Various aspects of the instant disclosure relate to security systems, safety systems, and hardware for use in fenestration products. In some specific examples, the disclosure concerns a system that enables window sashes of a fenestration system to be partially opened without sacrificing security features and helping to avoid accidental falls from said fenestration system.
A number of fenestration units, such as windows, have one or more movable panels, also described as vent panels. In some window fenestration units, one of the window sashes is movable while another window sash is stationary or is otherwise secured against movement. For example, in some units, a lower window sash is moveable relative to an upper, stationary window sash. In some other fenestration units, multiple window sashes can move relative to the window frame and each other. For example, the lower window sash and the upper window sash can be movable relative to one another.
Security features in fenestration systems like these continue to be of great interest. Although many conventional designs incorporate the use of security features, such as locks, these security features must be disengaged in order to move the window sashes. Thus, users must sacrifice security if they want to open one or more window sashes of a fenestration unit. What's more, while the window sashes of conventional systems can be relocked upon being closed, the possibility exists that a user may forget to lock a window sash after closing it. Accordingly, there exists a need for systems that automatically reengage otherwise disabled security features after use. The opportunity for innovation and improvement in any of these areas remain and is the focus of various examples of WINDOW OPENING CONTROL SYSTEMS AND METHODS provided by this disclosure.
Safety features in fenestration systems are also of great interest. Many conventional designs incorporate the use of devices to limit the opening of the fenestration, however, these designs to not allow for egress in the event of an emergency. Accordingly, there exists a need to limit the opening of a fenestration system, while selectively allowing full opening of the system to allow for egress in the event of an emergency. There also exists a need for systems that automatically reengage otherwise disabled safety features once the fenestration has been opened (such as for emergency egress).
According to one example, (“Example 1”), a fenestration system includes a frame, a first window sash movable relative to the frame, and a toggle assembly including a toggle housing, a toggle, and a biasing member. The toggle assembly is transitionable between an engaged state and a disengaged state, wherein when transitioned to the engaged state the toggle assembly operates to obstruct the first window sash from being opened beyond a designated threshold position relative to the frame, and wherein when transitioned to the disengaged state the first window sash is free to be opened beyond the designated threshold position such that upon opening the first window sash beyond the designated threshold position the toggle assembly is primed to automatically transition to the engaged state upon closing the first window sash.
According to another example, (“Example 2”) further to Example 1, the toggle is configured to engage the first window sash in the engaged state to prevent the first window sash from moving beyond the designated threshold position.
According to another example, (“Example 3”) further to Examples 1 to 2, the toggle is configured to engage a portion of the frame in the engaged state to prevent the first window sash from moving beyond the designated threshold position.
According to another example, (“Example 4”) further to Examples 1 to 3, when configured in the disengaged state the toggle housing obstructs the toggle from preventing the first window sash from moving beyond the designated threshold position.
According to another example, (“Example 5”) further to Examples 1 to 4, the toggle is operable to simultaneously rotate and translate relative to the toggle housing when the toggle assembly is transitioned between the engaged and disengaged states.
According to another example, (“Example 6”) further to Examples 1 to 5, the toggle assembly is configured to automatically transition to the engaged state without requiring a user to manipulate the toggle independently of opening the first window sash beyond the designated threshold position.
According to another example, (“Example 7”) further to Examples 1 to 6, the toggle further comprises a portion that is configured to engage the first window sash as the first window sash is opened beyond the designated threshold position such that the toggle assembly is primed to automatically transition to the engaged state upon closing the first window sash.
According to another example, (“Example 8”) further to Examples 1 to 8, upon opening the first window sash beyond the designated threshold position the toggle assembly is primed to automatically transition to the engaged state upon closing the first window sash beyond the designated threshold position.
According to another example, (“Example 9”) further to Examples 1 to 8, the fenestration system further comprises a second window sash movable relative to the first window sash, wherein when transitioned to the engaged state the toggle assembly operates to prevent the first and second window sashes from moving in excess of a designated amount relative to one another, and wherein when transitioned to the disengaged state the first and second window sashes are free to move in excess of the designated amount relative to one another.
According to another example, (“Example 10”) further to Example 9, when transitioned to the engaged state, the first and second window sashes are movable relative to one another up to the designated amount, wherein the designated amount includes at least a partial opening of one or more of the first and second window sashes.
According to another example, (“Example 11”) further to Examples 9 to 10, the toggle further comprises a portion that is configured to engage one of the first and second window sashes as the first and second window sashes are moved in excess of the designated amount to prime the toggle assembly to automatically transition to the engaged state.
According to another example, (“Example 12”) further to Examples 1 to 11, when transitioned to the engaged state the first window sash is movable within the frame such that the first window sash can be at least partially opened.
According to another example, (“Example 13”) a toggle assembly includes a toggle housing, a toggle coupled to the toggle housing and configured to rotate and translate relative to the toggle housing such that the toggle is transitionable between an engaged stated and disengaged stated, and a biasing member coupled to the toggle and to the toggle housing, the biasing member exerting a force on the toggle and the toggle housing, wherein when configured in the engaged state the toggle engages a portion of the toggle housing which operates to retain the toggle in the engaged state, and wherein when transitioning from the engaged state to the disengaged state the biasing member induces the toggle to rotate and translate relative to the toggle housing.
According to another example, (“Example 14”) further to Example 13, the toggle is coupled to the toggle housing such that a translation of the toggle in a first direction relative to the toggle housing operates to disengage the toggle from the portion of the toggle housing with which it is engaged in the engaged state such that the toggle is operable to automatically transition to the disengaged state.
According to another example, (“Example 15”) a method of controlling a window sash moveable within a frame in a fenestration system comprises positioning a toggle assembly on the fenestration system, the toggle assembly being transitionable between an engaged state and a disengaged state, configuring the toggle assembly in the engaged state such that the window sash is obstructed from being opened in excess of a designated amount, and transitioning the toggle assembly to the disengaged state such that the window sash can be opened in excess of the designated amount and such that upon opening the first window sash in excess of the designated amount the toggle assembly is primed to automatically transition to the engaged state upon closing the window sash.
According to another example, (“Example 16”) further to Example 15, when obstructed from being opened in excess of a designated amount the first window sash can be at least partially opened.
According to another example, (“Example 17”) further to Examples 15 to 16, the toggle assembly includes a toggle housing and a toggle coupled to the toggle housing such that the toggle can be translated and rotated relative to the toggle housing.
According to another example, (“Example 18”) further to Examples 15 to 17, transitioning the toggle assembly to the disengaged state includes translating and rotating the toggle relative to the toggle housing such that a first portion of the toggle is captured by the toggle housing.
According to another example, (“Example 19”) further to Example 18, the toggle housing includes a flange and wherein transitioning the toggle assembly to the disengaged state includes translating and rotating the toggle relative to the toggle housing such that the flange engages the first portion of the toggle.
According to another example, (“Example 20”) further to Examples 15 to 19, upon opening the first window sash in excess of the designated amount the toggle assembly is primed to automatically transition to the engaged state upon closing the window sash to a position where the window sash is opened less than the designated amount.
While multiple embodiments are disclosed, still other embodiments will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments, and together with the description serve to explain the principles of the disclosure.
The control systems according to the disclosed examples can be employed in a variety of fenestration units, including sashed window systems, for example. The control systems provide a variety of novel features, including improved usability of the fenestration unit without compromising security or safety, sleek design, minimal parts, and automatic reengagement of security and safety features, as well as others.
In some examples, the upper window sash 3000 includes a frame 3002. In some examples, the frame 3002 includes a plurality of vertical members, such as vertical members 3004a and 3004b (3004b is blocked from view in
In some examples, a strike plate 6000 is coupled to the fenestration assembly 1000. As illustrated in the accompanying figures, the strike plate 6000 is coupled to the upper horizontal member 4006b of the lower window sash 4000. In some examples, the strike plate 6000 is aligned with the toggle assembly 5000 such that sufficient movement of the upper and lower window sashes 3000 and 4000 (as discussed in greater detail below) results in one or more physical engagements between the strike plate 6000 and the toggle assembly 5000. For example, as discussed in greater detail below, the lower window sash 4000 may be raised (and the upper window sash 3000 may be lowered) until the strike plate 6000 contacts or otherwise engages the toggle assembly 5000.
In some examples, when the strike plate 6000 engages the toggle 5200 of the toggle assembly 5000 the upper and lower window sashes 3000 and 4000 are prevented from being further opened relative to one another. Thus, while the fenestration system discussed herein permits the window sashes a designated degree of opening, it does so without compromising security or safety. In other words, the toggle assembly 5000 and the strike plate 6000 of the fenestration system 1000 permit the window sashes to be opened relative to one another while providing control over the degree to which those sashes may be opened.
