The present disclosure relates to a window cleaning system and method, and more particularly, a window cleaning system and method having flexible tool utilization and product recognition for cleaning or finishing window frames and/or sashes.
Plastic components that make a window frame or sash are typically welded together by miter cutting the components to size, heating the mitered ends and then pressing the heated ends together so that the melted ends bond to each other. This process often squeezes some of the material out from between the two pieces, which creates a bead of material, commonly referred to as weld flash, requiring further processing to obtain better appearance as well as removing material which may interfere with further assembly of the window itself such as installing an insulating glass unit (IGU) into a sash or a sash into a frame.
Further processing can be accomplished using a corner cleaner, a machine that removes the weld flash by means of multiple types of tools such as saw blades, knives, end mills or router bits to cut or abrade away the weld flash where it is not desired. Variances in the dimensions of the profile material and/or misalignment of the two parts during the welding process hamper the ability of the machine to consistently remove the weld flash to controlled dimensions due to profile dimensions changing in the frame extrusion.
Discussion of such cleaning issues and advancements are found in U.S. Pat. Nos. 7,921,064 and 8,250,023 to McGlinchy et al. These McGlinchy et al. patents are assigned to the assignee of the present invention and are incorporated herein by reference.
U.S. Pat. No. 4,909,892 to Quinn et al concerns an apparatus for simultaneously welding two or more pairs of thermoplastic frame elements. U.S. Pat. No. 4,971,639 to Quinn et al, concerns a method and apparatus for welding vinyl window and door frames. These Quinn et al patents are assigned to the assignee of the present invention and are incorporated herein by reference.
One example embodiment of the present disclosure includes a window processing system method for use in fabricating window frames or sashes. The system includes an articulating arm having a plurality of members and arms to allow movement about multiple axes defined by the articulating arm. The system further includes a tool support fixture assembly coupled to an outermost member of the plurality of members, the tool support fixture assembly includes a plurality of tools for performing cleaning operations on a window frame or sash during use.
Another example embodiment of the present disclosure comprises an apparatus for cleaning a window frame or sash. The apparatus comprises a frame member for supporting the window frame or sash during cleaning. The apparatus also comprises an articulating robot having a plurality of members and arms to allow selective movement about multiple axes defined by at least one program. The program is stored in a programmable controller in communication with the articulating robot. The controller further being in communication with at least one sensor for identifying characteristics of a window frame during use. The apparatus also includes a tool support fixture assembly coupled to an outermost member of the plurality of members, the tool support fixture assembly has a plurality of tools for performing cleaning operations on a window frame or sash during use.
Yet another example embodiment of the present disclosure includes method for fabricating window frames or sashes. The method comprises the steps of articulating an arm assembly through the rotation and translation of a plurality of members and arms to allow movement about multiple axes defined by the arm assembly. The method also includes providing a tool support fixture assembly coupled to an outermost member of the plurality of members, the tool support fixture assembly supporting a plurality of tools. The method further comprises performing cleaning operations on a window frame or a sash by manipulating the tool support fixture and supported plurality of tools by the articulating of the arm assembly.
The foregoing and other features and advantages of the present disclosure will become apparent to one skilled in the art to which the present invention relates upon consideration of the following description of the invention with reference to the accompanying drawings, wherein like reference numerals refer to like parts unless described otherwise throughout the drawings and in which:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present disclosure.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
Referring now to the figures generally wherein like numbered features shown therein refer to like elements throughout unless otherwise noted. The present disclosure relates to a window cleaning system and method, and more particularly, a window cleaning system and method having flexible tool utilization and product recognition for cleaning or finishing window frames and/or sashes.
Typically, each of the welding stations has multiple welding heads that are independently actuated to move into position relative the different parts of a widow frame. In the disclosed embodiment, each welding station can have multiple frames or sashes stacked on top of each other. The welding stations and other stations, such as a cleaning station 60 are controlled by a controller or controllers 35.
An X-Y transfer table 40 supports welded frames delivered by a weld station exit conveyor and includes a mechanism for moving welded frames to a multi-tiered buffer or stacker 50. The buffer accepts frames from the X-Y table and stores the frames in different stacker layers to await cleaning. In one embodiment, belts automatically move the frame into a cleaner at a cleaning station 60. In an alternate embodiment, the welded frame is moved by hand from a welding machine and placed into a cleaning station.
Cleaning Station 60
Views of a cleaning station 60 constructed in accordance with one example embodiment of the present disclosure are illustrated in
In the exemplary embodiment, a profile of a welded frame or sash 100 placed at the cleaning station is monitored by a sensor S. In one exemplary embodiment, the sensor S is a visual sensor that includes a laser, which scans along a line of the frame 100 profile (see
In the illustrated example embodiment, the articulating arm 62 is a six-axis articulating arm, that is, the arm is capable of translation in the X, Y, and Z axial directions as well rotation about each axis Rx, Ry, Rz, as illustrated by the coordinate system in multiple figures, including
Referring again to
A frame member alignment assembly 150 is illustrated in
The frame member alignment assembly 150 further includes the guide member 151, and slotted track 153 that are coupled to a vertical cylinder 152 that raises and lowers the guide member into contact position once the frame member is manually or automatically positioned/removed within the cleaning station 60. The vertical cylinder 152 is advanced vertically from a slotted opening 156 in the stand 66. A pair of cylinders 158 are coupled to a weldment 160 actuate the guide member 151 toward and away from the frame member 100 within the slot 156 as indicated by arrows B. The cylinders 158 and vertical cylinder 152 are in communication with controller 35 and sensor S, and accordingly programmed to engage the frame member based on the frame 100 profile.
