1. Field of the Invention
The present invention generally relates to a power generation device/generator and more specifically relates to power generating devices with rotational blades.
2. Related Art
Wind turbines are traditionally designed to capture the wind via rotating blades that turn a generator unit located at the center or hub of the blades. The power produced by this type of generator is proportional to the wind velocity, swept area, and air density (Power=0.5×Swept Area×Air Density×Velocity3). Unfortunately, traditional wind turbines are expensive, inefficient and occupy a considerable amount of space. Traditionally, wind power devices have utilized many different technologies for blades, gearboxes, and electrical generators, but still produce limited amount of power due to the fact that all the designs are basically similar and follow the same generator principles, namely traditional three bladed propeller windmill designs.
Several companies make three bladed propeller windmills or wind turbines. The three bladed wind turbines are designed to capture the wind via the three rotating blades that turn a generator unit located in the center of the blades. Thus, the three blade wind turbines produce electrical power by rotational torque that is created by the surface area of the blades. The most effective part of the blades is the portion that travels through the greatest volume of air. That part is found at the tips of the blades. Unfortunately the three-bladed turbine blade tips surface area calculates to be less than 10% of the total surface area.
It would be useful to produce power using rotating blades in a small footprint while increasing the effective part of the blades in order to produce two to five times the power as traditional devices while occupying the same space as the traditional three bladed wind turbines.
The present blade design is unique with the total area of the blades being located on the outside 50% of the assembly while eliminating the inner 50%, thus reducing the total weight of the blades. By eliminating the inner 50% of the blades, this invention introduces a “ported” aerodynamic system which allows the inner 50% of the wind to pass though the first blades of the wind jet turbine without interruption and the outer 50% to be angularly redirected. The blade shape creates a Venturi effect that causes the wind speed to increase while passing through the ported center section of the wind jet turbine. The combination of the increased inner wind speed and the redirected outer wind speed of the air leaving the turbine may result in an unchanged wind speed at the tail end of the wind jet turbine. Betz law was created in 1919 and published in 1926 and is used to calculate the power output of a wind turbine by the differential wind speed entering and leaving the wind turbine or blades. Betz law defines 0.59% as being the limit of the amount of power that may be derived from an air mass passing through the swept diameter of a rotor or blade.
Thus, an increase in power production is achieved when the wind speed is significantly unchanged between entering and leaving the wind jet turbine. Additionally, the wind jet turbine eliminates the aerodynamic bubble that typically forms over the wind turbines. This approach also eliminates Betz law from applying to the entire wind jet turbine. Rather Betz law only applies to each blade individually in the wind jet turbine.
The wind jet turbine may be designed with blades contained within a housing that maximizes wind capturing and effective striking area. The electric generator may be designed to reduce losses and increase efficiency. The power generation in the generator section may be based on a new principle for generating power in a rotating machine. The principals utilizes magnets in combination with duration and electric cancellation all combined in one system to generate electrical power. The new approach may be called Magnetic Width Modulation (MWM). The MWM principle may be applied to motors, generators or any machine where magnetic variation is employed.
The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.
Unlike the known approaches previously discussed, a wind jet turbine as disclosed herein overcomes the above limitations. For example, one of the implementation of this wind jet turbine may be a wind turbine in a wind farm. The physical size for the grid application wind jet turbine may be from a few feet to hundreds of feet. Another example application of a wind jet turbine may be for residential use to generate power for building in the range of 1-2 Kilowatt to a few Megawatts. The physical size of residential and commercial wind jet turbines may be from a foot to several feet (such as 20 feet).
Another application of a wind jet turbine may be generating power for vehicles, boats, planes and/or any moving vehicle with the generated power in the Kilowatt range. The physical size of a vehicle wind jet turbine would be from a few inches to a few feet. Furthermore, the approach for generating power with the wind jet turbine is not limited to wind, but may be employed with any current or mass (i.e., fluid—where fluid includes wind) that can produce force to rotate the blades, such as water. The wind jet turbine may also be used to produce power for emergencies, such as backup power for a building.