In some examples, as discussed in detail below, the toggle assembly 5000 is defeatable such that the lower window sash 4000 may be fully opened (or such that the upper window sash 3000 may be fully lowered, or such that the upper and lower window sashes 3000 and 4000 may be moved beyond a designated threshold position relative to one another). Even so, in some examples, the fenestration system 1000 of the present disclosure operates to automatically prime the toggle assembly 5000 for automatic reengagement after it is defeated. For example, as discussed in greater detail below, if the upper or lower window sash 3000 or 4000 is opened beyond a designated threshold, the toggle assembly 5000 is primed for reengagement once the upper and lower window sashes 3000 and 4000 are closed (or closed to the extent that they are moved back to a position wherein the toggle assembly is free to reengage).
Turning now to
Turning now to
In some examples, the body 5102 further includes an intermediate portion 5116 situated between the first end portion 5104 and the second end portion 5016. In some examples, the intermediate portion 5116 includes a recess 5122. In some examples, the recess 5122 is sized to accommodate the toggle 5200 as described in greater detail below. In some examples, the recess 5122 is formed in the top 5112 of the body 5102. In some examples, the recess 5122 is defined between a first side wall 5124, a second side wall 5126, a first end wall 5128, and a second end wall 5130. In some examples, the first and second side walls 5124 and 5126 extend along the longitudinal length of the body 5102, while the first and second end walls 5128 and 5130 extend across the body 5102 and are transverse to the first and second side walls 5124 and 5126.
In some examples, the recess 5122 extends from the top 5112 to the bottom 5114. That is, in some examples, the recess 5122 is an aperture extending through the body 5102 of the toggle housing 5100. In some examples, the first and second end walls 5128 and 5130 traverse the body 5102 from the first side wall 5124 to the second side wall 5126 and are longitudinally offset from each other by the first and second side walls 5124 and 5126. In some examples, the second end wall 5130 includes a flange 5132. In some examples, the flange 5132 is formed as a protrusion in the second end wall 5130, and extends into the recess 5122. In some examples, the flange 5132 operates to deflect and retain the toggle 5200 in a disengaged position, as explained further below.
In some examples, one or more apertures 5134 are formed in the intermediate portion 5116 of the body 5102. In some examples, each aperture 5134 is configured to receive and retain the retaining pin 5400. In some examples, the apertures 5134 are formed in one or more of the first and second side walls 5124 and 5126 of the body 5102. In some examples, the apertures 5134 are slotted such that they have a longitudinal length L and a width W, wherein the longitudinal length L is greater than the width W. These slotted apertures 5134 have a first end 5136 and a second end 5138. In some examples, the slotted apertures 5134 provide the retaining pin 5400 multiple degrees of freedom to both rotate about its axis and translate along the longitudinal length of the slotted apertures 5134.
In some examples, apertures 5134 extend through the side walls 5124 and 5126 of the body 5102 such that they form an opening from an outside surface of the body 5102 through to the recess 5122. In some other examples, the apertures 5134 are formed on one or more of inside surfaces 5140 and 5142 of the body 5102 but do not extend entirely through the side walls 5124 and 5126 of the body 5102. That is, in these examples, apertures 5134 are indentations in the inside surfaces 5140 and 5142 of the body 5102 in that the apertures do not extend to an outside surface of the body 5102. Like the apertures 5134 described above, in some examples, these indentations are slotted such that they have a longitudinal length L that is greater than their width W, which permits the retaining pin 5400 freedom to both rotate about its axis and translate along the longitudinal length of the slotted indentations.
In some examples, the intermediate portion 5116 protrudes above a top surface of the first and second end portions 5104 and 5106 as illustrated in
Referring now to
In some examples, the retention face 5146 is oriented such that it obstructs the second end portion 5210 from rotating away from the bottom 5114 of the toggle housing 5100. In some such examples, the retention face 5146 extends away from to the second end wall 5130 toward the free end 5148. In some examples, the retention face 5146 is generally parallel with the surface of the ramp portion 5144. In some other examples, the retention face 5146 extends substantially perpendicularly away from to the second end wall 5130 toward the free end 5148. As discussed in greater detail below, the flange 5132 operates to retain the toggle in a disengaged position. Thus, in some examples, the flange 5132 extends into the recess 5122 an amount sufficient to obstruct toggle 5200 from rotating away from the bottom 5114 of the toggle housing 5100, as discussed below.
In some examples, the toggle housing 5100 includes one or more transverse struts extending between the side walls 5124 and 5126 of the body 5102. For example, referring back to
In various examples, the toggle housing 5100 and/or the toggle 5200 may be made of a metallic material such as steel, stainless steel, aluminum, zinc, or any other metallic material. The toggle housing 5100 and/or the toggle 5200 may be machined, cast, forged, or formed from any other suitable manufacturing process. In various embodiments, the toggle housing 5100 and/or the toggle 5200 could be made of a suitable composite material or a plastic. In various embodiments, the toggle housing 5100 and/or the toggle 5200 may be formed from a suitable manufacturing process such as die casting, injection molding, machining, or any other material specific and suitable method. For example, the toggle housing 5100 and/or the toggle 5200 may be die cast zinc.
As explained in greater detail below, in some examples, the priming feature 5218 operates to prime the toggle assembly 5000 for reengagement once the window sashes of the fenestration system have been moved to a designated relative position (or have otherwise moved beyond or in excess of a designated threshold). Specifically, in some examples, once primed, the toggle assembly 5000 is configured to automatically reengage once the upper and lower window sashes 3000 and 4000 have been repositioned such that the toggle assembly 5000 is free to reengage (e.g., no component of the fenestration system is positioned such that it obstructs the toggle 5200 from rotating to an engaged position).
In some examples, in addition to contacting the strike plate 6000 to limit the relative movement of the window sashes, the second end portion 5210 of the toggle 5200 also operates to retain the toggle 5200 in the toggle housing 5100 such that the toggle assembly 5000 is disengaged. In some examples, the second end portion 5210 includes a reaction surface 5222 that connects the bottom surface 5206 with the top side 5204 at the second end portion 5210. As shown in
In some examples, the toggle 5200 further includes one or more retaining pin housings. For example, as illustrated in
In some examples, the toggle 5200 further includes a biasing member engagement feature 5224. In some examples, the biasing member engagement feature 5224 is configured couple the toggle 5200 with the biasing member 5300. In some examples, the biasing member engagement feature 5224 includes a nose 5226. In some examples, the nose 5226 is formed as a protrusion in the bottom surface 5206 of the toggle 5200. In some such examples, a recess 5228 is formed in the bottom side of the toggle 5200 and the nose 5226 extends into the recess 5228 such that the nose 5226 extends generally toward the first end portion 5208 of the toggle 5200.
In some examples, the biasing member engagement feature 5224 is offset relative to the retaining pin housing 5216 such that the biasing member engagement feature 5224 is offset relative to the longitudinal axis of the retaining pins 5400 received within the retaining pin housing 5216 of the toggle 5200. As will be appreciated, such an offset provides for the creation of a moment about the longitudinal axis of the retaining pin 5400. Specifically, as explained in more detail below, the biasing member 5300 exerts a force on the biasing member engagement feature 5224 that induces a moment about the longitudinal axis of the retaining pin 5400 that influences the toggle 5200 to rotate about the longitudinal axis of the retaining pin 5400. In some examples, the biasing member engagement feature 5224 is longitudinally offset relative to the retaining pin housing 5216. For example, the biasing member engagement feature 5224 is positioned more proximate the first end portion 5208 than is the retaining pin housing 5216. In some examples, the biasing member engagement feature 5224 is alternatively or additionally offset relative to the retaining pin housing 5216 such that the biasing member engagement feature 5224 is positioned more proximate the bottom surface 5206 than is the retaining pin housing 5216.
Turning now to
It will be appreciated, however, that the retaining pin 5400 may be of any other suitable shape without departing from the spirit or scope of the present disclosure. For example, the first and second end portions 5404 and 5406 of the retaining pin 5400 may be cylindrically shaped while the intermediate portion 5408 is some other suitable shape. Likewise, in some examples, one of the first and second end portions 5404 and 5406 may be of some other shape. In some such embodiments, one of the first and second end portions 5404 and 5406 may be oblong or rectangularly shaped to prevent relative motion between that end portion and the feature within which it is attached. Such a configuration constrains the system to rotate and/or translate about the opposing end portion. In some other such embodiments, one of the first and second end portions 5404 and 5406 may be a cammed feature, which facilitates translation of the toggle 5200 relative to the toggle housing 5100 as the toggle 5200 is rotated relative to the toggle housing 5100.
