Wind power turbine electric generator and wind power turbine equipped with an electric generator

Information

  • Patent Grant
  • 8975770
  • Patent Number
    8,975,770
  • Date Filed
    Thursday, April 21, 2011
    13 years ago
  • Date Issued
    Tuesday, March 10, 2015
    9 years ago
Abstract
A wind power turbine electric generator, the electric generator having a tubular first supporting structure extending about an axis of rotation; a second supporting structure extending about the axis of rotation, substantially coaxial with the first supporting structure, and fitted to the first supporting structure to rotate about the axis of rotation; first active parts fitted to the first supporting structure; second active parts fitted to the second supporting structure, facing the first active parts, and separated from the first active parts by an annular gap; and a radial tensioning device configured to adjust the shape of the first supporting structure about the axis of rotation.
Description
PRIORITY CLAIM

This application claims the benefit of and priority to Italian Patent Application No. MI2010A 000694, filed on Apr. 22, 2010, the entire contents of which are incorporated by reference herein.


BACKGROUND

Certain known electric generators normally comprise a tubular first supporting structure extending about an axis of rotation; a second supporting structure extending about the axis of rotation, substantially coaxial with the first supporting structure, and fitted to the first supporting structure to rotate about the axis of rotation; first active parts fitted to the first supporting structure; and second active parts fitted to the second supporting structure, facing the first active parts, and separated from the first active parts by an annular gap.


Known electric generators of this type are widely used on wind power turbines. More recently, permanent-magnet synchronous electric generators have also been used, particularly on direct-drive wind power turbines (i.e., comprising a blade assembly connected directly to the electric generator, with no gearboxes in between). Examples of direct-drive wind power turbines equipped with permanent-magnet synchronous electric generators are described in documents EP Patent No. 1,425,840; EP Patent No. 1,792,381; EP Patent No. 2,102,496; EP Patent No. 2,063,115; EP Patent No. 2,063,116; EP Patent No. 2,063,117; EP Patent No. 2,143,938; EP Patent No. 2,143,942; and EP Patent No. 2,143,944.


Though: (a) direct-drive wind power turbines are more efficient mechanically and cheaper to maintain than gearbox types, and (b) synchronous electric generators are more efficient electrically than asynchronous types; direct-drive wind power turbines are characterized by fairly low rotation speed, which, combined with the need for more and more electric power, makes it necessary to employ permanent-magnet synchronous electric generators with numerous poles and a high maximum torque, and therefore large-size electric generators which can pose structural problems.


The first supporting structure and first active parts define the stator or rotor of the electric generator, and the second supporting structure and second active parts define the rotor or stator, so the larger the electric generator is, the larger the first and second supporting structures are. Moreover, because it weighs on the wind power turbine structure as a whole, the weight of the electric generator must be maintained within given limits, over and above which a larger, more expensive wind power turbine is needed. Also, it is preferable that the first and second supporting structure not be too massive or heavy.


The first supporting structure is often defined by a tubular structure which, besides supporting the first active parts, also defines a load-bearing structural element of the wind power turbine as a whole, as shown, for example, in EP Patent No. 1,425,840 and EP Patent No. 2,102,496. As a result, the first supporting structure is subject to a normally small amount of strain, particularly during assembly but also possibly during operation of the electric generator. Even a small amount of strain of the first supporting structure, however, may have serious effects, by modifying the annular gap between the first and second active parts and so impairing operation of the electric generator. The normal practice, in fact, is to minimize the radial size of the annular gap to increase the efficiency of the electric generator and reduce flux dispersion, but it is often necessary to oversize the annular gap to prevent strain of the first supporting structure from affecting the electric generator.


SUMMARY

The present disclosure relates to a wind power turbine electric generator.


In one embodiment, the present disclosure relates to an electric generator for a direct-drive wind power turbine.


It is an object of the present disclosure to provide an electric generator configured to reduce certain of the drawbacks of the known art.


Another object of the present disclosure is to provide an electric generator configured to give maximum efficiency when installed on a wind power turbine.


According to one embodiment of the present disclosure, there is provided an electric generator for a wind power turbine; the electric generator comprising: a tubular first supporting structure extending about an axis of rotation; a second supporting structure extending about the axis of rotation, substantially coaxial with the first supporting structure, and fitted to the first supporting structure to rotate about the axis of rotation; first active parts fitted to the first supporting structure; second active parts fitted to the second supporting structure, facing the first active parts, and separated from the first active parts by an annular gap; and a radial tensioning device configured to adjust the shape of the first supporting structure about the axis of rotation.


The circular shape of the first supporting structure can thus be adjusted to control and if necessary correct the radial size of the annular gap.


In one embodiment of the present disclosure, the radial tensioning device comprises an annular plate; and a number of radial arms extending from the annular plate to the first supporting structure.


The annular plate thus provides a high degree of structural rigidity, while the radial arms allow forces to be exchanged between different parts of the first supporting structure, and permit local deformation of the first supporting structure to correct any flaws in its circular shape.


More specifically, each radial arm is connected to the annular plate to slide radially with respect to the axis of rotation, and is fixable to the annular plate.


In another embodiment of the present disclosure, the electric generator comprises a bearing between the radial tensioning device and the second supporting structure.


The radial tensioning device thus provides for correcting the circular shape of the first supporting structure, and coaxial alignment of the first and second supporting structure.


Additional features and advantages are described in, and will be apparent from, the following Detailed Description and the figures.