The housing and blade design may generate power by rotating a standard power generator, for example, with a rotor and stator such as in a conventional diesel generator or may generate power by utilizing Magnetic Width Modulation (MWM) or direct current (DC) generation approaches.
Turning to
One or more sets of blades, such as stage one blades 114, stage two blades 116, stage three blades 118, and stage four blades 120, may be rotatably secured within the housing. The sets of blades may be secured to a single shaft as shown in
Maximum power relative to the amount of wind velocity occupying a relatively small area compared to traditional three blade wind turbines is achieved with the wind jet turbine 100. The housing 102 of the wind jet turbine 100 may be divided into two sections, section A 128 and section B 130. In other implementations, the housing may be made of only one section or more than two sections. Section A 128 of housing 102 captures the wind and directs it to the stage one blades 114 and stage two blades 116. In some implementations, the stage one blades 114 may rotate in a direction opposite of the stage two blades 116. Section B 130 captures the wind coming through section A 128 in combination with outside wind directed through an opening132 formed between sections A 128 and B 130.
Section B 130 captures the wind and directs it to the stage three blades 118 and stage four blades 120. In some implementations, stage three blades 118 may rotate in the same direction as stage one blades 114 and stage four blades 120 may rotate in the same direction as stage two blades 116. The wind striking the areas of the blades in combination with the counter rotating blades increases wind capturing while increasing the stability within the wind jet turbine.
The shape of the housing 102 increases the wind speed and increases the air density inside the wind jet turbine while creating a density deferential between the air within the housing 102 and the outside passing wind. The air density increases the power of the wind inside of the housing when striking the blades in accordance to the formula (Power=0.5×Swept Area×Air Density×Velocity3).
The interior section of the housing 102 may be configured or formed to capture the wind through a large opening area 132 and direct the wind through the interior of a decreased diameter area (see B 130 of
The housing 102 of
The blade tip surface area 126 may be increased, for example, 20 to 1000 times, compared to traditional wind turbines of similar size. This increase of the outer blade tip surface area goes through a tremendous volume of wind and creates extremely high torque. The blade design of
The blade design creates a Venturi effect that causes the wind speed to increase while passing through the ported center section of the housing 102 of the wind jet turbine 100. The combination of the increased inner wind speed and the redirected outer wind speed leaving the turbine results in an unchanged wind speed at the tail end (end with tail 104) of the wind jet turbine.
Betz law was published in 1926 and defined 0.59% as being the limit of the amount of power that may be derived from an air mass passing through a swept diameter of a rotor. Betz law calculates the power output of a traditional wind turbine by the differential wind speed entering and leaving the turbine or blades. The wind jet turbine approach thus results in tremendous power production with a relatively unchanged wind speed entering and leaving. In addition, the current wind jet turbine approach eliminates the aerodynamic bubble that typically forms over wind turbines by having the wind speed entering and leaving the wind jet turbine approximately equal. The wind jet turbine approach also eliminates Betz law from applying to the entire wind jet turbine. Rather, Betz law applies only to each blade of the wind jet turbine individually.
With Betz law applying to each blade of the wind jet turbine individually instead of relating to the overall turbine and blade diameter, advancement in technology of wind turbine design is achieved. By using the standard formula Lf×Wp=Fp (Leverage feet×Wing pounds=Food pounds), multiplying the foot pounds of torque times the number of wings in turbine to find the total power of the wind turbine resulting in a total power formula of:
Total power=(Lf×Wp)×number of wings.
By having high number of aerodynamic blade tips at the farthest distance from the center of rotation (blade tips 126), the wind jet turbine 100 is able to convert wind energy exerted on individual wings in the sets of blades (114, 116, 118, 120) into high torque leverage resulting in higher power output than traditional wind turbines of similar size.