Referring back now to
As illustrated, the toggle 5200 is coupled to the toggle housing 5100 such that the toggle 5200 is at least partially received within the toggle housing 5100. In some examples, the retaining pins 5400 received within the retaining pin housing 5216 of the toggle 5200 are also received with in the apertures 5134 of the toggle housing 5100. In some examples, once received within the apertures 5134 of the toggle housing 5100, the retaining pins 5400 are additionally independently constrained by the apertures 5134 of the toggle housing 5100. That is, the retaining pins 5400 are independently constrained by both the apertures 5134 and the retaining pin housings 5216.
In some examples, the apertures 5134 are configured to permit the retaining pins 5400 to rotate and translate longitudinally along the longitudinal length of the toggle housing 5100 within the apertures 5134. Thus, in some examples, the motion of the toggle 5200 relative to the toggle housing 5100 is at least partially governed by the manner in which the retaining pins 5400 are constrained by the toggle housing 5100.
In some examples, as mentioned above, the biasing member 5300 exerts a force on the toggle 5200 that influences the toggle 5200 to rotate and translate relative to the toggle housing 5100. As illustrated in
In some examples, when coupled to the toggle housing 5100 and the toggle 5200, the biasing member 5300 exerts a force on the toggle 5200 and the toggle housing 5100 that influences the toggle 5200 and the toggle housing 5100 to move relative to one another. Generally, however, the toggle housing 5100 is coupled to and fully constrained relative to a frame of a window sash, as explained above. Accordingly, the force exerted on the toggle 5200 by the biasing member 5300 causes the toggle 5200 to rotate and translate relative to the toggle housing 5100.
As mentioned above, in some examples, the toggle 5200 is at least free to translate and rotate relative to the toggle housing 5100 in accordance with the manner in which the retaining pin 5400 is constrained by the toggle housing 5100. Thus, the force exerted on the toggle 5200 by the biasing member 5300 causes the toggle 5200 to rotate and translate relative to the toggle housing 5100 at least in accordance with the manner in which the retaining pins 5400 are enabled to translate and rotate relative to the toggle housing 5100.
In some examples, given the positioning of the biasing member engagement feature 5224 relative to the retaining pin housings 5216, the force exerted on the toggle by the biasing member 5300 causes the second end portion 5210 of the toggle 5200 to rotate away from the bottom 5114 of the toggle housing 5100. That is, the biasing member 5300 exerts a force on the toggle 5200 such that the second end portion 5210 of the toggle 5200 is influenced away from the bottom 5114 of the toggle housing 5100.
In some examples, the toggle 5200 is limited in the degree to which it can rotate and translate relative to the toggle housing 5100. That is, in some examples, the second end portion 5210 of the toggle 5200 is permitted to rotate only a designated number of degrees away from the bottom 5114 of the toggle housing 5100. In some examples, the toggle 5200 rotates in the range of ten (10) to sixty (60) degrees relative to the toggle housing 5100. In some examples, the toggle 5200 rotates up to ninety (90) degrees relative to the toggle housing 5100. In some examples, the toggle housing 5100 operates to limit the degree to which the toggle 5200 rotates relative to the toggle housing 5100. For example, in some instances, the toggle 5200 is free to rotate relative to the toggle housing 5100 until the toggle 5200 contacts the strut 5152. In some examples, the frame of the window sash to which the toggle assembly 5000 is mounted additionally or alternatively operates to limit the degree to which the toggle 5200 rotates relative to the toggle housing 5100. For example, in some instances, the toggle 5200 is free to rotate relative to the toggle housing 5100 until the toggle 5200 contacts the window sash to which the toggle assembly 5000 is mounted.
In some examples, the retaining pin 5400 additionally or alternatively operates to limit the degree to which the toggle 5200 rotates relative to the toggle housing 5100. For example, one or more of the toggle housing 5100, toggle 5200, or retaining pin 5400 includes a feature that operates to engage one or more of the toggle housing 5100, toggle 5200, or retaining pin 5400 to limit the degree to which the toggle 5200 rotates relative to the toggle housing 5100.
In addition, given the positioning of the biasing member engagement feature 5224 relative to the retaining pin housings 5216, the force exerted on the toggle 5200 by the biasing member 5300 causes the toggle 5200 to translate along the longitudinal length of the toggle housing 5100 toward the second end portion 5106 of the toggle housing 5100. Put differently, the biasing member 5300 exerts a force on the toggle 5200 that influences the toggle 5200 to translate along the longitudinal length of the toggle housing 5100 and toward the second end portion 5106 of the toggle housing 5100. As discussed above, in some examples, the manner in which the toggle 5200 is free to translate relative to the toggle housing 5100 is based at least in part on the manner in which the retaining pin 5400 is constrained to translate relative to the toggle housing 5100 (e.g., within apertures 5134 of the toggle housing 5100). In some examples, the retaining pins 5400 are constrained to translating within the apertures 5134 along the length L from the first end 5136 to the second end 5138 of the apertures 5134. Accordingly, in some examples, the toggle 5200 is permitted to translate toward the second end portion 5106 until the retaining pin 5400 contacts the second end 5138 of aperture 5134. Likewise, in some examples, the toggle 5200 is permitted to translate toward the first end portion 5104 until the retaining pin 5400 contacts the first end 5136 of aperture 5134.
Turning now to
As discussed above, the window sashes of the fenestration system 1000 of the present disclosure can be opened or otherwise moved relative to one another a designated degree without compromising security. For example, in conventional designs, to open one or more of the window sashes of a fenestration system, conventional locks must be disengaged. That is, in these conventional fenestration systems the security features available prohibit a window sash from being opened. Thus, operators of conventional fenestration units must sacrifice safety to open their windows. Unlike these conventional systems, the novel fenestration system 1000 of the present disclosure provides users the ability to open one or more window sashes of the fenestration system 1000 without first having to disable the security system (i.e., without sacrificing their security). It will be appreciated that the toggle assembly 5000 of the present disclosure may be utilized in combination with one or more other conventional security features, such as window locks.
Turning now to
In some examples, the toggle assembly 5000, when engaged, operates to obstruct a window sash from being moved past the toggle assembly 5000. In the examples illustrated in the accompanying drawings, the toggle assembly 5000 is illustrated as obstructing or otherwise preventing a lower window sash 4000 from be opened past the toggle assembly 5000. Specifically, in the illustrated examples herein, the toggle 5200 of the toggle assembly 5000 physically contacts a strike plate 6000 mounted to an upper horizontal member 4006b of the frame 4002 of the lower window sash 4000 and operates to prevent the lower window sash 4000 from being further opened. In other words, in the illustrated example, the toggle assembly 5000 operates in conjunction with the strike plate 6000 to obstruct or otherwise prevent further opening of the lower window sash 4000. In addition, it will be appreciated that the toggle assembly 5000 also operates to obstruct any further lowering of the upper window sash 3000 relative to the lower window sash 4000. Specifically, further lowering of the upper window sash 3000 would require the toggle assembly 5000 to move past the strike plate 6000 (and the lower window sash 4000). As the strike plate 6000 (and the upper horizontal frame member 4006b) is obstructing the toggle assembly from moving therepast, the upper window sash 3000 is obstructed from being further lowered.
With specific reference to
In some examples, the toggle assembly 5000, alone, may operate to prevent a window sash from being opened past the toggle assembly 5000. In other words, in some examples, implementation of a strike plate 6000 is not required. Additionally, although the illustrated examples show the toggle assembly 5000 coupled to an upper window sash 3000, in some examples, the toggle assembly 5000 may be coupled to the lower window sash 4000. In yet other examples, the toggle assembly 5000 may be incorporated into or otherwise coupled to the frame 2000 of the fenestration system. In any of these examples, the toggle assembly 5000 operates to obstruct the upper and lower window sashes 3000 and 4000 from being raised or lowered a designated threshold amount relative to one another.
While the toggle assembly 5000 operates to obstruct or otherwise prevent the upper and lower window sashes 3000 and 4000 from moving past each other a designated amount, the toggle assembly 5000 can be selectively defeated to enable further movement of the upper and lower window sashes 3000 and 4000 relative to each other. As discussed above, in some examples, the toggle 5200 is coupled to the toggle housing 5100 via one or more retaining pins 5400. Additionally, as mentioned above, the retaining pins 5400 are received within the apertures 5134 of the toggle housing 5100. In some examples, the apertures 5134 are slotted such that the retaining pins 5400 are free to rotate and translate within the apertures 5134 (and thus toggle 5200 is free to rotate and translate within the toggle housing 5100 a designated amount).
