051785 | Miller et al. | Feb 2020 | A1 |
20200051786 | Ziemba et al. | Feb 2020 | A1 |
20200058475 | Engelstaedter et al. | Feb 2020 | A1 |
20200066497 | Engelstaedter et al. | Feb 2020 | A1 |
20200066498 | Engelstaedter et al. | Feb 2020 | A1 |
20200075293 | Ventzek et al. | Mar 2020 | A1 |
20200090905 | Brouk et al. | Mar 2020 | A1 |
20200106137 | Murphy et al. | Apr 2020 | A1 |
20200126760 | Ziemba et al. | Apr 2020 | A1 |
20200126837 | Kuno et al. | Apr 2020 | A1 |
20200144030 | Prager et al. | May 2020 | A1 |
20200161091 | Ziemba et al. | May 2020 | A1 |
20200161098 | Cui et al. | May 2020 | A1 |
20200161155 | Rogers et al. | May 2020 | A1 |
20200162061 | Prager et al. | May 2020 | A1 |
20200168436 | Ziemba et al. | May 2020 | A1 |
20200168437 | Ziemba et al. | May 2020 | A1 |
20200176221 | Prager et al. | Jun 2020 | A1 |
20200219706 | Koshimizu | Jul 2020 | A1 |
20200227230 | Ziemba et al. | Jul 2020 | A1 |
20200227289 | Song et al. | Jul 2020 | A1 |
20200234922 | Dorf et al. | Jul 2020 | A1 |
20200234923 | Dorf et al. | Jul 2020 | A1 |
20200243303 | Mishra et al. | Jul 2020 | A1 |
20200251371 | Kuno et al. | Aug 2020 | A1 |
20200266022 | Dorf et al. | Aug 2020 | A1 |
20200266035 | Nagaiwa | Aug 2020 | A1 |
20200294770 | Kubota | Sep 2020 | A1 |
20200328739 | Miller et al. | Oct 2020 | A1 |
20200352017 | Dorf et al. | Nov 2020 | A1 |
20200357607 | Ziemba et al. | Nov 2020 | A1 |
20200373114 | Prager et al. | Nov 2020 | A1 |
20200389126 | Prager et al. | Dec 2020 | A1 |
20200407840 | Hayashi et al. | Dec 2020 | A1 |
20200411286 | Koshimizu et al. | Dec 2020 | A1 |
20210005428 | Shaw et al. | Jan 2021 | A1 |
20210013006 | Nguyen et al. | Jan 2021 | A1 |
20210013011 | Prager et al. | Jan 2021 | A1 |
20210013874 | Miller et al. | Jan 2021 | A1 |
20210027990 | Ziemba et al. | Jan 2021 | A1 |
20210029815 | Bowman et al. | Jan 2021 | A1 |
20210043472 | Koshimizu et al. | Feb 2021 | A1 |
20210051792 | Dokan et al. | Feb 2021 | A1 |
20210066042 | Ziemba et al. | Mar 2021 | A1 |
20210082669 | Koshiishi et al. | Mar 2021 | A1 |
20210091759 | Prager et al. | Mar 2021 | A1 |
20210125812 | Ziemba et al. | Apr 2021 | A1 |
20210130955 | Nagaike et al. | May 2021 | A1 |
20210140044 | Nagaike et al. | May 2021 | A1 |
20210151295 | Ziemba et al. | May 2021 | A1 |
20210152163 | Miller et al. | May 2021 | A1 |
20210210313 | Ziemba et al. | Jul 2021 | A1 |
20210210315 | Ziemba et al. | Jul 2021 | A1 |
20210249227 | Bowman et al. | Aug 2021 | A1 |
20210272775 | Koshimizu | Sep 2021 | A1 |
20210288582 | Ziemba et al. | Sep 2021 | A1 |
20210398785 | Lin et al. | Dec 2021 | A1 |
20220037121 | Dorf et al. | Feb 2022 | A1 |
20220238307 | Evans | Jul 2022 | A1 |
20220392750 | Yang et al. | Dec 2022 | A1 |
20220399183 | Cui et al. | Dec 2022 | A1 |
20220399186 | Cui et al. | Dec 2022 | A1 |
20220399189 | Guo et al. | Dec 2022 | A1 |
20220406567 | Yang et al. | Dec 2022 | A1 |
20220415614 | Yang et al. | Dec 2022 | A1 |
20230071168 | Ramaswamy et al. | Mar 2023 | A1 |
20230087307 | Guo et al. | Mar 2023 | A1 |
20230170192 | Guo et al. | Jun 2023 | A1 |
20230170194 | Guo et al. | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
101990353 | Mar 2011 | CN |
102084024 | Jun 2011 | CN |
101707186 | Feb 2012 | CN |
105408993 | Mar 2016 | CN |
106206234 | Dec 2016 | CN |