BRIEF DESCRIPTION OF THE DRAWINGS

A number of non-limiting embodiments of the present disclosure will be described by way of example with reference to the accompanying drawings, in which:



FIG. 1 shows a side view, with parts removed for clarity, of a wind power turbine;



FIG. 2 shows a larger-scale, partly sectioned side view, with parts removed for clarity, of the FIG. 1 wind power turbine;



FIG. 3 shows a larger-scale, partly sectioned view in perspective, with parts removed for clarity, of a detail in FIG. 2;



FIG. 4 shows a front view, with parts removed for clarity, of a detail in FIG. 2; and



FIG. 5 shows a partly sectioned view in perspective, with parts removed for clarity, of an alternative embodiment of the present disclosure.





DETAILED DESCRIPTION

Referring now to the example embodiments of the present disclosure illustrated in FIGS. 1 to 5, number 1 in FIG. 1 indicates as a whole a direct-drive wind power turbine for generating electric power, and which comprises a vertical support 2; a nacelle 3; an electric generator 4; and a rotary assembly 5 fitted to nacelle 3 to rotate about an axis of rotation A1. Nacelle 3 is in turn fitted to vertical support 2 to rotate about an axis of rotation A2; and, in the example shown, electric generator 4 is a permanent-magnet synchronous electric generator.


Nacelle 3 is substantially a tubular member supporting rotary assembly 5, which extends partly inside and partly outside nacelle 3. In the example shown, nacelle 3 comprises a curved tubular member 6; part of electric generator 4; and a ring 7 comprising two complementary sectors 8 and 9 connected about axis of rotation A1.


With reference to FIG. 2, electric generator 4 is tubular, and comprises a stator 10 and a rotor 11. Stator 10 comprises a tubular supporting structure 12; and active parts 13—in the example shown, stator segments—arranged about axis of rotation A1 and fixed to the inner face of supporting structure 12. Rotor 11 comprises a tubular supporting structure 14; and active parts 15—in the example shown, rotor segments—arranged about axis of rotation A1 and fixed to the outer face of supporting structure 14. More specifically, nacelle 3 comprises curved tubular member 6; stator 10, or rather supporting structure 12 of stator 10; and ring 7.


Active parts 13 comprise stator segments parallel to axis of rotation A1. Each stator segment comprises a magnetic gap and at least one electric winding, and is of the type described in EP Patent No. 1,792,381.


Active parts 15 comprise rotor segments parallel to axis of rotation A1. Each rotor segment comprises a magnetic gap and permanent magnets, and is of the type described in EP Patent No. 1,792,381.


Supporting structure 12 has two opposite flanged ends fixed to curved tubular member 6 and ring 7 by respective bolted joints 16 and 17. Specifically, ring 7 is fitted slidably to supporting structure 12, and is locked in position by bolted joint 17. More specifically, sectors 8 and 9 are each semicircular in shape, and are connected by two bolted joints 18 to form ring 7. In the example shown, sector 8 is located below sector 9. Wind power turbine 1 comprises a bearing 19 between nacelle 3 and rotary assembly 5. In the example shown, wind power turbine 1 comprises a single bearing 19 capable of withstanding axial and radial stress between nacelle 3 and rotary assembly 5; it being understood, however, that the specific configuration shown in the drawings and described herein in no way limits the protective scope of the present disclosure. Bearing 19 is fitted to the inside of ring 7, is fixed directly to sectors 8 and 9 in the example shown, and is fixed to the outside of rotary assembly 5.


Rotary assembly 5 comprises rotor 11, a hub 20, and blades 21 fitted to hub 20. In the example shown, rotary assembly 5 also comprises a connecting member 22 located between rotor 11 and hub 20, and at and substantially inside bearing 19. More specifically, bearing 19 is fixed directly to connecting member 22; and hub 20 is connected directly to rotor 11, which rotates at the same speed as hub 20.


Electric generator 4 generally comprises supporting structure 12, which extends about axis of rotation A1; supporting structure 14, which extends about axis of rotation A1, is substantially coaxial with supporting structure 12, and is fitted to supporting structure 12 to rotate about axis of rotation A1; active parts 13 fitted to supporting structure 12; and active parts 15 fitted to supporting structure 14, facing active parts 13, and separated from active parts 13 by an annular gap. Electric generator 4 also comprises a radial tensioning device 23 configured to adjust the shape of supporting structure 12 about axis of rotation A1, (i.e., to correct any deformation, ovalization, or any other flaw in the circular shape of the inner face of supporting structure 12), so as to maintain as circular a shape as possible of supporting structure 12.


In the example shown, radial tensioning device 23 is located inside supporting structure 12 and is annular in shape.


More specifically, and as shown in FIG. 3, radial tensioning device 23 comprises an annular plate 24; and a number or quantity of radial arms 25 extending from annular plate 24 to supporting structure 12, and equally spaced about axis of rotation A1.


Each radial arm 25 is connected to annular plate 24 to slide radially with respect to axis of rotation A1 (FIG. 2), and is fixable to annular plate 24.


Radial tensioning device 23 comprises a number or quantity of adjusting mechanisms or adjustors 26, each associated with a respective radial arm 25 to slide radial arm 25 radially with respect to annular plate 24. That is, annular plate 24 comprises a number or quantity of seats 27, each for housing a respective radial arm 25; each adjusting mechanism or adjustor 26 comprises a screw 28 housed inside annular plate 24 and for pushing respective radial arm 25 outwards against supporting structure 12; and each radial arm 25 is fixed releasably to supporting structure 12.