In some examples, a user may selectively disengage the toggle assembly 5000 to permit the window sashes of the fenestration system 1000 to be further moved relative to one another. That is, a user may selectively disengage the toggle assembly 5000 to raise the lower window sash 4000 beyond a threshold amount otherwise limited by an engaged toggle assembly 5000 (e.g., fully raising the lower window sash 4000). Likewise, selectively disengaging the toggle assembly 5000 may also permit lowering the upper window sash 3000 beyond a threshold amount otherwise limited by an engaged toggle assembly 5000 (e.g., fully lower the upper window sash 3000).
In some examples, the toggle assembly 5000 is disengaged when the toggle 5200 no longer obstructs relative movement of the upper and lower window sashes 3000 and 4000. In some examples, the toggle assembly 5000 is disengaged by rotating the toggle 5200 a sufficient amount such that the second end portion 5210 is retained within the toggle housing 5100. In some examples, to disengage or otherwise deactivate the toggle assembly 5000, the operator applies a force to the toggle 5200 such that the second end portion 5210 rotates toward the toggle housing 5100 and subsequently becomes retained within the toggle housing 5100. Generally, an application of a force F to the toggle 5200 proximate the second end portion 5210 will create a moment about the retaining pin housing 5216. Provided the applied force F is sufficient for the created moment to overcome the moment created by the biasing member 5300 (explained above), the toggle 5200 will rotate such that the second end portion 5210 rotates toward to the toggle housing 5100.
In comparing
In comparing
Specifically, as illustrated in
In some examples, the toggle 5200 translates as a result of its interaction with the toggle housing 5100. Specifically, in some examples, as the toggle 5200 rotates relative to the toggle housing 5100, the reaction surface 5222 of the toggle 5200 contacts the flange 5132. As the toggle 5200 continues to rotate, the reaction surface 5222 slides along the surface of the flange 5132. As the reaction surface 5222 slides along the surface of the flange 5132, the toggle 5200 is forced to translate. Specifically, in some examples, the flange 5132 causes a component of the force F applied to the toggle 5200 (for rotation) to be redirected in the direction of the longitudinal length of the toggle housing 5100 as would be understood by one of skill in the art. In some examples, this redirected force causes the toggle 5200 to translate. However, as explained in greater detail below, the toggle 5200 may translate as a result of another mechanism (in addition to or alternative to the flange 5132), such as a camming feature located in the toggle housing 5100 or the toggle 5200.
In some examples, as the reaction surface 5222 of the toggle 5200 contacts the flange 5132 and the toggle 5200 translates, the apertures 5134 of toggle housing 5100 constrain the toggle 5200 to translate in accordance with the translation of the retaining pins 5400 within the apertures 5134. In other words, the flange 5132 operates in accordance with the apertures 5134 to direct and constrain the motion or translation of the toggle 5200 as it is further rotated within the toggle housing 5100. In some examples, provided a force sufficient to cause toggle 5200 to rotate continues to be applied, the toggle 5200 continues to rotate and translate until the toggle 5200 has translated an amount sufficient for the end of the second end portion 5210 of the toggle 5200 to clear the free end 5148 of the flange 5132, as illustrated in
In some examples, the differential distance between positions D1 and D2 is consistent with the extent to which flange 5132 of the toggle housing 5100 projects into the recess 5122 of the toggle housing 5100.
In some examples, once the toggle 5200 has been rotated a sufficient amount relative to the toggle housing 5100, the toggle 5200 engages one or more retaining features of the toggle housing 5100 and thereby becomes retained by the toggle housing 5100. In some examples, when retained by the toggle housing 5100, the toggle 5200 is constrained against movement relative to the toggle housing 5100. Accordingly, in some examples, when retained by the toggle housing 5100, the retaining features of the toggle housing 5100 operate to prevent the biasing member 5300 from causing the toggle 5200 to rotate or translate. Thus, in some examples, when retained by the toggle housing 5100, the toggle housing 5100 operates to obstruct the toggle 5200 from returning to its engaged state.
Turning now to
In some examples, in transitioning to the disengaged state, the toggle 5200 is rotated relative to the toggle housing 5100 such that the top surface 5204 of the toggle 5200 clears the flange 5132. In some examples, the top surface 5204 of the toggle 5200 clears the flange 5132 when the top surface 5204 of the toggle 5200 is more proximate the bottom 5114 of the toggle housing 5100 than is the retention surface 5146 of the flange 5132. In some examples, when the top surface 5204 of the toggle 5200 clears the flange 5132, the biasing member 5300 causes the toggle 5200 to translate along the longitudinal length of the toggle housing 5100 toward to the second end wall 5130. Thus, in some examples, the biasing member 5300 contributes to the retention of the toggle 5200 by the toggle housing 5100.
For example, as discussed above, the biasing member 5300 exerts a force on the toggle 5200 that influences the toggle 5200 to translate toward the second end wall 5130. In some examples, when the top surface 5204 of the toggle 5200 sufficiently clears the flange 5132, the force exerted on the toggle 5200 by the biasing member 5300 causes the toggle 5200 to translate along the longitudinal length of the toggle housing 5100 toward the second end wall 5130. In some examples, the toggle 5200 translates along the longitudinal length of the toggle housing 5100 toward the second end wall 5130 until the toggle 5200 is situated at a designated position D3.
In some examples, the toggle 5200 translates along the longitudinal length of the toggle housing 5100 toward the second end wall 5130 until an end of the second end portion 5210 contacts an interior wall surface 5150 of the toggle housing 5100. That is, in some examples, when situated in the position D3, an end of the second end portion 5210 of the toggle 5200 is in contact with (or is alternatively proximate to) an interior wall surface 5150 of the toggle housing 5100. In some examples, the toggle 5200 translates along the longitudinal length of the toggle housing 5100 toward the second end wall 5130 until the retaining pin 5400 contacts a second end 5138 of the aperture 5134 of the toggle housing 5100. That is, in some examples, when situated in the position D3, the retaining pin 5400 is in contact with (or is alternatively proximate to) the second end 5138 of the aperture 5134 of the toggle housing 5100.
Accordingly, in some examples, when the toggle assembly 5000 is positioned in the disengaged state, the toggle 5200 is situated at a position D3, as illustrated in
In some examples, the toggle 5200 is retained by the toggle housing 5100 until the toggle assembly 5000 is reengaged or reactivated. In some examples, the toggle assembly 5000 can be manually or automatically reengaged or reactivated. That is, in some examples, the toggle assembly 5000 is automatically transitioned from the disengaged state to the engaged state. In some examples, the toggle assembly 5000 is reengaged or reactivated by translating the toggle 5200 along the longitudinal length of the toggle housing 5100 away from the second end wall 5130 of the toggle housing 5100 such that the end of the second end portion 5210 clears the flange 5132 of the toggle housing 5100. In some examples, once the second end portion 5210 clears the flange 5132 of the toggle housing 5100 the toggle 5200 can be rotated about the longitudinal axis of the retaining pins 5400 away from the toggle housing 5100.
In some examples, the biasing member 5300 causes the toggle 5200 to rotate about the longitudinal axis of the retaining pins 5400 away from the toggle housing 5100 once the second end portion 5210 clears the flange 5132 of the toggle housing 5100. Specifically, as explained above, the biasing member 5300 exerts a force on the toggle 5200 and the toggle housing 5100 that influences the second end portion 5210 of the toggle 5200 to translate toward the second end wall 5130 and rotate away from the bottom 5114 of the toggle housing 5100. Accordingly, during reengagement (or priming for reengagement) of the toggle assembly 5000, once the second end portion 5210 of the toggle 5200 clears the flange 5132 of the toggle housing 5100 the biasing member 5300 causes the toggle 5200 to rotate such that the second end portion 5210 of the toggle rotates away from the bottom 5114 of the toggle housing 5100.
In some examples, further raising the lower window sash 4000 relative to the toggle assembly 5000 causes the toggle assembly to reengage. In some examples, this reengagement is automatic in that the lower window sash 4000 interacts with the toggle assembly 5000 to prime the toggle assembly 5000 for reengagement. In some such examples, after the toggle assembly 5000 is disengaged, the window sashes of the fenestration assembly 1000 can be further moved relative to one another.
For instance, in some examples, after the toggle assembly 5000 is disengaged, the lower window sash 4000 can be opened further relative to the upper window sash 3000 because the toggle 5200 of the toggle assembly 5000 no longer obstructs the lower window sash 4000. In some examples, as the lower window sash 4000 is further opened relative to the upper window sash 3000 the lower window sash 4000 engages or otherwise contacts the toggle 5200 of the toggle assembly 5000. In some examples, as the lower window sash 4000 is further opened relative to the upper window sash 3000, the strike plate 6000 contacts the toggle 5200 of the toggle assembly 5000.