104752134 | Feb 2017 | CN |
665306 | Aug 1995 | EP |
983394 | Mar 2000 | EP |
1119033 | Jul 2001 | EP |
1203441 | May 2002 | EP |
1214459 | Jun 2002 | EP |
1418670 | May 2004 | EP |
1691481 | Aug 2006 | EP |
1701376 | Sep 2006 | EP |
1708239 | Oct 2006 | EP |
1780777 | May 2007 | EP |
1852959 | Nov 2007 | EP |
2016610 | Jan 2009 | EP |
2096679 | Sep 2009 | EP |
2221614 | Aug 2010 | EP |
2541584 | Jan 2013 | EP |
2580368 | Apr 2013 | EP |
2612544 | Jul 2013 | EP |
2838112 | Feb 2015 | EP |
2991103 | Mar 2016 | EP |
3086359 | Oct 2016 | EP |
3396700 | Oct 2018 | EP |
3616234 | Mar 2020 | EP |
H08236602 | Sep 1996 | JP |
2748213 | May 1998 | JP |
H11025894 | Jan 1999 | JP |
2002-313899 | Oct 2002 | JP |
2002299322 | Oct 2002 | JP |
4418424 | Feb 2010 | JP |
2011035266 | Feb 2011 | JP |
5018244 | Sep 2012 | JP |
2014112644 | Jun 2014 | JP |
2016-225439 | Dec 2016 | JP |
6741461 | Aug 2020 | JP |
2021503700 | Feb 2021 | JP |
100757347 | Sep 2007 | KR |
10-2007-0098556 | Oct 2007 | KR |
10-2009-0010608 | Jan 2009 | KR |
20160042429 | Apr 2016 | KR |
20200036947 | Apr 2020 | KR |
498706 | Aug 2002 | TW |
201717247 | May 2017 | TW |
1998053116 | Nov 1998 | WO |
2000017920 | Mar 2000 | WO |
2000030147 | May 2000 | WO |
2000063459 | Oct 2000 | WO |
2001005020 | Jan 2001 | WO |
2001012873 | Feb 2001 | WO |
2001013402 | Feb 2001 | WO |
2002052628 | Jul 2002 | WO |
2002054835 | Jul 2002 | WO |
2002059954 | Aug 2002 | WO |
2003037497 | May 2003 | WO |
2003052882 | Jun 2003 | WO |
2003054911 | Jul 2003 | WO |
2003077414 | Sep 2003 | WO |
2004084394 | Sep 2004 | WO |
2005124844 | Dec 2005 | WO |
2007118042 | Oct 2007 | WO |
2008016747 | Feb 2008 | WO |
2008050619 | May 2008 | WO |
2008061775 | May 2008 | WO |
2008061784 | May 2008 | WO |
2008062663 | May 2008 | WO |
2009012804 | Jan 2009 | WO |
2009069670 | Jun 2009 | WO |
2009111473 | Sep 2009 | WO |
2011073093 | Jun 2011 | WO |
2011087984 | Jul 2011 | WO |
2011156055 | Dec 2011 | WO |
2012030500 | Mar 2012 | WO |
2012109159 | Aug 2012 | WO |
2012122064 | Sep 2012 | WO |
2013000918 | Jan 2013 | WO |
2013016619 | Jan 2013 | WO |
2013084459 | Jun 2013 | WO |
2013088677 | Jun 2013 | WO |
2013099133 | Jul 2013 | WO |
2013114882 | Aug 2013 | WO |
2013118660 | Aug 2013 | WO |
2013125523 | Aug 2013 | WO |
2013187218 | Dec 2013 | WO |
2014035889 | Mar 2014 | WO |
2014035894 | Mar 2014 | WO |
2014035897 | Mar 2014 | WO |
2014036000 | Mar 2014 | WO |
2014124857 | Aug 2014 | WO |
2014197145 | Dec 2014 | WO |
2015060185 | Apr 2015 | WO |
2014124857 | May 2015 | WO |
2015134398 | Sep 2015 | WO |
2015198854 | Dec 2015 | WO |
2016002547 | Jan 2016 | WO |
2016059207 | Apr 2016 | WO |
2016060058 | Apr 2016 | WO |
2016060063 | Apr 2016 | WO |
2015073921 | May 2016 | WO |
2016104098 | Jun 2016 | WO |
2016128384 | Aug 2016 | WO |
2016131061 | Aug 2016 | WO |
2016170989 | Oct 2016 | WO |
2017172536 | Oct 2017 | WO |
2017208807 | Dec 2017 | WO |
2018048925 | Mar 2018 | WO |
2018111751 | Jun 2018 | WO |
2018170010 | Sep 2018 | WO |
2018197702 | Nov 2018 | WO |
2018217349 | Nov 2018 | WO |
2019036587 | Feb 2019 | WO |
2019040949 | Feb 2019 | WO |
2019099102 | May 2019 | WO |
2019099870 | May 2019 | WO |
2019185423 | Oct 2019 | WO |
2019225184 | Nov 2019 | WO |
2019239872 | Dec 2019 | WO |
2019244697 | Dec 2019 | WO |