The wind jet turbine blades of a large wind jet turbine n accordance withy the present invention weigh only in hundreds pounds each compared to the traditional large three-bladed turbines that weigh thousands of pounds each. The present invention introduces lighter weight blades and structure that can rotate at higher RPM, for example, three to four times the RPM of traditional wind turbines without affecting the stability of the total assembly. This added stability at high RPMs eliminates the need for a transmission/gearbox and at the same time takes advantage of the RPM increase to produce additional power. Furthermore, the lighter blades may be made lighter with the use of light weight materials, such as aluminum or plastic.
For example, if a traditional wind turbine has a 25 foot radius and captures 100 pounds of force per blade at a 20 mph wind speed, then the total torque is:
25 Lf×100×3 Wp=7,500 f.lb.
In the present wind jet turbine approach, with a 25 feet radius (housing 102 front opening), 21 blades and 100 pound of force at a 20 mph wind speed the torque is;
25 Lf×100×21 Wp=52,500 f.lb.
By using the formula:
Power (kW)=(Torque×2×3.14×Rpm)/60000,
the present approach introduces a high torque wind jet turbine that is small in diameter and high in RPM. The wind jet turbine produces seven times the torque and three to four times the RPM and results in 21-28 times more power than traditional wind turbines of similar size.
In
Turning to
The wind jet turbine 100 enhances the efficiency of the blades by utilizing multiple blades, for example, from 20 to 1000 blades. The multiple blades and reduced inner blade area increases the effectiveness of the wind striking areas of all blades in all stages, for example, by eliminating the inside 50% of the blades in all stages (114, 116, 118, and 120) or eliminating the inside 50% of stage one blades 114 and stage three blades 118 and the middle to outside 50% of stage two blades 116 and stage four blades 120. This allows significant air to pass through the center of and the sides of the blades so an aerodynamic bubble does not form over the wind jet turbine 100 and eliminates Betz law from applying to the entire wind jet turbine. Each blade of the wind jet turbine in the current example has a 0.59% Betz limit.
In
The blades of the different stages of fan blades (114, 116, 118, and 120) may also be designed with springs and shafts. Each fan blade, such as blade 404, is able to pivot on a rod or support 406 that may be next to the shaft 408. A spring 402 or other resistance producing device may bias the fan blade 404 in a first position or resting position. The spring 402 may be formed so that a blade 404 opens or move as the wind speed increases. For example, the blade may move from an eighty-five degree wind angle to a five degree wind angle as the speed of wind increases from one mile an hour to two-hundred and fifty miles per hour.
The blades of the wind jet turbine may generate power with an electric generator. The power coils and magnets may be wired differently within the same housing to generate either Alternating Current (AC) on Direct Current (DC) sources. The electric generator is designed to reduce losses and increase efficiency. The power generation in the generator section is based on a new principal of generating power in a rotating machine utilizing the principals of magnets in combination with duration and electric cancellation called Magnetic Width Modulation (MWM). The MWM principle may be applied to motors, generation or any machine where magnetic variation is needed.
Turning to
The magnetizing generator 124 or power source may be located in the center of the wind jet turbine 100 and increases or decreases the current delivered to the induced magnet coil 504 at the tips of the blades relative to the rotational speed of the fan blades (and magnetizing generator 124). The increasing or decreasing of the magnetic strength which will increase or decrease the power output of the wind jet turbine is thus modified with the rotation of the fan blades. In other words, the increase and decrease of current may be relative to the wind speed or velocity and/or the rotation or rounds per minute (RPM) of the turning blades.
Turning to
In
The magnetizing generator 702 may be a permanent magnet generator that has power output directed though a variety of silicon controlled rectifiers (SCR) and/or transistors controlled by a control circuit. The control circuit may turn off and on the SCRs and/or transistors and vary the firing timing in order to produce the desired magnitude and proper frequency sequence. By controlling the magnetic field passing through the stator winding, full control of the generator output is achieved. This full control allows for the maximizing of the power output of the wind jet turbine 100 at any speed by synchronizing the wind speed with the transistor firing timing. This control approach results in the magnetization amplitude maximizing the power output of the wind jet turbine 100.