Each radial arm 25 comprises a projection 29 located between supporting structures 12 and 14, close to supporting structure 14, and configured to prevent relative radial movements between supporting structures 12 and 14. In other words, projection 29 is made of low-friction material to permit relative rotation between supporting structures 12 and 14, even when projection 29 is positioned contacting supporting structure 14.


With reference to FIG. 2, active parts 13 and active parts 15 are in the form of segments extending parallel to axis of rotation A1, and are equal in number. The number or quantity of radial arms 25 is less than or equal to the number of active parts 13 and active parts 15, so that removal of one radial arm 25 extracts at least one segment of active parts 13 or one segment of active parts 15. The number of radial arms 25 may even be a multiple of, such as twice, the number of active parts, so that removing two radial arms 25 extracts a segment of active parts 13 or a segment of active parts 15, though this solution is not as advantageous as the previous one.


Accordingly, annular plate 24 has an outer edge 30 smaller in diameter than the maximum diameter of supporting structure 12, so as not to obstruct extraction of the segments of active parts 15; and an inner edge 31 defining a manhole opening.


With reference to FIG. 3, electric generator 4 comprises a brake 32; and locking devices 33 (only one shown in FIG. 4) arranged about axis of rotation Al. Brake 32 comprises a brake disk 34; and a number or quantity of brake calipers 35 (shown in FIG. 4) arranged about axis of rotation Al. Brake disk 34 is integral with supporting structure 14, and is defined by an annular plate parallel to annular plate 24 and extending inside supporting structure 14. Each brake caliper 35 comprises a frame 36 fixed to annular plate 24; two jaws 37 mounted on opposite sides of brake disk 34; and an actuating mechanism 38 for activating jaws 37 (only one shown in FIG. 3) to selectively grip brake disk 34. Each locking device 33 comprises a pin 39; and an actuator 40 fixed to annular plate 24 to move pin 39 between a rest position (FIG. 3) and a work position (not shown). Brake disk 34 comprises a number or quantity of holes 41 arranged about axis of rotation Al and engaged by pin 39 when pin 39 is in the work position.



FIG. 4 shows electric generator 4 in a locked configuration (i.e., in which locking devices 33 lock supporting structures 12 and 14 with respect to each other). Also, as seen in FIG. 4, electric generator 4 is less one radial arm 25 and fitted with an extracting device 42, which is fitted to the two radial arms 25 adjacent to the missing radial arm 25, and serves to extract a segment of active parts 13 and/or 15 at the missing radial arm.


The outer face of supporting structure 12 is fitted with cooling fins F.


In FIG. 5, radial tensioning device 23 is replaced by a radial tensioning device 43, which, in addition to correcting the circular shape of supporting structure 12, also serves to connect supporting structures 12 and 14 in rotary manner about axis of rotation A1.


Like radial tensioning device 23, radial tensioning device 43 comprises an annular plate 44; and a number or quantity of radial arms 45 extending from annular plate 44 to supporting structure 12, and equally spaced about axis of rotation A1. Each radial arm 45 is connected to annular plate 44 to slide radially with respect to axis of rotation A1 (FIG. 2), and is fixable to annular plate 44. Radial tensioning device 43 comprises a number or quantity of adjusting mechanisms 46, each associated with a respective radial arm 45 to slide radial arm 45 radially with respect to annular plate 44. In the FIG. 5 example, annular plate 44 comprises openings 47 configured and located to enable use of adjusting mechanisms or adjustors 46 similar to adjusting mechanisms or adjustors 26. Annular plate 44 comprises an outer edge 48 and an inner edge 49 of the same size as outer edge 30 and inner edge 31 (FIG. 3).


Electric generator 4 comprises a bearing 50 between radial tensioning device 43 and supporting structure 14. That is, inner edge 49 of radial tensioning device 43 contacts bearing 50; and rotor 11 comprises a ring 51 located inside bearing 50, and a flange 52 connecting ring 51 to supporting structure 14. Electric generator 4 also comprises a disk 53 fixed to ring 51, and which may also be used as a brake disk. Generally speaking, radial tensioning device 43 can be fitted with a brake and locking devices 33 as shown in FIGS. 3 and 4 of the previous embodiment of the disclosure.


The radial tensioning device in the FIG. 5 embodiment provides for simultaneously adjusting the circular shape of supporting structure 12, and coaxial alignment of supporting structures 12 and 14.


In one alternative embodiment (not shown), ring 7 is eliminated, and stator 10 and bearing 19 are connected in accordance with alternative embodiments, as described, for example, in EP Patent No. 1,425,840.


It should be appreciated that in the above description, specific reference is made repeatedly, for the sake of simplicity, to bolted joints, which are intended to include joints made using bolts and nuts, or screws screwed directly into one of the parts for connection, and may be replaced by any other type of suitable releasable joint.


Clearly, changes may be made to the electric generator and wind power turbine as described herein without, however, departing from the scope of the accompanying Claims.