2019244698 | Dec 2019 | WO |
2019244734 | Dec 2019 | WO |
2019245729 | Dec 2019 | WO |
2020004048 | Jan 2020 | WO |
2020017328 | Jan 2020 | WO |
2020022318 | Jan 2020 | WO |
2020022319 | Jan 2020 | WO |
2020026802 | Feb 2020 | WO |
2020033931 | Feb 2020 | WO |
2020036806 | Feb 2020 | WO |
2020037331 | Feb 2020 | WO |
2020046561 | Mar 2020 | WO |
2020051064 | Mar 2020 | WO |
2020112921 | Jun 2020 | WO |
2020121819 | Jun 2020 | WO |
2020145051 | Jul 2020 | WO |
2021003319 | Jan 2021 | WO |
2021062223 | Apr 2021 | WO |
2021097459 | May 2021 | WO |
2021134000 | Jul 2021 | WO |
Entry |
---|
Wang, S.B., et al.—“Control of ion energy distribution at substrates during plasma processing,” Journal of Applied Physics, vol. 88, No. 2, Jul. 15, 2000, pp. 643-646. |
Eagle Harbor Technologies presentation by Dr. Kenneth E. Miller—“The EHT Integrated Power Module (IPM): An IGBT-Based, High Current, Ultra-Fast, Modular, Programmable Power Supply Unit,” Jun. 2013, 21 pages. |
Eagle Harbor Technologies webpage—“In Situ Testing of EHT Integrators on a Tokamak,” 2015, 1 page. |
Eagle Harbor Technologies webpage—High Gain and Frequency Ultra-Stable Integrators for Long Pulse and/or High Current Applications, 2018, 1 page. |
Eagle Harbor Technologies webpage—“EHT Integrator Demonstration at DIII-D,” 2015, 1 page. |
Eagle Harbor Technologies webpage—“High Gain and Frequency Ultra-Stable Integrators for ICC and Long Pulse ITER Applications,” 2012, 1 page. |
Eagle Harbor Technologies webpage—“Long-Pulse Integrator Testing with DIII-D Magnetic Diagnostics,” 2016, 1 page. |
Sunstone Circuits—“Eagle Harbor Tech Case Study,” date unknown, 4 pages. |
Prager, J.R., et al.—“A High Voltage Nanosecond Pulser with Variable Pulse Width and Pulse Repetition Frequency Control for Nonequilibrium Plasma Applications,” IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS), pp. 1-6, 2014. |
Kamada, Keiichi, et al., Editors—“New Developments of Plasma Science with Pulsed Power Technology,” Research Report, NIFS-PROC-82, presented at National Institute for Fusion Science, Toki, Gifu, Japan, Mar. 5-6, 2009, 109 pages. |
Semiconductor Components Industries, LLC (SCILLC)—“Switch-Mode Power Supply” Reference Manual, SMPSRM/D, Rev. 4, Apr. 2014, ON Semiconductor, 73 pages. |
PCT International Search Report and Written Opinion dated Nov. 9, 2018, for International Application No. PCT/US2018/043032. |
Taiwan Office Action for Application No. 107125613 dated Dec. 24, 2020, 16 pages. |
PCT International Search Report and Written Opinion dated Nov. 7, 2018, for International Application No. PCT/US2018/042965. |
International Search Report and Written Opinion for PCT/US2019/052067 dated Jan. 21, 2020. |
Electrical 4 U webpage—“Clamping Circuit,” Aug. 29, 2018, 9 pages. |
Kyung Chae Yang et al., A study on the etching characteristics of magnetic tunneling junction materials using DC pulse-biased inductively coupled plasmas, Japanese Journal of Applied Physics, vol. 54, 01AE01, Oct. 29, 2014, 6 pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2019/048392; dated Dec. 16, 2019; 13 pages. |
PCT International Search Report and Written Opinion dated Nov. 7, 2018, for International Application No. PCT/US2018/042961. |
PCT International Search Report and Written Opinion dated Nov. 7, 2018, for International Application No. PCT/US2018/042956. |