The power coils, permanent magnets and/or induced magnets may be wired differently within the same housing to produce Alternating Current (AC) on Direct Current (DC) sources. The AC power may be delivered to the load or a transformer and produce the desired output for any grid, commercial, vehicle, sea vehicles, and any other applications.
Turning to
In
The production of DC power may be achieved by utilizing the magnets, such as magnet 902, in the blade tips crossing thought multiple power coils 904. The power coils 904 may be arranged and/or positioned to accept the negative and positive flux of the magnets and redirect the current of both fluxes to produce one current in one direction. This may be achieved by utilizing the power coils connection arrangements and/or by using rectifiers 906, such as diodes/SCRs, thus creating a positive DC waveform 908 from an initial waveform 910 for both positive and negative magnetic fluxes.
Turning to
The mechanical control of the MWM is preferably designed with variable/different widths of flux-transmitting permanent, induced magnets, and receiving power coils and cores. The electrical control of the MWM is preferably applied to the permanent magnet tips design and is preferably designed with an electronic controlled circuit that produces on/off signals for the transistors similar to Pulse Width Modulation in a predetermined order that control the current flow to the induced magnets. This control of the transistors produces a controlled flux amplitude and duration at the tip of the blades in respect to time and rotation. The reference signal 1010 senses the waveform amplitude, frequency and zero crossing and then sends a reference signal back to the controller. The controller utilizes the reference signal to correct the firing signal going to the transistors, which in turn is fed to the windings 1012 and 1014 as a phase power 1016.
Thus, the MWM approach is able to produce a clean AC waveform. For example, the magnetic field duration changes through time in an increasing then decreasing manner as shown in graph 1008. The magnetic flux changes its duration in the flux exchange area, such as permanent magnet 1004, to main power coils or induced magnets to the main power coils. For induced magnets, the flux duration change may be accomplished by either increasing or decreasing the power coil and core size/width of the flux exchange area, and/or by the magnetization duration of the induced magnets on the tips of the blades.
For permanent magnets, the flux duration change may be achieved by either increasing or decreasing the power coil and core size/width of the flux exchange area and/or by the reducing or increasing the permanent magnets size and/or surface area on the tips of the blades. The flux changing through time generates an increasing and decreasing waveform width that when summed and combined at higher frequency will results in a combined AC power waveform.
In
The blade position sensors 1104 may sense the blade/winding position in relation to the induced magnet or magnet position and sends the signal to the controller 1102. The waveform position sensor 1108 may sense the current and voltage as it crosses the zero position (the zero position is when the voltage is zero and/or the current is zero) and transmits the signal to the controller 1102. The power sensors 1110 may monitor the output voltage and current levels and send the signal to the controller 1102. The metering board and communication block 1118 translates, transmits and displays all power information and electrical operation of the wind jet turbine 100. The controller 1102 may translate and otherwise process all incoming signals from the blade sensor, wave sensor, and power sensor boards. The controller 1102 may then send the appropriate signals (on and off signals) to the transistor and/or SCR electronic switch 1114 that controls the amount of current, frequency and voltage of the induced magnets in relation to the position of the magnets and waveforms.
Turning to
In
The magnets are described as being located at the tips of the fan blade. The term “at the tips” may mean at the very end of the fan blade, in a side of the fan blade at a region close to the end of the fan blade, or attached to the blade at a region close to the end of the fan blade.
The foregoing description of an implementation has been presented for purposes of illustration and description. It is not exhaustive and does not limit the claimed inventions to the precise form disclosed. Modifications and variations are possible in light of the above description or may be acquired from practicing the invention. The claims and their equivalents define the scope of the invention.
This application claims priority to U.S. Provisional Patent Application, Ser. No. 61/210,215, titled WIND JET TURBINE, filed on Mar. 16, 2009, and U.S. Provisional Patent Application, Ser. No. 61/173,889, titled WIND JET TURBINE II, filed on Apr. 29, 2009, all of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/27531 | 3/16/2010 | WO | 00 | 11/28/2011 |
Number | Date | Country | |
---|---|---|---|
61210215 | Mar 2009 | US | |
61173889 | Apr 2009 | US |