Claims
  • 1. A wind power turbine electric generator comprising: a tubular first supporting structure extending about an axis of rotation, wherein an inner face of said first supporting structure has a tubular shape;a second supporting structure extending about the axis of rotation, said second supporting structure substantially coaxial with the first supporting structure, and fitted to the first supporting structure, said second supporting structure configured to rotate about the axis of rotation;a plurality of first active parts fitted to the first supporting structure;a plurality of second active parts fitted to the second supporting structure, said second active parts facing the first active parts, and separated from the first active parts by an annular gap; anda radial tensioning device configured to adjust the tubular shape of the inner face of the first supporting structure about the axis of rotation.
  • 2. The wind power turbine electric generator of claim 1, wherein the radial tensioning device is located inside the first supporting structure.
  • 3. The wind power turbine electric generator of claim 1, wherein the radial tensioning device is annular.
  • 4. The wind power turbine electric generator of claim 1, wherein the radial tensioning device includes: an annular plate, anda quantity of radial arms extending from the annular plate to the first supporting structure.
  • 5. The wind power turbine electric generator of claim 4, wherein each of the radial arms is connected to the annular plate, each of the radial arms is configured to slide radially with respect to the axis of rotation, and each of the radial arms is fixable to the annular plate.
  • 6. The wind power turbine electric generator of claim 5, wherein the radial tensioning device includes a quantity of adjustors, each associated with one of the radial arms and configured to slide said radial arm with respect to the annular plate.
  • 7. The wind power turbine electric generator of claim 4, wherein each of the radial arms is releasably fixed to the first supporting structure.
  • 8. The wind power turbine electric generator of claim 4, wherein each of the radial arms includes a projection located between the first supporting structure and the second supporting structure, said projection configured to prevent relative radial movements between the first supporting structure and the second supporting structure.
  • 9. The wind power turbine electric generator of claim 8, wherein said projection of each of the radial arms is adjacent to the second supporting structure.
  • 10. The wind power turbine electric generator of claim 4, wherein the plurality of first active parts and plurality of second active parts are equal in quantity.
  • 11. The wind power turbine electric generator of claim 10, wherein the quantity of radial arms is selected from a group consisting of: a quantity less than the quantity of the first active parts, a quantity equal to the quantity of the first active parts, a quantity equal to a multiple of the quantity of the first active parts.
  • 12. The wind power turbine electric generator of claim 4, including at least one locking device which includes: a pin parallel to the axis of rotation, said pin supported by the annular plate and configured to selectively move parallel to the axis of rotation, anda disk parallel to the annular plate and having at least one hole which is engaged by the pin when the pin is in a working position.
  • 13. The wind power turbine electric generator of claim 4, including a brake which includes: a brake disk parallel to the annular plate and fixed to the second supporting structure, andat least one brake caliper fitted to the annular plate and including two jaws configured to selectively grip the brake disk.
  • 14. The wind power turbine electric generator of claim 1, which includes a bearing located between the radial tensioning device and the second supporting structure.
  • 15. The wind power turbine electric generator of claim 1, wherein the second supporting structure is tubular.