U.S. Appl. No. 62/433,204; entitled Creating Arbitrarily-Shaped lon Energy Distribution Function (IEDF) Using Shaped-Pulse (EV) Bias; by Leonid Dorf, et al.; filed Dec. 16, 2016; 22 total pages. |
U.S. Appl. No. 15/424,405; entitled System for Tunable Workpiece Biasing in a Plasma Reactor; by Travis Koh, et al.; filed Feb. 3, 2017; 29 total pages. |
U.S. Appl. No. 15/618,082; entitled Systems and Methods for Controlling a Voltage Waveform at a Substrate During Plasma Processing; by Leonid Dorf, et al.; filed Jun. 8, 2017; 35 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2018/046171; dated Nov. 28, 2018; 10 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2018/046182; dated Nov. 30, 2018; 10 total pages. |
Eagle Harbor Technologies presentation by Dr. Kenneth E. Miller—“The EHT Long Pulse Integrator Program,” ITPA Diagnostic Meeting, General Atomics, Jun. 4-7, 2013, 18 pages. |
Lin, Jianliang, et al.,—“Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses,” Surface & Coatings Technology 258, 2014, published by Elsevier B.V., pp. 1212-1222. |
PCT/US2020/014453 Interanational Search Report and Written Opinion dated May 14, 2020 consists of 8 pages. |
S.B. Wang et al. “lon Bombardment Energy and SiO 2/Si Fluorocarbon Plasma Etch Selectivity”, Journal of Vacuum Science & Technology A 19, 2425 (2001). |
Korean Office Action for 10-2020-7007495 dated Jun. 14, 2021. |
Zhen-hua Bi et al., A brief review of dual-frequency capacitively coupled discharges, Current Applied Physics, vol. 11, Issue 5, Supplement, 2011, pp. S2-S8. |
Chang, Bingdong, “ Oblique angled plasma etching for 3D silicon structures with wiggling geometries” 31(8), [085301]. https://doi.org/10.1088/1361-6528/ab53fb. DTU Library. 2019. |
Michael A. Lieberman, “A short course of the principles of plasma discharges and materials processing”, Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720. |
Dr. Steve Sirard, “Introduction to Plasma Etching”, Lam Research Corporation. 64 pages. |
Zhuoxing Luo, B.S., M.S, “RF Plasma Etching With a DC Bias” A Dissertation in Physics. Dec. 1994. |
Michael A. Lieberman, “Principles of Plasma Discharges and Material Processing”, A Wiley Interscience Publication. 1994. |
Yiting Zhang et al. “Investigation of feature orientation and consequences of ion tilting during plasma etching with a three-dimensional feature profile simulator”, Nov. 22, 2016. |
Richard Barnett et al. A New Plasma Source for Next Generation MEMS Deep Si Etching: Minimal Tilt, Improved Profile Uniformity and Higher Etch Rates, SPP Process Technology Systems. 2010. |
The International Search Report and the Written Opinion for International Application No. PCT/US2021/040380; dated Oct. 27, 2021; 10 pages. |
International Search Report and Written Opinion dated Feb. 4, 2022 for Application No. PCT/US2021/054806. |
International Search Report and Written Opinion dated Feb. 4, 2022 for Application No. PCT/US2021/054814. |
Chinese Office Action for 201880053380.1 dated Dec. 2, 2021. |
Taiwan Office Action for 108132682 dated Mar. 24, 2022. |
International Search Report/Written Opinion issued to PCT/US2022/053455 on May 9, 2023. |
Number | Date | Country | |
---|---|---|---|
20240094273 A1 | Mar 2024 | US |