In some examples, as the lower window sash 4000 is further raised relative to the toggle assembly 5000, the strike plate 6000 contacts the toggle 5200, causing the priming feature 5218 of the toggle 5200 to hang (or otherwise bind) on the top surface 6004 of the strike plate 6000. This hanging or binding of the toggle 5200 on the strike plate 6000 causes the toggle 5200 to translate relative to the toggle housing 5100. Thus, in some examples, as the lower window sash 4000 (and thus the strike plate 6000) is further raised relative to the toggle housing 5100, the toggle 5200 is translated relative to the toggle housing 5100.
In some examples, similar to the discussion above, this translation of the toggle 5200 relative to the toggle housing 5100 is constrained and governed by the translation of the retaining pins 5400 within the apertures 5134 of the toggle housing 5100. For example, as illustrated in
In some examples, when the second end portion 5210 clears the flange 5132 and the toggle 5200 is free to rotate about the longitudinal axis of the retaining pins 5400, the biasing member 5300 causes the second end portion 5210 of the toggle 5200 to rotate away from the bottom 5114 of the toggle housing 5100. That is, as discussed above, the force exerted on the toggle 5200 by the biasing member 5300 influences the second end portion 5210 of the toggle 5200 to rotate away from the bottom 5114 of the toggle housing 5100. In some examples, this rotation of the toggle 5200 operates to prime the toggle assembly 5000 for reengagement.
Specifically, in some examples, as the toggle 5200 rotates as a result of the force exerted by it by biasing member 5300, the first end portion 5208 of the toggle 5200 rotates away from the strike plate 6000 such that the toggle 5200 is no longer carried by the strike plate 6000.
For example, in some instances, while the toggle 5200 is free to rotate away from the bottom 5114 of the toggle housing 5100 once the end of the second end portion 5210 clears of the flange 5132 and the retention surface 5146, the toggle 5200 may not be free to fully reengage. That is, the toggle 5200 may not be free to rotate to a position that obstructs further raising of the lower widow sash 3000 (or, alternatively, further lowering of the upper window sash 3000). With specific reference to
In some examples, once the toggle 5200 has rotated to a position where it is no longer carried by the strike plate 6000, the toggle 5200 translates along the longitudinal length of the toggle housing 5100 in a direction toward the second end wall 5130. As discussed above, in some examples, the biasing member 5300 causes the toggle 5200 to translate in such a manner. In some examples, the toggle 5200 translates along the longitudinal length of the toggle housing to a position D1. In some examples, the position D1 is associated with the retaining pin 5400 contacting (or is alternatively being situated proximate to) the second end 5138 of the aperture 5134 of the toggle housing 5100.
Turning now to
While certain of the above discussed examples illustrate and describe the lower window sash 4000 being opened or otherwise raised relative to the upper window sash 3000, it will be appreciated that the toggle assembly 5000 operates in a similar or same manner if when the upper window sash 3000 is additionally or alternatively lowered relative to the lower window sash 4000. That is, in some examples, the toggle assembly 5000 operates to control the degree of relative movement between the upper and lower window sashes 3000 and 4000. Accordingly, in various examples, the toggle assembly 5000 may operate to control or otherwise limit the degree of relative movement or translation of the upper and lower window sashes 3000 and 4000. In various examples, as explained above, the toggle assembly 5000 may be automatically reengaged in accordance with the lower window sash 4000 being opened, raised, or otherwise translated a designated degree relative to the upper window sash 3000. Likewise, in various examples, the toggle assembly 5000 may be automatically reengaged in accordance with the upper window sash 3000 being lowered or otherwise translated a designated degree relative to the lower window sash 4000. This, in various examples, the toggle assembly 5000 may be automatically reengaged in accordance with the upper and lower window sashes 3000 and 4000 being translated a designated amount relative to one another.
In some examples discussed herein, the toggle assembly 5000 operates to obstruct the lower window sash from being opened, raised, or otherwise translated beyond a threshold. In some examples, the threshold is based on a designated degree (or amount) of relative translation between the upper and lower window sashes 3000 and 4000. In some examples, the threshold corresponds to an designated amount to which a lower window sash may be opened halfway. In some such examples, the threshold can be predesignated in that the fenestration system may be installed with the threshold already set. In some examples, the threshold may be in the range of two (2) to six (6) inches, such as four (4) inches, for example. In some embodiments, the threshold may be less than two (2) inches, such as in the range of zero (0) to two (2) inches. Thus, in some examples, the threshold may be set such that the lower (or upper) sash may not be opened at all. In some examples, the threshold may be greater than six (6) inches, such as within a range of six (6) inches and the amount to which the lower (or upper) sash may be opened if no toggle assembly 5000 were present. In some examples, the threshold can be selected by the fenestration system owner at the time of installation. In other words, in these examples, one fenestration system owner may select a threshold that differs from another fenestration system owner. In some examples, the threshold is fixed. In other examples, the threshold is variable in that it can be selectively modified after installation and during the life cycle of the fenestration system.
In some such examples, the threshold is modified by remounting the toggle assembly 5000 on the fenestration system in a different position, such as a position that corresponds to a greater distance between the toggle assembly 5000 and the strike plate 6000 when the upper and lower window sashes 3000 and 4000 are in their closed positions. In some other examples, the toggle assembly 5000 is mounted to the fenestration system on a track that enables repositioning of the toggle assembly along the track. For example, the track may span a vertical frame member from an upper frame member to a lower frame member, and the toggle assembly 5000 may be selectively mounted at any position along the track. Such versatility provides owners with a capability to maximize utilization of their fenestration unit without compromising their sense of security.
As explained above, in some examples, the toggle housing 5100 includes one or more slotted apertures 5134 that are configured to receive retaining pins 5400 therein such that retaining pins 5400 are free to translate and rotate within the slotted apertures 5134. Also, as explained above, toggle 5200 includes one or more retaining pin housings 5216 that are configured to receive the retaining pins 5400. In some examples, the one or more retaining pin housings 5216 of the toggle 5200 are slotted such that they have a length L that is greater than their width W. That is, in some examples, the one or more retaining pin housings 5216 of the toggle 5200 are slotted in addition to or alternative to the apertures 5134 of the toggle housing 5100 being slotted. In some examples, slotting the retaining pin housings 5216 in addition to the apertures 5134 provides for additional degrees of freedom.
As discussed above, in some examples, the retaining pin 5400 is received within the retaining pin housing 5216 of the toggle 5200. In some examples, the retaining pin 5400 is press fit (or friction fit) into the retaining pin housing 5216 such that the retaining pin 5400 is fully constrained relative to the toggle 5200. In some examples, the retaining pin 5400 is received within the retaining pin housing 5216 such that the retaining pin 5400 is free to rotate relative to the toggle 5200. As additionally described above, in some examples, the retaining pin is received within the apertures 5134 such that the retaining pins are free to rotate and/or translate within the apertures 5134. That is, in some examples, the retaining pins are free to rotate and/or translate relative to the toggle housing 5100. In some examples, the retaining pins 5400 are press fit into the apertures 5134 such that the retaining pins 5400 are fully constrained against movement relative to the toggle housing 5100. In some examples, the retaining pins 5400 are received within the apertures 5134 such that the retaining pins are free to rotate relative to the toggle housing 5100.
Thus, while some of the above discussed examples illustrate the toggle 5200 and retaining pins 5400 rotating and translating relative to the toggle housing 5100, in some examples, the toggle 5200 may rotate and translate relative to the toggle housing 5100 while the retaining pins 5400 are constrained against translation and/or rotation relative to the toggle housing 5100.
As discussed above, in some examples, the toggle 5200 is free to translate and rotate relative to the toggle housing 5100. In some examples, this translation and rotation occurs as a result of the toggle 5200 contacting the toggle housing 5100 as the toggle 5200 is rotated into the toggle housing 5100. In some examples, the retaining pin 5400 may be cammed such that the toggle 5200 translates as it rotates into the toggle housing 5100. In some such examples, the retaining pin 5400 may include one or more cammed portions that cause the toggle 5200 to translate relative to the toggle housing 5100 as the toggle 5200 rotates relative to the toggle housing 5100.
As discussed above, in some examples, the biasing member 5300 is an elastic member, such as a spring or the like that exerts a force on the toggle 5200 and the toggle housing 5100 that induces the toggle 5200 to rotate and translate relative to the toggle housing 5100. In some examples, like those described above, the biasing member 5300 exerts a force on the toggle 5200 and the toggle housing 5100 as a result of the biasing member 5300 being in tension. For instance, the biasing member 5300 in the above illustrated examples extends between the toggle 5200 and the second end portion 5106 of the toggle housing 5100 and induces the toggle 5200 to translate toward the second end portion 5106. In some other examples, the biasing member 5300 may be an elastic member that exerts a force on the toggle 5200 and the toggle housing 5100 as a result of being in compression.