  • 16. A wind power turbine comprising: a vertical structure;a nacelle located on a top of the vertical structure;a blade assembly fitted to the nacelle and configured to rotate; andan electric generator including: a tubular first supporting structure extending about an axis of rotation, wherein an inner face of said first supporting structure has a tubular shape;a second supporting structure extending about the axis of rotation, said second supporting structure substantially coaxial with the first supporting structure, and fitted to the first supporting structure, said second supporting structure configured to rotate about the axis of rotation;a plurality of first active parts fitted to the first supporting structure;a plurality of second active parts fitted to the second supporting structure, said second active parts facing the first active parts, and separated from the first active parts by an annular gap; anda radial tensioning device configured to adjust the tubular shape of the inner face of the first supporting structure about the axis of rotation.
  • 17. The wind power turbine of claim 16, wherein the blade assembly is connected directly to the second supporting structure.
  • 18. The wind power turbine of claim 16, wherein the first supporting structure partly defines the nacelle.
  • 19. The wind power turbine of claim 16, which includes a plurality of cooling fins located along an outer face of the first supporting structure.
  • 20. A wind power turbine electric generator radial tensioning device comprising: an annular plate, anda quantity of radial arms configured to extend from the annular plate to a tubular first supporting structure of a wind power turbine electric generator, the tubular first supporting structure extending about an axis of rotation and the quantity of radial arms configured to adjust a tubular shape of an inner face of the first supporting structure about the axis of rotation, wherein the wind power turbine electric generator includes the first supporting structure, a second supporting structure extending about the axis of rotation, said second supporting structure substantially coaxial with the first supporting structure, and fitted to the first supporting structure, said second supporting structure configured to rotate about the axis of rotation, a plurality of first active parts fitted to the first supporting structure, and a plurality of second active parts fitted to the second supporting structure, said second active parts facing the first active parts, and separated from the first active parts by an annular gap.
  • 21. The wind power turbine electric generator radial tensioning device of claim 20, wherein each of the radial arms is connected to the annular plate, each of the radial arms is configured to slide radially with respect to the axis of rotation, and each of the radial arms is fixable to the annular plate.
  • 22. The wind power turbine electric generator radial tensioning device of claim 21, wherein the radial tensioning device includes a quantity of adjustors, each associated with one of the radial arms and configured to slide said radial arm with respect to the annular plate.
  • 23. A wind power turbine electric generator comprising: a tubular first supporting structure extending about an axis of rotation;a second supporting structure extending about the axis of rotation, said second supporting structure substantially coaxial with the first supporting structure, and fitted to the first supporting structure, said second supporting structure configured to rotate about the axis of rotation;a plurality of first active parts fitted to the first supporting structure;a plurality of second active parts fitted to the second supporting structure, said second active parts facing the first active parts, and separated from the first active parts by an annular gap; anda radial tensioning device configured to adjust a shape of the first supporting structure about the axis of rotation, said radial tensioning device including: an annular plate, anda quantity of radial arms extending from the annular plate to the first supporting structure, each of the radial arms connected to the annular plate, each of the radial arms configured to slide radially with respect to the axis of rotation, and each of the radial arms fixable to the annular plate.
Priority Claims (1)
Number Date Country Kind
MI2010A0694 Apr 2010 IT national
US Referenced Citations (311)
Number Name Date Kind
1894357 Manikowske et al. Jan 1933 A
1948854 Heath Feb 1934 A
1979813 Reis Nov 1934 A
2006172 Klappauf Jun 1935 A
2040218 Soderberg May 1936 A
2177801 Erren Oct 1939 A
2469734 Ledwith May 1949 A
2496897 Strickland Feb 1950 A
2655611 Sherman Oct 1953 A
2739253 Plumb Mar 1956 A
