The present invention relates to wind and temperature spectrometers that may be used, for example, for measurements of neutral wind and ion drifts in the Earth's thermosphere and ionosphere. The invention may also be used to obtain the temperature of the thermosphere and ionosphere, and the relative densities of their major constituents, such as O and N2, or O+ and NO+.
The determination of neutral winds and ion drifts in low-Earth orbits may require measurements of the angular and energy distributions of the flux of neutrals and ions entering a satellite from the ram direction. The ram direction may be the direction of the average or total velocity T of the air stream passing aperture 10 as shown in
The average total velocity T of the air is the sum of the satellite velocity S and the wind vector W. The magnitude and direction of the neutral wind (or ion drift) vector W determines the location of the maximum in the angular distribution of the flux F. Knowledge of the angle of maximum flux with respect to the satellite's coordinates, and the satellite's pointing with respect to S, may be used to determine the wind (or ion drift) vector W.
Spectrometers may detect the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. A small-deflection energy analyzer (SDEA) is described in “The Gated Electrostatic Mass Spectrometer (GEMS): Definition and Preliminary Results”; F. A. Herrero, H. H. Jones, J. G. Lee; Journal Of American Society for Mass Spectrometry 2008, 19, pp. 1384-1394, Jul. 18, 2008, which is expressly incorporated by reference in its entirety herein. On page 1388 of the cited article, it is noted that the exit slit may be laid out in a circular arc spanned by an angle, such as theta or tau, so that all trajectories have the same length along the SDEA. For measurements along two mutually perpendicular planes, such as the planes spanned by the axes tau and theta of
In one aspect, a wind and temperature spectrometer (WTS) may include a crossed SDEA that may provide detection in two mutually perpendicular planes.
A crossed SDEA may include eight plates defined by the intersection of a first pair of parallel planes spaced apart a distance D with a second pair of parallel planes spaced apart the distance D and a hemisphere having a center and a great circle. The first and second pairs of parallel planes may be perpendicular to each other and to the great circle, and may be arranged symmetrically about the center of the hemisphere.
An aperture member may be located adjacent and spaced apart from the great circle. The aperture member may define an entrance aperture that is centered on a line that is perpendicular to the plane of the great circle and that intersects the center of the hemisphere.
An exit slit member may be spaced apart from a curved surface of the hemisphere. The exit slit member may include an exit slit defined by the intersection of a pair of perpendicular planes with a curved surface of a second hemisphere that is concentric with the hemisphere. The second hemisphere may have a great circle that is coplanar with the great circle of the hemisphere, and a radius that is larger than a radius of the hemisphere. One of the pair of perpendicular planes may be parallel to the first pair of parallel planes. The line of intersection of the pair of perpendicular planes may be parallel to and offset from a line that contains the center of, and is normal to, the great circle of the hemisphere.
A detector plate may be located adjacent and spaced apart from the exit slit member. The detector plate may be in a plane parallel to the plane of the great circle of the hemisphere.
The crossed SDEA may be included in a WTS. The WTS may also include a second aperture member that defines an entrance aperture for the WTS, and a single ion source ionizer chamber disposed downstream of the second aperture member.
A method of measuring neutral winds and ion drifts may include providing a crossed SDEA, and detecting angular and energy distributions of ions passing through the crossed SDEA. The detecting may include detecting in two mutually perpendicular planes. The ions may be produced using a single ion source ionizer chamber.
The method may include alternating the voltage applied to plates of the SDEA. In addition, the magnitude of the alternated voltage may be varied to produce an energy spectrum.
Further features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the following drawings.
To obtain the wind vector W as discussed with
Rather than use two, separate, semi-circular SDEAs, a WTS may use a crossed SDEA to measure the angular distribution along two perpendicular slices of the angular distribution shown in
A WTS having a crossed SDEA may occupy minimal volume and consume minimal power. The WTS may be designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km. The WTS may operate by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. The two detection planes may cross at the spectrometer center, thereby enabling use of a single ion source for wind/temperature measurements. Use of a single ion source may reduce the required electrical power by half. In addition, the reduction in the volume of the WTS may benefit both neutral and ion measurements in the upper atmosphere.
The crossed SDEA may combine the two angular distributions into a single spectrometer with a single optical axis. This combination may minimize the volume and footprint of the WTS significantly and may reduce the ion source power by a factor of two. Ultimately, the size of a spectrometer may be determined by the required sensitivity and the required energy resolution. The area of the entrance aperture may affect the number of ions detected per second and may also determine the energy resolution. In addition, in a WTS, the sensitivity may also depend on the ionizing electronic current.