Additionally, while the examples discussed above illustrate and describe the biasing member 5300 being coupled to the toggle 5200 and the toggle housing 5100, in some examples, the biasing member 5300 is coupled to the retaining pin 5400 and the toggle housing 5100. For example, the retaining pin 5400 may include one or more features that enable the biasing member 5300 to couple to (or otherwise exert a force on) the retaining pin 5400 such that the biasing member 5300 causes the toggle 5200 to rotate and translate relative to the toggle housing 5100. Additionally, in some examples, the biasing member 5300 may be coupled to the toggle 5200 and the retaining pin 5400 such that the biasing member 5300 causes the toggle 5200 to rotate relative to the toggle housing 5100. In some such examples, the retaining pin 5400 may be constrained relative to the toggle housing 5100 while being free to rotate and translate relative to the toggle 5200.
As discussed above, in some examples, the toggle assembly 5000 operates in accordance with a strike plate 6000 to prevent a designated degree of relative movement between the upper and lower window sashes 3000 and 4000. In some examples, however, no strike plate 6000 is required. That is, in some examples, the toggle assembly 5000 operates to a designated degree of relative movement between the upper and lower window sashes 3000 and 4000. In some such examples, the toggle assembly 5000 is configured to interface with the frames of the window sashes of the fenestration system 1000 to prevent a designated degree of relative movement between the upper and lower window sashes 3000 and 4000
Additionally, although the illustrated examples show the toggle assembly 5000 coupled to an upper window sash 3000, in some examples, the toggle assembly 5000 is coupled to the lower window sash 4000. In some such examples, as the lower window sash 4000 is raised relative to the upper window sash 3000 (or, alternatively, if the upper window sash 3000 is lowered relative to the lower window sash 4000), the toggle assembly operates to obstruct the lower window sash 4000 from being further raised (or, alternatively, operates to obstruct the upper window sash 3000 from being further lowered).
In some examples, a protective coating or element is coupled to the toggle 5200. In some examples, the protective coating or element is configured to protect the toggle 5200 and the various components or elements of the toggle assembly 5000 that interface with the toggle 5200. For example, in some instances, the protective coating or element protects the surface finish of the lower sash (or upper sash) from the primed toggle when the respective sash contacts the toggle 5200. In some examples, the protective coating or element may be colored such that it serves as a colored indicator to satisfy code requirements (such as visibility requirements).
In some examples, the protective element 7000 is a coating applied to one or more portions of the toggle 5200. For example, referring now to
With specific reference to
Referring now to
In some examples, the coating or protective element is made of a durable polymer such as poly-propylene, or any suitable plastic or synthetic material (e.g., nylon, UHMW, santoprene, natural rubber, polycarbonate, etc.).
Numerous characteristics and advantages have been set forth in the preceding description, including various alternatives together with details of the structure and function of the devices and/or methods. Moreover, the inventive scope of the various concepts addressed in this disclosure has been described both generically and with regard to specific examples. The disclosure is intended as illustrative only and as such is not intended to be exhaustive. It will be evident to those skilled in the art that various modifications may be made, especially in matters of structure, materials, elements, components, shape, size, and arrangement of parts including combinations within the principles of the disclosure, to the full extent indicated by the broad, general meaning of the terms in which the appended claims are expressed. To the extent that these various modifications do not depart from the spirit and scope of the appended claims, they are intended to be encompassed therein.
This application claims priority to U.S. Provisional Application No. 62/448,615, filed Jan. 20, 2017, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
37625 | Hyde | Feb 1863 | A |
89606 | Strongfllow | May 1869 | A |
105287 | Wood | Jul 1870 | A |
196002 | Freeman | Oct 1877 | A |
198553 | Von Auer | Dec 1877 | A |
226033 | Burns | Mar 1880 | A |
262530 | Zacherl | Aug 1882 | A |
278802 | Kubleb | Jun 1883 | A |
281865 | Goodwin | Jul 1883 | A |
327858 | Bradford | Oct 1885 | A |
383886 | Jackson | Jun 1888 | A |
385935 | Jackson | Jul 1888 | A |
398889 | Gehrung | Mar 1889 | A |
423217 | Chambers | Mar 1890 | A |
426792 | Foote | Apr 1890 | A |
443356 | Cattley | Dec 1890 | A |
489442 | Whetter | Jan 1893 | A |
501622 | Lee | Jul 1893 | A |
521691 | Algeo | Jun 1894 | A |
523736 | Cazin | Jul 1894 | A |
534185 | Winchester | Feb 1895 | A |
551181 | Dillon | Dec 1895 | A |
685466 | Bradshaw | Oct 1901 | A |
696557 | George | Apr 1902 | A |
718007 | Linn | Jan 1903 | A |
756453 | Arens et al. | Apr 1904 | A |
763240 | Aupke | Jun 1904 | A |
779801 | Prden | Jan 1905 | A |
798369 | Stutenroth | Aug 1905 | A |
798544 | Horssen | Aug 1905 | A |
804994 | Andrews | Nov 1905 | A |
812097 | Stanley et al. | Feb 1906 | A |
820960 | Erb | May 1906 | A |
820961 | Erb | May 1906 | A |
823070 | McEntee | Jun 1906 | A |
908394 | Corbeille | Dec 1908 | A |
917379 | Tayntor | Apr 1909 | A |
928526 | Loper | Jul 1909 | A |
956963 | Harmuth | May 1910 | A |
976777 | Brown | Nov 1910 | A |
984669 | Hedstrom | Feb 1911 | A |
1016422 | Lauritsen | Feb 1912 | A |
1032559 | McKee | Jul 1912 | A |
1069079 | Voight | Jul 1913 | A |
1082663 | Viragh | Dec 1913 | A |
1134203 | Jones | Apr 1915 | A |
1173129 | Taliaferro | Feb 1916 | A |
1184148 | Teisseire | May 1916 | A |
1193211 | Webster | Aug 1916 | A |
1198138 | Lovell | Sep 1916 | A |
1214602 | Smith | Feb 1917 | A |
1220675 | Parson | Mar 1917 | A |
1222293 | Iman | Apr 1917 | A |
1261274 | Newsam | Apr 1918 | A |
1282490 | Sullwold | Oct 1918 | A |
1313401 | Mann | Aug 1919 | A |
1322677 | Ditlefsen | Nov 1919 | A |
1325790 | Kleinschmidt | Dec 1919 | A |
1327441 | Mesker et al. | Jan 1920 | A |
1350698 | Boedtcher | Aug 1920 | A |