2806160 Brainard Sep 1957 A
2842214 Prewitt Jul 1958 A
2903610 Bessiere Sep 1959 A
3004782 Meermans Oct 1961 A
3072813 Reijnst et al. Jan 1963 A
3083311 Krasnow Mar 1963 A
3131942 Ertaud May 1964 A
3168686 King et al. Feb 1965 A
3221195 Hoffmann Nov 1965 A
3363910 Toronchuk Jan 1968 A
3364523 Schippers Jan 1968 A
3392910 Tanzberger Jul 1968 A
3468548 Webb Sep 1969 A
3700247 Butler et al. Oct 1972 A
3724861 Lesiecki Apr 1973 A
3746349 Smale et al. Jul 1973 A
3748089 Boyer et al. Jul 1973 A
3789252 Abegg Jan 1974 A
3841643 McLean Oct 1974 A
3860843 Kawasaki et al. Jan 1975 A
3942026 Carter Mar 1976 A
3963247 Nommensen Jun 1976 A
3968969 Mayer et al. Jul 1976 A
4022479 Orlowski May 1977 A
4060744 Starcevic Nov 1977 A
4061926 Peed Dec 1977 A
4087698 Myers May 1978 A
4273343 Visser Jun 1981 A
4289970 Deibert Sep 1981 A
4291235 Bergey, Jr. et al. Sep 1981 A
4292532 Leroux Sep 1981 A
4336649 Glaser Jun 1982 A
4339874 Mc'Carty et al. Jul 1982 A
4348604 Thode Sep 1982 A
4350897 Benoit Sep 1982 A
4354126 Yates Oct 1982 A
4368895 Okamoto et al. Jan 1983 A
4398773 Boden et al. Aug 1983 A
4452046 Valentin Jun 1984 A
4482831 Notaras et al. Nov 1984 A
4490093 Chertok et al. Dec 1984 A
4517483 Hucker et al. May 1985 A
4517484 Dacier May 1985 A
4521026 Eide Jun 1985 A
4585950 Lund Apr 1986 A
4613779 Meyer Sep 1986 A
4638200 Le Corre et al. Jan 1987 A
4648801 Wilson Mar 1987 A
4694654 Kawamura Sep 1987 A
4700096 Epars Oct 1987 A
4714852 Kawada et al. Dec 1987 A
4720640 Anderson et al. Jan 1988 A
4722661 Mizuno Feb 1988 A
4724348 Stokes Feb 1988 A
4761590 Kaszman Aug 1988 A
4792712 Stokes Dec 1988 A
4801244 Stahl Jan 1989 A
4866321 Blanchard et al. Sep 1989 A
4900965 Fisher Feb 1990 A
4906060 Claude Mar 1990 A
4973868 Wust Nov 1990 A
4976587 Johnston et al. Dec 1990 A
5004944 Fisher Apr 1991 A
5063318 Anderson Nov 1991 A
5090711 Becker Feb 1992 A
5091668 Cuenot et al. Feb 1992 A
5177388 Hotta et al. Jan 1993 A
5191255 Kloosterhouse et al. Mar 1993 A
5275139 Rosenquist Jan 1994 A
5280209 Leupold et al. Jan 1994 A
5281094 McCarty et al. Jan 1994 A
5298827 Sugiyama Mar 1994 A
5302876 Iwamatsu et al. Apr 1994 A
5311092 Fisher May 1994 A
5315159 Gribnau May 1994 A
5331238 Johnsen Jul 1994 A
5410997 Rosenquist May 1995 A
5419683 Peace May 1995 A
5456579 Olson Oct 1995 A
5483116 Kusase et al. Jan 1996 A
5506453 McCombs Apr 1996 A
5579800 Walker Dec 1996 A
5609184 Apel et al. Mar 1997 A
5663600 Baek et al. Sep 1997 A
5670838 Everton Sep 1997 A
5696419 Rakestraw et al. Dec 1997 A
5704567 Maglieri Jan 1998 A
5746576 Bayly May 1998 A
5777952 Nishimura et al. Jul 1998 A
5783894 Wither Jul 1998 A
5793144 Kusase et al. Aug 1998 A
5798632 Muljadi Aug 1998 A
5801470 Johnson et al. Sep 1998 A
5811908 Iwata et al. Sep 1998 A
5814914 Caamaño Sep 1998 A
5844333 Sheerin Dec 1998 A
5844341 Spooner et al. Dec 1998 A
5857762 Schwaller Jan 1999 A
5886441 Uchida et al. Mar 1999 A
5889346 Uchida et al. Mar 1999 A
5894183 Borchert Apr 1999 A
5925964 Kusase et al. Jul 1999 A
5952755 Lubas Sep 1999 A
5961124 Muller Oct 1999 A
5973435 Irie et al. Oct 1999 A
5986374 Kawakami Nov 1999 A
5986378 Caamaño Nov 1999 A
6013968 Lechner et al. Jan 2000 A
6037692 Miekka et al. Mar 2000 A
6064123 Gislason May 2000 A
6067227 Katsui et al. May 2000 A
6089536 Watanabe et al. Jul 2000 A
6093984 Shiga et al. Jul 2000 A
6127739 Appa Oct 2000 A
6172429 Russell Jan 2001 B1
6177746 Tupper et al. Jan 2001 B1
6193211 Watanabe et al. Feb 2001 B1
6194799 Miekka et al. Feb 2001 B1
6215199 Lysenko et al. Apr 2001 B1
6232673 Schoo et al. May 2001 B1
6278197 Appa Aug 2001 B1
6285090 Brutsaert et al. Sep 2001 B1
6326711 Yamaguchi et al. Dec 2001 B1
6365994 Watanabe et al. Apr 2002 B1
6373160 Schrödl Apr 2002 B1
6376956 Hosoya Apr 2002 B1
6378839 Watanabe et al. Apr 2002 B2
6384504 Ehrhart et al. May 2002 B1
6417578 Chapman et al. Jul 2002 B1
6428011 Oskouei Aug 2002 B1
6452287 Looker Sep 2002 B1
6452301 Van Dine et al. Sep 2002 B1
6455976 Nakano Sep 2002 B1
6472784 Miekka et al. Oct 2002 B2
6474653 Hintenlang et al. Nov 2002 B1
6476513 Gueorguiev Nov 2002 B1
6483199 Umemoto et al. Nov 2002 B2
6492743 Appa Dec 2002 B1
6492754 Weiglhofer et al. Dec 2002 B1
6499532 Williams Dec 2002 B1
6504260 Debleser Jan 2003 B1
6515390 Lopatinsky et al. Feb 2003 B1
6520737 Fischer et al. Feb 2003 B1
6548932 Weiglhofer et al. Apr 2003 B1
6590312 Seguchi et al. Jul 2003 B1
6603232 Van Dine et al. Aug 2003 B2
6617747 Petersen Sep 2003 B1
