The present application claims priority to PCT application number PCT/US2012/067071, having an international filing date of Nov. 29, 2012, which is incorporated by reference in its entirety.
Optical backplanes have been proposed for computing equipment in place of conventional electronic backplanes. The idea is that the optical backplane will pass signals in optical form between the blades which perform networking, server, storage or other functions. Typically the blades have processors which process electronic signals.
Examples of the invention will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
The present application proposes an optical waveguide comprising a waveguide body to direct optical signals, a beam splitter to re-direct a portion of an optical signal out of the waveguide, and a window positioned to receive optical signals redirected by the beam splitter and to allow said redirected optical signals to leave the waveguide. The window is associated with a heating element. The heating element may be heated to prevent or remove condensation from the window, which might otherwise disrupt the passage of optical signals into and/or out of the waveguide.
Computing equipment such as a networking device (e.g. switch or router), server or storage device may utilize an optical backplane to carry signals in optical form between a number of blades which connect with the backplane. The blades typically have a processor with computing functionality (e.g. they may be server blades, network cards, storage devices etc) and each blade interfaces with the optical backplane. The optical backplane typically comprises one or more optical waveguides.
As shown in
Due to low ambient temperature, or other reasons, condensation (e.g. small water droplets 50), may gather on an external surface of the window 40. This can obscure the window and disrupt the passage of optical signals into and out of the window. For example instead of being redirected in direction 35, the condensation may cause optical dispersion 36 resulting in weakening of the optical signal. Therefore, as will be discussed in more detail below, each window has an associated heating element 60 to heat the window so as to remove or prevent condensation.
The waveguide 10 may have one channel or plural channels, each channel being configured to carrying a respective optical signal. For example, the channels may be physically constructed as separate grooves or passages in the waveguide body 20. Each channel may have internal walls that internally reflect optical signals to direct them down the channel.
The blade may for example be a server blade, storage device or networking device (such as a switch or router). The blade comprises a board 110 on which components are mounted and a processor 140 which may be a dedicated chip (e.g. ASIC) or CPU having computing functionality for instance to process data, to route signals or control storage of data. The processor 140 typically receives and processes electronic signals. The blade may comprise a networking port module 150 connected to the processor for connecting the blade to other electronic equipment; e.g. the module 150 may comprise RJ45 ports.
The blade comprises an optical connector 120 to receive optical signals and direct them to an optical module 130. The optical module 130 converts the optical signals to electronic signals and forwards the electronic signals to one or more other components of the blade, such as the processor 140. The optical module is also operable to convert electronic signals received from another component of the blade (e.g. processor 140) into optical signals and pass them to the optical receiver and from there through the window 40 and into the waveguide. The optical connector 120 may comprise a block of transparent material that is to be aligned with the window of the waveguide such that it can receive optical signals passing out of the window and direct them to the optical module, or can forward optical signals received from the optical module into the waveguide via the window 40.
While a single optical connector 120 is shown in
The optical backplane may be part of a chassis which provides mechanical support to receive the blade 100 in a position in which the optical connector 120 is aligned with the window 40 of the waveguide. In this position an external surface of the window 40 may abut with (contact with) or be close to an external surface of the optical connector 120 so that optical signals may be passed between the two. Alternatively there may be a ‘mid-plane’ or one or more intermediate optical components through which optical signals can pass between the waveguide window and the blade optical connector. The optical connector 120 and window 40 may in some cases be made of the same material or materials having similar optical properties. Generally the window 40 and optical connector may be transparent. They may for example be made of glass or plastic. In some cases there will be a small gap between the optical components (e.g. between window and optical connector or mid-plane), in which case the optical design specifies a certain allowable insertion loss.
To ensure that the optical signals pass smoothly between the window and the optical connector, a heating element 60 is provided to heat the optical window and/or optical connector so as to prevent or remove condensation. The heating element 60 is ‘associated with’ the window, meaning that the heating element is to heat the window and may for example be provided inside the window 40, inside the optical connector 120, or external to but in thermal contact with the window 40 or optical connector 120.
The heating elements 60 may be connected to a circuit 200 which includes a voltage source 210 for passing current through the wires. The circuit 200 may include a controller 220 to control the level of current and/or voltage, e.g. to switch the circuit on when the ambient temperature is below a predetermined temperature at which condensation is a risk.
All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
Each feature disclosed in this specification (including any accompanying claims, abstract and drawings), may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/050743 | 7/16/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/084920 | 6/5/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5347988 | Hori | Sep 1994 | A |
5653519 | Dobbs | Aug 1997 | A |
5904870 | Fenner et al. | May 1999 | A |
20030089702 | Carver et al. | May 2003 | A1 |
20060262324 | Hays et al. | Nov 2006 | A1 |
20070230866 | Daiber | Oct 2007 | A1 |
20100284662 | Reagan et al. | Nov 2010 | A1 |
20120036303 | Lee et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
9211266 | Aug 1997 | JP |
2001-0079835 | Aug 2001 | KR |
Entry |
---|
Bockstaele, R. et al., A Scalable Parallel Optical Interconnect Family, Apr. 2004, IEEE, IO Overview Paper, vol. 5453, pp. 124-133. |
English translation (machine-generated) of Abstract from Japanese Patent Publication No. 9211266A [retrieved on Apr. 29, 2015], Retrieved from the Internet: <http://worldwide.espacenet.com/publicationDetails/biblio?CC=JP&NR=H09211266A&KC=A&FT=D&ND=3&date=19970815&DB=worldwide.espacenet.com&locale=en—EP>, 2 pages. |
English translation (machine-generated) of Abstract from Korean Patent Publication No. 20010079835A [retrieved on Apr. 29, 2015], Retrieved from the Internet: <http://engpat.kipris.or.kr/engpat/biblioa.do?method=biblioFrame>, 2 pages. |
International Search Report and Written Opinion, Sep. 27, 2013, PCT Patent Application No. PCT/US2013/050743, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20150378115 A1 | Dec 2015 | US |