The frame member 100 has top and bottom surfaces 202, 204, respectively (
It should further be appreciated that other cleaning stations, e.g. 60, similarly constructed could be operating on the remaining corners of a given frame member 100, for example at station C, as illustrated in
The tool support fixture assembly 68 and the plurality of tools 80 shown in the example embodiment of
As shown in
The articulating arm 62 in the present disclosure advantageously allows the saw blade 302 to be rotated at such an angle to minimize removal of the felt, protrusion, or desired material 101, as illustrated in
Illustrated in
Referring now to
Secured to the bottom 73 of the body 71 is the coupling 114, which during operation is rotatably attached at the third member 112 of the articulating arm 62. Each leg 75 includes a support 76 that includes openings, slides, and/or tapped holes for supporting one or more of the plurality of tools 80 as would be appreciated by one of skill in the art. For example, the support 76C includes a L-shaped bracket for supporting a motor 300, support 76A is for attaching first and second shapers 308 and 310, and support 76B is constructed to hold knife 306. In the illustrated example embodiment, the tool support fixture assembly is constructed of tool steel.
The tool fixture arrangement 70 is designed for quick changing of the support 76 and corresponding tool or tools 80 secured thereto. This would be advantageous for necessary changes corresponding to broken tools, dull tools, and product changes requiring a different tool not already on the cleaning station 60. The attachment of the legs 75 to the body 71 is such that a typical change of the removal of the leg and corresponding tool attached thereon can occur with a replacement of a different leg and tool within one minute or less by an experienced job setter. Moreover, the quick change design and construction of the tool fixture arrangement 70 holds a known tool positioning 77 (as illustrated in
The quick change design of the arrangement 70 includes a arcuate guide 78 for leading each of the legs 75 onto the body 71. The arcuate guide 78 is a ground pin having a high tolerance diameter that is secured by a plurality of fasteners 79 through openings 91 into corresponding tapped holes 92 in the body 71. A corresponding semi-arc profile 93 machined into the body 71 that helps align the arcuate guide 78 along each face 74. Each leg includes a corresponding semi-arcuate recess 94 that encompasses more than 180 degrees for locking to each corresponding arcuate guide 78 during use. Extending from the semi-arcuate recess 94 is a tightening slit 95, for drawing and locking the semi-arcuate recess 94 tightly against the corresponding arcuate guide 78 through side fasteners 96. The side fasteners 96 pass through openings 97 on the a first side of the slit 95 into tapped holes 98 on the opposite side of the slit, drawing the slit closed and locking the guide 78 in the semi-arcuate recess 94 when tightened.
The procedure for removing a leg 75 and corresponding tool(s) 80 from the body 71 is achieved by an operator or job setter by loosening side fasteners 96 so that the tightening slit 95 is released to a state that allows the semi-arcuate recess 94 to be free enough to be lifted off the arcuate guide 78, which is fixedly attached to the body. The procedure for attaching a leg 75 and corresponding tool(s) 80 to the body 71 is achieved by sliding the semi-arcuate recess 94 over the arcuate guide 78, until the recess engages a boss 99 located on one end of the guide. Once the recess 94 is seated on the guide 78, side fasteners 96 are tightened until the semi-arcuate recess is locked to the guide.
Teaching/Compensation
There are many different frame and/or sash profiles that the cleaning station 60 must accommodate. In the prior art, each different profile required an operator to enter on a console display the profile designation so the cleaning station would know the proper sequence of movements or steps used to clean a given frame or sash of weld flash. Further teaching compensation methods are shown and described in U.S. Pat. Nos. 8,250,023 and 7,921,064, which are assigned to the assignee of the present disclosure and both patents are incorporated herein by reference in their entireties.
In accordance with the exemplary embodiment, the profile is identified automatically by a sensor or monitor S mounted at the cleaning station 60. In one embodiment the sensor S is mounted to the tool fixture arrangement 70 so that as movement of the tool brings a abrading tool into position relative the frame, the sensors S is also brought into position for examining the frame or sash 100 currently positioned at the cleaning station. To enable recognition of all available profiles, a profile training or teaching process is performed.
Each frame 100 has multiple recognition features on its outer surface. Turning to the frame depicted in
In one exemplary embodiment up to six points are located by the sensor S for each different frame 100 profile and used by the controller 35 in recognizing the profile. Once the sensors S identifies the profile of the frame member 100, the controller 35 assigns a program for that specific frame profile for the cleaning operation at the cleaning station 60 based on the finger print provided by the profile of the frame member 100. Although a laser sensor is presently preferred, video capture or tactile sensing is also contemplated for use with this disclosure.