6629358 Setiabudi et al. Oct 2003 B2
6664692 Kristoffersen Dec 2003 B1
6676122 Wobben Jan 2004 B1
6683397 Gauthier et al. Jan 2004 B2
6700260 Hsu et al. Mar 2004 B2
6700288 Smith Mar 2004 B2
6707224 Petersen Mar 2004 B1
6720688 Schiller Apr 2004 B1
6727624 Morita et al. Apr 2004 B2
6746217 Kim et al. Jun 2004 B2
6759758 Martinez Jul 2004 B2
6762525 Maslov et al. Jul 2004 B1
6781276 Stiesdal et al. Aug 2004 B1
6784564 Wobben Aug 2004 B1
6794781 Razzell et al. Sep 2004 B2
6828710 Gabrys Dec 2004 B1
6844656 Larsen et al. Jan 2005 B1
6856042 Kubota Feb 2005 B1
6879075 Calfo et al. Apr 2005 B2
6888262 Blakemore May 2005 B2
6891299 Coupart et al. May 2005 B2
6903466 Mercier et al. Jun 2005 B1
6903475 Ortt et al. Jun 2005 B2
6906444 Hattori et al. Jun 2005 B2
6911741 Pettersen et al. Jun 2005 B2
6921243 Canini et al. Jul 2005 B2
6931834 Jones Aug 2005 B2
6933645 Watson Aug 2005 B1
6933646 Kinoshita Aug 2005 B2
6942454 Ohlmann Sep 2005 B2
6945747 Miller Sep 2005 B1
6949860 Hama et al. Sep 2005 B2
6951443 Blakemore Oct 2005 B1
6972498 Jamieson et al. Dec 2005 B2
6983529 Ortt et al. Jan 2006 B2
6984908 Rinholm et al. Jan 2006 B2
6987342 Hans Jan 2006 B2
6998729 Wobben Feb 2006 B1
7004724 Pierce et al. Feb 2006 B2
7008172 Selsam Mar 2006 B2
7008348 LaBath Mar 2006 B2
7016006 Song Mar 2006 B2
7021905 Torrey et al. Apr 2006 B2
7028386 Kato et al. Apr 2006 B2
7033139 Wobben Apr 2006 B2
7038343 Agnes et al. May 2006 B2
7042109 Gabrys May 2006 B2
7057305 Krüger-Gotzmann et al. Jun 2006 B2
7075192 Bywaters et al. Jul 2006 B2
7081696 Ritchey Jul 2006 B2
7088024 Agnes et al. Aug 2006 B2
7091642 Agnes et al. Aug 2006 B2
7095128 Canini et al. Aug 2006 B2
7098552 McCoin Aug 2006 B2
7109600 Bywaters et al. Sep 2006 B1
7111668 Rürup Sep 2006 B2
7116006 McCoin Oct 2006 B2
7119469 Ortt et al. Oct 2006 B2
7154191 Jansen et al. Dec 2006 B2
7161260 Krüger-Gotzmann et al. Jan 2007 B2
7166942 Yokota Jan 2007 B2
7168248 Sakamoto et al. Jan 2007 B2
7168251 Janssen Jan 2007 B1
7179056 Siegfriedsen Feb 2007 B2
7180204 Grant et al. Feb 2007 B2
7183665 Bywaters et al. Feb 2007 B2
7196446 Hans Mar 2007 B2
7205678 Casazza et al. Apr 2007 B2
7217091 LeMieux May 2007 B2
7259472 Miyake et al. Aug 2007 B2
7281501 Leufen et al. Oct 2007 B2
7285890 Jones et al. Oct 2007 B2
7323792 Sohn Jan 2008 B2
7345376 Costin Mar 2008 B2
7358637 Tapper Apr 2008 B2
7377163 Miyagawa May 2008 B2
7385305 Casazza et al. Jun 2008 B2
7385306 Casazza et al. Jun 2008 B2
7392988 Moldt et al. Jul 2008 B2
7417334 Uchiyama Aug 2008 B2
7427814 Bagepalli et al. Sep 2008 B2
7431567 Bevington et al. Oct 2008 B1
7443066 Salamah et al. Oct 2008 B2
7458261 Miyagawa Dec 2008 B2
7482720 Gordon et al. Jan 2009 B2
7548008 Jansen et al. Jun 2009 B2
7550863 Versteegh Jun 2009 B2
7594800 Teipen Sep 2009 B2
7687932 Casazza et al. Mar 2010 B2
20020047418 Seguchi et al. Apr 2002 A1
20020047425 Coupart et al. Apr 2002 A1
20020056822 Watanabe et al. May 2002 A1
20020063485 Lee et al. May 2002 A1
20020089251 Tajima et al. Jul 2002 A1
20020148453 Watanabe et al. Oct 2002 A1
20030011266 Morita et al. Jan 2003 A1
20030102677 Becker et al. Jun 2003 A1
20030137149 Northrup et al. Jul 2003 A1
20030230899 Martinez Dec 2003 A1
20040066098 Doherty et al. Apr 2004 A1
20040086373 Page, Jr. May 2004 A1
20040094965 Kirkegaard et al. May 2004 A1
20040119292 Datta et al. Jun 2004 A1
20040150283 Calfo et al. Aug 2004 A1
20040151575 Pierce et al. Aug 2004 A1
20040151577 Pierce et al. Aug 2004 A1
20040189136 Kolomeitsev et al. Sep 2004 A1
20050002783 Hiel et al. Jan 2005 A1
20050002787 Wobben Jan 2005 A1
20050082836 Lagerwey Apr 2005 A1
20050082839 McCoin Apr 2005 A1
20050230979 Bywaters et al. Oct 2005 A1
20050280264 Nagy Dec 2005 A1
20060000269 LeMieux et al. Jan 2006 A1
20060001269 Jansen et al. Jan 2006 A1
20060006658 McCoin Jan 2006 A1
20060012182 McCoin Jan 2006 A1
20060028025 Kikuchi et al. Feb 2006 A1
20060066110 Jansen et al. Mar 2006 A1
20060071575 Jansen et al. Apr 2006 A1
20060091735 Song et al. May 2006 A1
20060125243 Miller Jun 2006 A1
20060131985 Qu et al. Jun 2006 A1
20060152012 Wiegel et al. Jul 2006 A1
20060152015 Bywaters et al. Jul 2006 A1
20060152016 Bywaters et al. Jul 2006 A1
20070020109 Takahashi et al. Jan 2007 A1
20070116567 Luetze May 2007 A1
20070187954 Struve et al. Aug 2007 A1
20070187956 Wobben Aug 2007 A1
20070222223 Bagepalli et al. Sep 2007 A1
20070222226 Casazza et al. Sep 2007 A1
20070222227 Casazza et al. Sep 2007 A1