Ultraviolet photons, mainly of 121.8 nanometer wavelength, may contaminate the particle signal if they reach the detector 40. The photon flux entering the crossed SDEA 22 may be limited by the entrance aperture 80, the bias plate 28, and the ionizer entrance member 32. Less than one in one thousand of the ultraviolet photons entering the crossed SDEA 22 may reach the detector 40. The interior surfaces, for example, plates 48-62 and exit slit member 64 (see
The eight plates 48-62 may be defined by the intersection of the above-described two sets of parallel planes with a hemisphere. The hemisphere may include a center C, a great circle G (shown in dashed line in
An exit slit member 64 may be spaced apart from the curved surfaces of the plates 48-62. The exit slit member 64 may define an exit slit having two curved segments 66, 68. The plane containing curved segment 66 may be perpendicular to the plane containing curved segment 68. Segments 66, 68 may be defined by the intersection of a pair of perpendicular planes with the curved surface of a hemisphere having center C, a great circle that is coplanar with the great circle G, and a radius M (
Detector plate 40 (
Neutral atoms and molecules may enter the WTS through the WTS entrance aperture 80 (
For angles of incidence at the WTS entrance aperture 80 of less than about 45 degrees, the electric field between the parallel plates of the SDEA 22 may be uniform with a negligible azimuthal component. In the region of the center of the symmetrical cross formed by the eight plates 48-62, the electric field may be weaker than the electric field further away from the center, in the “legs” of the symmetrical cross. Thus, for angles of incidence larger than about five degrees, ion deflection for all trajectories may be similar. For smaller angles of incidence, the trajectories may be measurably different. This effect may be taken into account during calibration of the WTS, to enable proper use of the data. Thus, the two sets of trajectories may be considered as purely perpendicular to the parallel plates of the SDEA 22, thereby preserving the original angle of incidence of the ion at the WTS entrance aperture 80. The location of the anodes 70 of the anode array 42 (
The number of ions detected at each of the anodes 70 is a two-dimensional angular distribution of the flux F along two perpendicular planes, as shown by the hatched area in
The magnitude of the total wind vector W may be obtained by producing an energy spectrum for each point or pixel (tau, theta) of the angular distribution. The energy spectrum may be obtained by scanning or varying the voltage between the respective SDEA plates shown in
If the identity of the constituents of the incoming flux F is unknown, then another instrument, such as a mass spectrometer, may be used to determine the identity (mass) of the constituents of the incoming flux. Once the masses of the constituents are known, and the energy measured by the WTS 20, the velocity of the wind vector W may be obtained from the kinetic energy equation.
The size and dimensions of the WTS 20 may be scaled for particular applications. The WTS 20 may be mounted in a satellite with its entrance aperture 80 pointed in the direction of satellite motion (ram direction). The satellite velocity S may be about 8000 meters per second and the wind vector W may be in a range of about 0-200 meters per second. The angles of incidence in each perpendicular plane, that is, tau and theta from
In one embodiment, the outer diameter of the WTS 20 may be about 1.5 inches. The WTS 20 may occupy a volume of less than about 40 cubic centimeters.
The SDEA entrance aperture 78 may have a diameter of about 0.008 inches (0.20 mm) to provide the required neutral signal and energy resolution between 0.05 (one part in twenty) and 0.15 (three parts in twenty). The distance from the SDEA entrance aperture 78 to the center C of the great circle G may be about 0.1 D.
The WTS 20 may scan ions having energy in a range of about 0.1 to about 20 eV by applying voltages between 0 to 5 volts to the SDEA plates. The ratio L/D (radius of SDEA/gap between plates) may determine the voltage that must be applied between the SDEA plates to select a particular ion energy.
The difference between the radius L of the SDEA plates and the radius M of the exit slit member 54 may be about 0.05 L. The width of the exit slit segments 66, 68 may be about 0.008 inches. The offsets b, c of the center of the exit slit 66, 68 from the center C may be, for example, about 0.080 inches. Optimum values for the offsets b, c may be determined from ion trajectory calculations, using, for example, a trajectory simulation program such as SIMION. The offsets b, c may be slightly larger than the width of the exit slit segments 66, 68. An exemplary value for b or c may be, for example, about 0.010 inches. The offsets b, c may preferably be as large as possible to achieve deflection that is sufficient for good energy definition and, also, for optimal photon rejection. The number of anodes 70 in each exit slit segment 66, 68 may be about 32.
Thermionic emitters may require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy may be about 100 eV and may require an additional 100 mW of power for electron acceleration. Thus, ion source power may be about 200 mW. If two ion sources are used, the ion source power may be 400 mW. Detector power, deflection voltage power, and micro-controller and other functions may require less than 150 mW. Thus, a wind and temperature spectrometer with two separate optical axes (two separate ion sources) may consume about 550 mW. However, the presently described WTS 20, with its single ion source and a crossed SDEA, may consume about 350 mW.
With its small size and low power requirement, the crossed SDEA may offer the right size for use in the new nano-satellites and in the newly popular satellite format known as the Cube-Sat. The Cube-Sat satellite may have dimensions of about four inches by four inches by four inches. The power required by the crossed SDEA, for example, less than 0.4 W, may be quite compatible with typical Cube-Sat power budgets of about four W. Despite the small size of the crossed SDEA, thermionic cathodes may provide the needed sensitivity. The crossed SDEA may provide one or more full wind vector determinations per second in low-Earth orbit (about 400 km altitude). Thus, the crossed SDEA offers many advantages in the measurements of neutral wind and ion drifts in the Earth's thermosphere. As such, it may be useful in satellites that monitor the ionosphere, with a view to improving the integrity and predictability of GPS operations.
The invention described herein was made by employees of the United States Government, and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.
Number | Name | Date | Kind |
---|---|---|---|
3000833 | Coleman et al. | Sep 1961 | A |
7372021 | Cotter et al. | May 2008 | B2 |
20040256549 | Bowdler et al. | Dec 2004 | A1 |
20070029474 | Cotter et al. | Feb 2007 | A1 |
20110032496 | Shibazaki | Feb 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110180700 A1 | Jul 2011 | US |