The present invention relates to a wine pump-over device used in the process of making wine and in particular to a wine pump-over device used for distributing wine over the wine cap.
Red wine is produced by first crushing red and black grapes and then fermenting the crushed grapes including their skins, seeds, grape juice and pulp (also called must). Usually, yeast is added to the must to start the fermentation process. Fermentation may also occur naturally. During fermentation, the yeast converts the sugars in the grape juice into ethanol and carbon dioxide. The rising carbon dioxide pushes the grape skins to the top and forms a “cap” or “head” of grape skins on the surface of the fermenting red wine. The cap includes naturally occurring substances that are useful in the fermentation process and the overall quality and taste of the wine. Therefore, the free-run wine is pumped and sprinkled over the cap in order to extract and mix the naturally occurring useful chemicals with the free-run wine in the bottom of the fermentation tank.
Several devices have been used to facilitate the pumping and sprinkling of the free-run wine over the cap. Uniform distribution of the free-run wine over the cap is critical to the quality and taste of the wine. Also critical are the unobstructed flow of the free-run wine through the wine-pump over and sprinkling device, the droplet size of the wine exiting the sprinkling device and the ease of cleaning of the device.
The present invention relates to a pump-over device used in the process of making wine or other fermented liquid and in particular to a pump-over device used in distributing wine or fermented liquid over the wine/fermented cap. The pump-over device of this invention provides uniform and homogeneous distribution of the free-run wine/fermented liquid over the cap, unobstructed flow of the free-run wine through the device and ease of cleaning of the device.
In general, in one aspect, the invention features a device for distributing fermented liquid uniformly over a fermented cap in a fermentation tank including a joint member, an impeller, a shaft and a flow conditioner. The joint member has a top opening, a bottom opening, a side opening, a through-opening extending from the top opening to the bottom opening and a side-through-opening extending from the side opening to the through-opening. The impeller includes a one-piece conical shaped body that has a central-through-opening. The shaft extends through the through-opening of the joint member and through the central-through-opening of the impeller. The flow conditioner extends from the bottom of the joint member and surrounds the shaft, and is configured to optimize together with the impeller the flow of the fermented liquid over the fermented cap. The bottom of the flow conditioner is shaped to match the shape of the fermentation tank. The joint member allows fermented liquid to be pumped into the through-opening through the side opening and to exit through the bottom opening and to flow onto the impeller and the impeller allows the fermented liquid to flow uniformly around and down the conical-shaped outer surface of the impeller and through the impeller.
Implementations of this aspect of the invention include one or more of the following. The flow conditioner has an elongated body having an axial through-opening. Ridges may be formed in an inner surface of the elongated body. The elongated body of the flow conditioner has a bottom with rectangular outer perimeter or a square outer perimeter. The bottom of the flow conditioner includes a cloverleaf shaped inner perimeter. The flow conditioner is integral with the joint member. The one-piece conical shaped body of the impeller has a circular base, a cylindrical center, a conical-shaped outer surface, the central-through-opening extending through the cylindrical center, and one or more curved blades extending from the top of the cylindrical center along the inclined outer surface. Each of the curved blades is configured to be twisted around the cylindrical center and has a slope and/or shape that are different from another curved blade's slope and/or shape. The impeller further includes one or more twisted through-slots that allow the fermented liquid to pass through the impeller and wet the fermented cap underneath the impeller. The top of the cylindrical center has a conical shape. The one-piece conical shaped body of the impeller is made of plastic, bronze, stainless steel, ceramic, metals, alloys or composites. The device further includes a cover configured to cover the top opening of the joint member. The top end of the shaft is attached to the center of the cover. The impeller is configured to rotate around the shaft. The device further includes a bearing configured to reduce rotational friction during the rotation of the impeller. The bearing is made of plastic, bronze, stainless steel, ceramic, metals, alloys or composites. The device further includes a bushing configured to be inserted into the central-through-opening and to prevent swaying of the impeller. The bushing is made of plastic, bronze, stainless steel, ceramic, metals, alloys or composites. The distance between the top of the impeller and the bottom of the joint member is configured to be adjustable. The device further includes a clamp ring configured to secure the position of the impeller relative to the shaft and thereby to adjust the distance between the top of the impeller and the bottom of the joint member.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and description below. Other features, objects and advantages of the invention will be apparent from the following description of the preferred embodiments, the drawings and from the claims.
The present invention provides a wine pump-over device used in the process of making wine. The wine pump-over device is used for distributing wine over the wine cap. The wine pump-over device of this invention provides uniform and homogeneous distribution of the free-run wine over the cap, unobstructed flow of the free-run wine through the device and ease of cleaning of the device.
Referring to
Referring to
Referring to
Referring to
In other embodiments, the bottom opening of the flow conditioner is shaped to match the shape of the fermentation tank, as shown in
Referring to
The fermentation system 80 may be used for any type of fermented liquid including wine, cider, tea, coffee, probiotic liquids, among others.
Several embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation-in-part and claims the benefit of U.S. application Ser. No. 14/478,269 filed Sep. 5, 2014 now U.S. Pat. No. 9,550,968, and entitled “WINE PUMP-OVER DEVICE”, the contents of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2489952 | Boudreaux | Nov 1949 | A |
3478669 | Lanes | Nov 1969 | A |
3532273 | Buckingham | Oct 1970 | A |
3871272 | Melandri | Mar 1975 | A |
3910173 | Zepponi | Oct 1975 | A |
5972661 | Kubera | Oct 1999 | A |
6279457 | Francia | Aug 2001 | B1 |
6631732 | Kostel et al. | Oct 2003 | B1 |
6715404 | Pratt | Apr 2004 | B2 |
6805885 | Francia | Oct 2004 | B2 |
6945158 | Virtue | Sep 2005 | B1 |
7353750 | Francia | Apr 2008 | B2 |
9550968 | Mitchell | Jan 2017 | B2 |
20040166000 | Fisher et al. | Aug 2004 | A1 |
20110318823 | Crosato | Dec 2011 | A1 |
20130199376 | Rule | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1026233 | Aug 2000 | EP |
8-308552 | Nov 1996 | JP |
2003001224 | Jan 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20160068791 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14478269 | Sep 2014 | US |
Child | 14868468 | US |