Once the controller 35 learns the finger print of a frame member 100 profile by the sensors S, the controller 35 prompts sensors S to the points of interest that will be used to alter the cleaning process performed at the cleaning station 60. This step of adjusting the cleaning is referred to as compensation. There can be just one or many compensation points. These points will be measured every time the corresponding profile has been identified for the different shapes and geometries provided by different frame members 100. A compensation point may also simply use the data from a recognition point.
An inspection process is also implemented in the cleaning process at the cleaning station. The inspection process is performed by recording the min and max readings as the sensors S are moved across the cleaned joint between the two adjoining sides of a frame member 100. Ideally this variance is minimized by the cleaning process.
Illustrated in
Testing of the arm 62 advantageously revealed that if the tool 306, 308, and 310 is heated by a heating operation 350, the force required to cut or shape the window frame 100 is reduced by a ratio of four to one 4:1. That is, a shaping operation on the frame that without heat would require on average sixty-five (65) pounds of force. By pre-heating the tool 306, 308, and 310, the required force to perform a cleaning operation such as shaping or cutting was reduced to twenty (20) pounds of force.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the disclosure as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The disclosure is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art. In one non-limiting embodiment the terms are defined to be within for example 10%, in another possible embodiment within 5%, in another possible embodiment within 1%, and in another possible embodiment within 0.5%. The term “coupled” as used herein is defined as connected or in contact either temporarily or permanently, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
To the extent that the materials for any of the foregoing embodiments or components thereof are not specified, it is to be appreciated that suitable materials would be known by one of ordinary skill in the art for the intended purposes.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
The following application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Ser. No. 61/871,720 filed Aug. 29, 2013 entitled WINDOW CLEANING SYSTEM AND METHOD. The above-identified application is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4590578 | Barto, Jr. | May 1986 | A |
4909892 | Quinn et al. | Mar 1990 | A |
4971639 | Quinn et al. | Nov 1990 | A |
5298844 | Nagasaki | Mar 1994 | A |
5655247 | Allen et al. | Aug 1997 | A |
5720090 | Dawson, Jr. | Feb 1998 | A |
6250174 | Terada | Jun 2001 | B1 |
7354227 | Ramnauth | Apr 2008 | B2 |
7784161 | Eisenbach | Aug 2010 | B2 |
7921064 | McGlinchy et al. | Apr 2011 | B2 |
7954216 | Sturm | Jun 2011 | B2 |
8250023 | Mcglinchy et al. | Aug 2012 | B2 |
10414051 | McGlinchy | Sep 2019 | B2 |
20030099522 | Laempe | May 2003 | A1 |
20060236840 | McGlinchy et al. | Oct 2006 | A1 |
20080083193 | McGlinchy | Apr 2008 | A1 |
20110204102 | Suhara | Aug 2011 | A1 |
20120054972 | McGlinchy et al. | Mar 2012 | A1 |
20120283519 | Kotula | Oct 2012 | A1 |
20160176055 | McGlinchy | Jun 2016 | A1 |
20180333790 | Urban | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
4109749 | Oct 1991 | DE |
102006007171 | Aug 2007 | DE |
0909602 | Apr 1999 | EP |
978339 | Feb 2000 | EP |
1099522 | May 2001 | EP |
2875165 | Sep 2013 | FR |
07-124848 | May 1995 | JP |
WO 2006030084 | Mar 2006 | WO |
WO 2006030084 | Mar 2006 | WO |
WO 2016081237 | May 2016 | WO |
Entry |
---|
Mexican Office Action for PCT national phase Patent Aplication No. MX/z/2016/002617 dated Aug. 6, 2019 (3 pages). |
International Search Report dated Feb. 25, 2016 and Written Opinion of the International Searching Authority dated Feb. 25, 2016 for PCT International Application No. PCT/US2015/060110, filed Nov. 11, 2015. PCT International Application No. PCT/US2015/060110 corresponds to and claims priority from U.S. Appl. No. 62/081,220, filed Nov. 18, 2014 and U.S. Appl. No. 14/937,168, filed Nov. 10, 2015. (4 pages). |
International Search Report dated Dec. 24, 2014 and Written Opinion of the International Searching Authority dated Dec. 24, 2014 for PCT International Application No. PCT/US2014/053478, filed Aug. 29, 2014. PCT International Application No. PCT/US2014/053478 corresponds to and claims priority from U.S. Appl. No. 61/871,720, filed Aug. 29, 2013. (10 pages). |
Supplementary European Search Report for corresponding patent application No. EP14849338, dated Apr. 24, 2017. |
English Translation of French Patent Publication No. 2,875,165 (11 pages). |
Data Sheet for IRB 140 Industrial Robot sold by ABB Manufacturing. Copyright Jan. 2014 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20150063936 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61871720 | Aug 2013 | US |