20080003105 Nies Jan 2008 A1
20080025847 Teipen Jan 2008 A1
20080050234 Ingersoll et al. Feb 2008 A1
20080107526 Wobben May 2008 A1
20080118342 Seidel et al. May 2008 A1
20080197636 Tilscher et al. Aug 2008 A1
20080197638 Wobben Aug 2008 A1
20080246224 Pabst et al. Oct 2008 A1
20080290664 Kruger Nov 2008 A1
20080303281 Krueger Dec 2008 A1
20080309189 Pabst et al. Dec 2008 A1
20080315594 Casazza et al. Dec 2008 A1
20090045628 Erdman et al. Feb 2009 A1
20090060748 Landa et al. Mar 2009 A1
20090094981 Eggleston Apr 2009 A1
20090096309 Pabst et al. Apr 2009 A1
20090302702 Pabst et al. Dec 2009 A1
20100019502 Pabst et al. Jan 2010 A1
20100026010 Pabst Feb 2010 A1
20100117362 Vihriala et al. May 2010 A1
20100123318 Casazza et al. May 2010 A1
Foreign Referenced Citations (151)
Number Date Country
2404939 Apr 2004 CA
2518742 Sep 2004 CA
1554867 Dec 2004 CN
1130913 Jun 1962 DE
2164135 Jul 1973 DE
2322458 Nov 1974 DE
2506160 Aug 1976 DE
2922885 Dec 1980 DE
3638129 May 1988 DE
3718954 Dec 1988 DE
3844505 Jul 1990 DE
3903399 Aug 1990 DE
4304577 Aug 1994 DE
4402184 Aug 1995 DE
4415570 Nov 1995 DE
4444757 Jun 1996 DE
29706980 Jul 1997 DE
19636591 Mar 1998 DE
19644355 Apr 1998 DE
19652673 Jun 1998 DE
19711869 Sep 1998 DE
19748716 Nov 1998 DE
29819391 Feb 1999 DE
19801803 Apr 1999 DE
19932394 Jan 2001 DE
19947915 Apr 2001 DE
19951594 May 2001 DE
10000370 Jul 2001 DE
20102029 Aug 2001 DE
10219190 Nov 2003 DE
10246690 Apr 2004 DE
102004018524 Nov 2005 DE
102004028746 Dec 2005 DE
102007042338 Mar 2009 DE
0013157 Jul 1980 EP
0232963 Aug 1987 EP
0313392 Apr 1989 EP
0627805 Dec 1994 EP
1108888 Jun 2001 EP
1167754 Jan 2002 EP
1289097 Mar 2003 EP
1291521 Mar 2003 EP
1425840 Mar 2003 EP
1309067 May 2003 EP
1363019 Nov 2003 EP
1375913 Jan 2004 EP
1394406 Mar 2004 EP
1394451 Mar 2004 EP
2063117 May 2005 EP
1589222 Oct 2005 EP
1612415 Jan 2006 EP
1641102 Mar 2006 EP
1792381 Mar 2006 EP
1677002 Jul 2006 EP
1772624 Apr 2007 EP
1780409 May 2007 EP
1829762 Sep 2007 EP
1881194 Jan 2008 EP
1921311 May 2008 EP
2102496 Jul 2008 EP
2060786 May 2009 EP
2063115 May 2009 EP
2063116 May 2009 EP
2143842 Jan 2010 EP
2143938 Jan 2010 EP
2143942 Jan 2010 EP
2143944 Jan 2010 EP
2140301 Feb 2000 ES
806292 Dec 1936 FR
859844 Dec 1940 FR
1348765 Jan 1964 FR
2401091 Mar 1979 FR
2445053 Jul 1980 FR
2519483 Jul 1983 FR
2594272 Aug 1987 FR
2613148 Mar 1988 FR
2760492 Sep 1998 FR
2796671 Jan 2001 FR
2798168 Mar 2001 FR
2810374 Dec 2001 FR
2882404 Aug 2006 FR
191317268 Mar 1914 GB
859176 Jan 1961 GB
1524477 Sep 1978 GB
1537729 Jan 1979 GB
2041111 Sep 1980 GB
2050525 Jan 1981 GB
2075274 Nov 1981 GB
2131630 Jun 1984 GB
2144587 Mar 1985 GB
2208243 Mar 1989 GB
2266937 Nov 1993 GB
2372783 Sep 2002 GB
56081053 Jul 1981 JP
57059462 Apr 1982 JP
3145945 Jun 1991 JP
5122912 May 1993 JP
6002970 Jan 1994 JP
6269141 Sep 1994 JP
10-070858 Mar 1998 JP
11236977 Aug 1999 JP
11-299197 Oct 1999 JP
2000-134885 May 2000 JP
2001-057750 Feb 2001 JP
2004-153913 May 2004 JP
2004-297947 Oct 2004 JP
2005-006375 Jan 2005 JP
2005-020906 Jan 2005 JP
2005-312150 Nov 2005 JP
8902534 May 1991 NL
2000466 Sep 1993 RU
2229621 May 2004 RU
WO8402382 Jun 1984 WO
WO9105953 May 1991 WO
WO9212343 Jul 1992 WO
WO9730504 Aug 1997 WO
WO9733357 Sep 1997 WO
WO9840627 Sep 1998 WO
WO9930031 Jun 1999 WO
WO9933165 Jul 1999 WO
WO9937912 Jul 1999 WO
WO9939426 Aug 1999 WO
WO0001056 Jan 2000 WO
WO0106121 Jan 2001 WO
WO0106623 Jan 2001 WO
WO0107784 Feb 2001 WO
WO0121956 Mar 2001 WO
WO0125631 Apr 2001 WO
WO0129413 Apr 2001 WO
W00135517 May 2001 WO
WO0134973 May 2001 WO
WO0169754 Sep 2001 WO
WO0233254 Apr 2002 WO
WO02057624 Jul 2002 WO
WO02083523 Oct 2002 WO
WO03036084 May 2003 WO
WO03067081 Aug 2003 WO
WO03076801 Sep 2003 WO
WO2004017497 Feb 2004 WO
WO2004042227 May 2004 WO
WO2005103489 Nov 2005 WO
WO2006013722 Feb 2006 WO
WO2006032515 Mar 2006 WO
WO2007063370 Jun 2007 WO
WO2007110718 Oct 2007 WO
WO2008052562 May 2008 WO
WO2008086608 Jul 2008 WO
WO2008098573 Aug 2008 WO
WO2008102184 Aug 2008 WO
WO2008116463 Oct 2008 WO
WO2008131766 Nov 2008 WO
Non-Patent Literature Citations (3)
Entry
Maxime R. Dubous, Henk Polinder, Study of TFPM Machines with Toothed Rotor Applied to Direct-Drive Generators for Wind Turbines, 2004.
Variable Speed Gearless Wind Turbine (website), http://www.mhi.cojp/msmw/mw/en/gearless.html, viewed on Sep. 22, 2006.
Italian Search Report dated Mar. 22, 2011 for IT MI20100694.
Related Publications (1)
Number Date Country
20120098268 A1 Apr 2012 US