1358121 | Smith | Nov 1920 | A |
1361913 | Sebastian | Dec 1920 | A |
1397859 | Dickens | Nov 1921 | A |
1439260 | Pruell | Dec 1922 | A |
1445267 | Card | Feb 1923 | A |
1469331 | Chester et al. | Oct 1923 | A |
1494948 | Bujack | May 1924 | A |
1511363 | Pierson | Oct 1924 | A |
1514927 | Powers | Nov 1924 | A |
1533725 | Davenport | Apr 1925 | A |
1538222 | Smith | May 1925 | A |
1549422 | Mohun | Aug 1925 | A |
1601773 | Sasgen | Oct 1926 | A |
1605883 | Wheelock | Nov 1926 | A |
1644814 | Barr | Oct 1927 | A |
1649861 | Schneider | Nov 1927 | A |
1651697 | Hadden | Dec 1927 | A |
1653295 | Kozak | Dec 1927 | A |
1653830 | Wharton | Dec 1927 | A |
1664322 | Reese | Mar 1928 | A |
1694886 | McClellan | Dec 1928 | A |
1707888 | White | Apr 1929 | A |
1708556 | Storms | Apr 1929 | A |
1724637 | Bergstrom | Aug 1929 | A |
1747576 | Caldwell | Feb 1930 | A |
1812288 | Drapeau | Jun 1931 | A |
1835558 | Campbell | Dec 1931 | A |
1899466 | Kistner | Feb 1933 | A |
1905983 | Harder | Apr 1933 | A |
1906153 | Hall | Apr 1933 | A |
1945748 | McDaniel | Feb 1934 | A |
1946833 | Brown | Feb 1934 | A |
1960543 | Maguire | May 1934 | A |
1988810 | Ross | Jan 1935 | A |
2011455 | Ostermann | Aug 1935 | A |
2062020 | Sylvan | Nov 1936 | A |
2137937 | Berghoff | Nov 1938 | A |
2158260 | Stillman | May 1939 | A |
2405887 | Hoffman | Aug 1946 | A |
2480988 | Walton | Sep 1949 | A |
2503370 | Zanona | Apr 1950 | A |
2527278 | Schemansky | Oct 1950 | A |
2612398 | Miller | Sep 1952 | A |
2788098 | Bianco | Apr 1957 | A |
3083045 | Linderoth | Mar 1963 | A |
3109675 | Anderson | Nov 1963 | A |
3151901 | Aldgren | Oct 1964 | A |
3157224 | Spargur et al. | Nov 1964 | A |
3330071 | Kubisiak | Jul 1967 | A |
3337992 | Tolson | Aug 1967 | A |
3456387 | Tolson | Jul 1969 | A |
3897966 | Draughon, Sr. | Aug 1975 | A |
3910614 | Coe | Oct 1975 | A |
3912311 | Carvell et al. | Oct 1975 | A |
4027907 | Crepinsek | Jun 1977 | A |
4095827 | Stavenau | Jun 1978 | A |
4248461 | Stevens | Feb 1981 | A |
4263747 | Coltrin et al. | Apr 1981 | A |
4377969 | Nelson | Mar 1983 | A |
4379576 | Blough et al. | Apr 1983 | A |
4383666 | Allerding et al. | May 1983 | A |
4577896 | Crepinsek | Mar 1986 | A |
4580819 | Crepinsek | Apr 1986 | A |
4580820 | Baber | Apr 1986 | A |
4635976 | Sigler | Jan 1987 | A |
4639024 | Crepinsek | Jan 1987 | A |
4897961 | Shine | Feb 1990 | A |
4923230 | Simpson | May 1990 | A |
5144770 | Kraus et al. | Sep 1992 | A |
5248174 | Matz et al. | Sep 1993 | A |
5452596 | Yamada | Sep 1995 | A |
5457971 | Yamada | Oct 1995 | A |
5502925 | Gorrell | Apr 1996 | A |
5536052 | Maier | Jul 1996 | A |
5553420 | Klimek | Sep 1996 | A |
5553903 | Prete | Sep 1996 | A |
5568702 | Frank et al. | Oct 1996 | A |
5568703 | Frank et al. | Oct 1996 | A |
5573050 | Henkenjohann | Nov 1996 | A |
5575116 | Carlson et al. | Nov 1996 | A |
5615522 | Tomanek | Apr 1997 | A |
5620213 | Ellis | Apr 1997 | A |
5636476 | Eikmeier et al. | Jun 1997 | A |
5647233 | Chung | Jul 1997 | A |
5669256 | Chung | Sep 1997 | A |
5682710 | Davies et al. | Nov 1997 | A |
5687506 | Davies et al. | Nov 1997 | A |
5715631 | Kailian et al. | Feb 1998 | A |
5775028 | Lambert | Jul 1998 | A |
5806900 | Bratcher et al. | Sep 1998 | A |
5826377 | Simson et al. | Oct 1998 | A |
5839229 | Briggs et al. | Nov 1998 | A |
5881498 | Goggin et al. | Mar 1999 | A |
5937582 | Taylor | Aug 1999 | A |
5946857 | Davies et al. | Sep 1999 | A |
5997053 | Marquez | Dec 1999 | A |
6000735 | Jourdenais | Dec 1999 | A |
6021603 | Prete et al. | Feb 2000 | A |
6161336 | Ziv-Av | Dec 2000 | A |
6209364 | Collet et al. | Apr 2001 | B1 |
6270175 | Sfeir | Aug 2001 | B1 |
D453214 | Komatsubara et al. | Jan 2002 | S |
6343436 | Milano et al. | Feb 2002 | B1 |
6354639 | Minter et al. | Mar 2002 | B1 |
6364375 | Szapucki et al. | Apr 2002 | B1 |
6381080 | Holdener et al. | Apr 2002 | B1 |
6382689 | Brown | May 2002 | B1 |
6384990 | Holdener et al. | May 2002 | B1 |
6431620 | Tremblay et al. | Aug 2002 | B2 |
6442898 | Wu | Sep 2002 | B1 |
6484445 | Chang | Nov 2002 | B2 |
6546671 | Mitchell et al. | Apr 2003 | B2 |
6619707 | Sucu et al. | Sep 2003 | B2 |
6634681 | Redden | Oct 2003 | B1 |
6684454 | Ehrenreich | Feb 2004 | B2 |
6817142 | Marshik | Nov 2004 | B2 |
6871884 | Hoffmann et al. | Mar 2005 | B2 |
6871885 | Goldenberg et al. | Mar 2005 | B2 |
6915608 | Labarre | Jul 2005 | B2 |
6926363 | Yamashita | Aug 2005 | B2 |
6968646 | Goldenberg et al. | Nov 2005 | B2 |
7013603 | Eenigenburg et al. | Mar 2006 | B2 |
7017301 | Di Vinadio | Mar 2006 | B2 |
7024821 | Lu | Apr 2006 | B2 |
7036274 | Carrier | May 2006 | B2 |
7048312 | Brunner | May 2006 | B2 |
7063361 | Lawrence | Jun 2006 | B1 |
7093392 | Derham et al. | Aug 2006 | B2 |
7100327 | Rangabasyam et al. | Sep 2006 | B2 |
7147255 | Goldenberg et al. | Dec 2006 | B2 |
7159908 | Liang | Jan 2007 | B2 |
7216401 | Bae | May 2007 | B2 |
7246411 | Campbell et al. | Jul 2007 | B2 |
7246840 | Gates et al. | Jul 2007 | B2 |
7257864 | Liang et al. | Aug 2007 | B2 |
7296831 | Generowicz et al. | Nov 2007 | B2 |
D558024 | Tremble et al. | Dec 2007 | S |
7305800 | Calfee | Dec 2007 | B1 |
D559078 | Baczuk et al. | Jan 2008 | S |
D560112 | Baczuk et al. | Jan 2008 | S |
7325359 | Vetter | Feb 2008 | B2 |
7396054 | Carrier | Jul 2008 | B2 |
7412800 | Maier | Aug 2008 | B2 |
7431356 | Liang | Oct 2008 | B2 |
7441812 | Welsh et al. | Oct 2008 | B2 |
D581247 | Durrant | Nov 2008 | S |
7464619 | Vetter | Dec 2008 | B2 |
7494164 | Garries et al. | Feb 2009 | B1 |
7530611 | Liang | May 2009 | B2 |
7559588 | Liang | Jul 2009 | B2 |
7588271 | Lawrence | Sep 2009 | B1 |
7600796 | Liang | Oct 2009 | B2 |
7614184 | Rebel et al. | Nov 2009 | B2 |
7637544 | Liang | Dec 2009 | B2 |
7913456 | Balbo Di Vinadio | Mar 2011 | B2 |
7963577 | Wolf | Jun 2011 | B2 |
7971392 | Seo | Jul 2011 | B2 |
8046954 | Curtis et al. | Nov 2011 | B2 |
8051604 | Diekmann et al. | Nov 2011 | B2 |
8075038 | Zielinsky | Dec 2011 | B2 |
8087322 | Morris | Jan 2012 | B1 |
8096593 | Gibbons | Jan 2012 | B2 |
8156612 | Yamashita | Apr 2012 | B2 |
8171673 | Helms | May 2012 | B2 |
8182001 | Tremble et al. | May 2012 | B2 |
8235430 | Liang | Aug 2012 | B2 |
8281458 | Balbo Di Vinadio | Oct 2012 | B2 |
8308204 | Lindgren et al. | Nov 2012 | B2 |
8336930 | Liang et al. | Dec 2012 | B2 |
8360484 | Liang et al. | Jan 2013 | B2 |
8448996 | Lake et al. | May 2013 | B2 |
8474186 | Dufour et al. | Jul 2013 | B2 |
8490330 | Lund et al. | Jul 2013 | B2 |
8511724 | Liang et al. | Aug 2013 | B2 |
8550507 | Barton | Oct 2013 | B2 |
8602463 | Keighley et al. | Dec 2013 | B2 |
8657347 | Liang et al. | Feb 2014 | B2 |
8683746 | Lambertini | Apr 2014 | B2 |
8707621 | Curtis et al. | Apr 2014 | B2 |
8727395 | Nania | May 2014 | B2 |
8733021 | Lambertini | May 2014 | B2 |
8769872 | Maltaverne et al. | Jul 2014 | B2 |
8776440 | Sopkowiak | Jul 2014 | B2 |
8776441 | Lawrence | Jul 2014 | B1 |
8776442 | Lawrence | Jul 2014 | B1 |
8789857 | Liang et al. | Jul 2014 | B2 |
8789862 | Liang | Jul 2014 | B2 |
8806809 | Lawrence | Aug 2014 | B1 |
D712280 | Radomyselski et al. | Sep 2014 | S |
8881461 | Derham | Nov 2014 | B2 |
8888146 | Taylor et al. | Nov 2014 | B2 |
8899632 | Tremble et al. | Dec 2014 | B2 |
8919699 | Kress et al. | Dec 2014 | B2 |
8925150 | Pacini | Jan 2015 | B2 |
8935887 | Cavalcante | Jan 2015 | B2 |
8950119 | Piltingsrud | Feb 2015 | B2 |
8991228 | Yang | Mar 2015 | B2 |
9163437 | Lawrence | Oct 2015 | B1 |
9234374 | Wolf et al. | Jan 2016 | B2 |
9273763 | Evensen | Mar 2016 | B2 |
9404288 | Curtis et al. | Aug 2016 | B2 |
9435149 | Glickman | Sep 2016 | B1 |
9441714 | Hsu et al. | Sep 2016 | B2 |
9556652 | Lund | Jan 2017 | B2 |
D795848 | Zheng et al. | Aug 2017 | S |
9725935 | Tomassi | Aug 2017 | B2 |
9745784 | Lawrence | Aug 2017 | B1 |
9759001 | Bisang et al. | Sep 2017 | B2 |
9772010 | Dodge et al. | Sep 2017 | B2 |
9840860 | Liang | Dec 2017 | B2 |
D808256 | Muller | Jan 2018 | S |
9889725 | Boesel et al. | Feb 2018 | B2 |
10107021 | Liang | Oct 2018 | B1 |
20010019211 | Tremblay et al. | Sep 2001 | A1 |
20020116874 | Marshik | Aug 2002 | A1 |
20020119000 | Gledhill | Aug 2002 | A1 |
20020124468 | Manzella | Sep 2002 | A1 |
20020144465 | Chang | Oct 2002 | A1 |
20020145291 | Goldenberg et al. | Oct 2002 | A1 |
20020162223 | Reichert | Nov 2002 | A1 |
20020167180 | Sucu et al. | Nov 2002 | A1 |
20030014920 | Lu | Jan 2003 | A1 |
20030024168 | Mitchell et al. | Feb 2003 | A1 |
20030047949 | Brunner | Mar 2003 | A1 |
20030079414 | Rangabasyam et al. | May 2003 | A1 |
20030110699 | Eenigenburg et al. | Jun 2003 | A1 |
20030110701 | Dawson | Jun 2003 | A1 |
20030122387 | Ward | Jul 2003 | A1 |
20030159477 | Hoffmann et al. | Aug 2003 | A1 |
20030167694 | Liang | Sep 2003 | A1 |
20030172591 | Labarre | Sep 2003 | A1 |
20040036299 | Goldenberg et al. | Feb 2004 | A1 |
20040036300 | Goldenberg et al. | Feb 2004 | A1 |
20040128914 | Hempelmann | Jul 2004 | A1 |
20040216381 | Clavet | Nov 2004 | A1 |
20040216541 | Vetter | Nov 2004 | A1 |
20040245801 | Gates et al. | Dec 2004 | A1 |
20040261320 | Sullivan | Dec 2004 | A1 |
20050011049 | Muir | Jan 2005 | A1 |
20050022941 | Di Vinadio | Feb 2005 | A1 |
20050046260 | Yamashita | Mar 2005 | A1 |
20050055804 | Liang et al. | Mar 2005 | A1 |
20050072075 | Maier | Apr 2005 | A1 |
20050078818 | Bae | Apr 2005 | A1 |
20050132532 | Campbell et al. | Jun 2005 | A1 |
20050262769 | Vetter | Dec 2005 | A1 |
20060032143 | Johnson | Feb 2006 | A1 |
20060053692 | Rebel et al. | Mar 2006 | A1 |
20060087130 | Liang | Apr 2006 | A1 |
20060218864 | Blomqvist | Oct 2006 | A1 |
20060244269 | Rotondi | Nov 2006 | A1 |
20070020091 | Giaimo et al. | Jan 2007 | A1 |
20070020092 | Giaimo et al. | Jan 2007 | A1 |
20070040396 | Carrier | Feb 2007 | A1 |
20070137110 | Liles, Jr. | Jun 2007 | A1 |
20070158953 | Liang | Jul 2007 | A1 |
20070182168 | Allen | Aug 2007 | A1 |
20070222233 | Liang et al. | Sep 2007 | A1 |
20070222234 | Liang | Sep 2007 | A1 |
20080000164 | Erickson et al. | Jan 2008 | A1 |
20080001413 | Lake et al. | Jan 2008 | A1 |
20080040978 | Diekmann et al. | Feb 2008 | A1 |
20080092446 | Bienek | Apr 2008 | A1 |
20080120915 | Flores | May 2008 | A1 |
20080129054 | Tremble et al. | Jun 2008 | A1 |
20080178424 | Tuller | Jul 2008 | A1 |
20080229667 | Dufour et al. | Sep 2008 | A1 |
20080250719 | Griffin et al. | Oct 2008 | A1 |
20080256874 | Curtis et al. | Oct 2008 | A1 |
20090013605 | Seo | Jan 2009 | A1 |
20090025301 | Di Vinadio | Jan 2009 | A1 |
20090079202 | Wolf | Mar 2009 | A1 |
20090146436 | Lindgren et al. | Jun 2009 | A1 |
20090206616 | Liang | Aug 2009 | A1 |
20100050524 | Helms | Mar 2010 | A1 |
20100072763 | Allen | Mar 2010 | A1 |
20100089190 | Busch | Apr 2010 | A1 |
20100139039 | Balbo Di Vinadio | Jun 2010 | A1 |
20100192643 | Liang et al. | Aug 2010 | A1 |
20100276947 | Keighley et al. | Nov 2010 | A1 |
20100293748 | Yamashita | Nov 2010 | A1 |
20100300000 | Liang | Dec 2010 | A1 |
20110062727 | Liang et al. | Mar 2011 | A1 |
20110068124 | Reynolds et al. | Mar 2011 | A1 |
20110173895 | Lund et al. | Jul 2011 | A1 |
20110203184 | Nguyen et al. | Aug 2011 | A1 |
20110298225 | Liang et al. | Dec 2011 | A1 |
20120023826 | Curtis et al. | Feb 2012 | A1 |
20120068478 | Nania | Mar 2012 | A1 |
20120144752 | Piltingsrud | Jun 2012 | A1 |
20120167469 | Maltaverne et al. | Jul 2012 | A1 |
20120167475 | Sopkowiak et al. | Jul 2012 | A1 |
20120174487 | Lambertini | Jul 2012 | A1 |
20120180392 | Lambertini | Jul 2012 | A1 |
20120297683 | Cavalcante | Nov 2012 | A1 |
20120313387 | Liang et al. | Dec 2012 | A1 |
20130104458 | Leung et al. | May 2013 | A1 |
20130111819 | Tremble et al. | May 2013 | A1 |
20130214545 | Wolf et al. | Aug 2013 | A1 |
20130220043 | Hsu et al. | Aug 2013 | A1 |
20130256458 | Kress et al. | Oct 2013 | A1 |
20140007378 | Pacini | Jan 2014 | A1 |
20140007720 | Evensen | Jan 2014 | A1 |
20140259940 | Meves et al. | Sep 2014 | A1 |
20150114176 | Bisang et al. | Apr 2015 | A1 |
20150159429 | Lund | Jun 2015 | A1 |
20160145911 | Boesel et al. | May 2016 | A1 |
20170051544 | Bertelli | Feb 2017 | A1 |
20170107750 | Carrier | Apr 2017 | A1 |
20180334833 | Brewer | Nov 2018 | A1 |
20190284855 | Bertelli | Sep 2019 | A1 |
20200131832 | Bernhagen et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
101080542 | Nov 2007 | CN |
101131061 | Feb 2008 | CN |
4210753 | Oct 1993 | DE |
20316561 | Jan 2004 | DE |
102007002650 | Jul 2008 | DE |
102009007686 | Apr 2010 | DE |
102010000158 | Sep 2010 | DE |
0740041 | Oct 1996 | EP |
1092829 | Apr 2001 | EP |
1241311 | Sep 2002 | EP |
1505242 | Feb 2005 | EP |
2735677 | May 2014 | EP |
2572145 | Apr 1986 | FR |
1065055 | Apr 1967 | GB |
2410058 | Jul 2005 | GB |
2475507 | May 2011 | GB |
2520340 | May 2015 | GB |
WO1999046464 | Sep 1999 | WO |
WO2009072839 | Jun 2009 | WO |
WO2009153562 | Dec 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20180209186 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62448615 | Jan 2017 | US |