The invention relates to wire bonding tools, and in particular, wire bonding tools including coatings, and to methods of providing the same.
In the processing and packaging of semiconductor devices and other electronics assemblies, wire bonding continues to be the primary method of providing electrical interconnection between two locations within a package (e.g., between a die pad of a semiconductor die and a lead of a leadframe). More specifically, using a wire bonder (also known as a wire bonding machine) wire loops are formed between respective locations to be electrically interconnected. The primary methods of forming wire loops are ball bonding and wedge bonding (including ribbon bonding).
In the wire bonding industry, contamination (including adhesion of wire) at a tip of the wire bonding tool, and surface wear of the tip of the wire bonding tool, limit the useable life of the wire bonding tool.
U.S. Pat. No. 6,729,527 (entitled “BONDING TOOL WITH POLYMER COATING”) and U.S. Pat. No. 6,171,456 (entitled “METHOD FOR MAKING IMPROVED LONG LIFE BONDING TOOLS”) relate to coating of wire bonding tools and are incorporated herein by reference in their entirety.
It would be desirable to provide improved wire bonding tools which overcome one or more of the deficiencies of conventional wire bonding tools.
According to an exemplary embodiment of the invention, a wire bonding tool is provided. The wire bonding tool includes a body portion including a tip portion. The wire bonding tool also includes a first coating applied to the tip portion. The wire bonding tool also includes a second coating applied to the first coating.
According to exemplary aspects of the invention, the wire bonding tool referred to in the preceding paragraph may include any one or more of the following features: the body portion includes at least one of a ceramic, a metal alloy, a metal matrix composite, and a ceramic matrix composite; the first coating is resistant to at least one of corrosion and wear; the first coating includes at least one of a metal, a metallic compound, and a ceramic; the first coating includes at least one of chromium, titanium, chromium carbide, chromium nitride and titanium nitride; the first coating has a thickness of 0.5 to 10 microns; the first coating has a thickness of 0.5 to 2 microns; the second coating is resistant to at least one of stiction and friction; the second coating is carbon-based; the second coating includes at least one of a diamond-like carbon, a non-hydrogenated diamond-like carbon, a tetragonal amorphous carbon, and a carbon-based coating; the second coating has a thickness of 0.1 to 10 microns; and the second coating has a thickness of 0.3 to 5 microns.
According to another exemplary embodiment of the invention, a method of providing a wire bonding tool is provided. The method includes the steps of: (a) providing a body portion of a wire bonding tool, the body portion including a tip portion; (b) applying a first coating to the tip portion; and (c) applying a second coating to the first coating.
According to exemplary aspects of the invention, the method referred to in the preceding paragraph may include any one or more of the following features: the body portion provided in step (a) includes at least one of a ceramic, a metal alloy, a metal matrix composite, and a ceramic matrix composite; the first coating provided in step (b) is resistant to at least one of corrosion and wear; the first coating provided in step (b) includes at least one of a metal, a metallic compound, and a ceramic; the first coating provided in step (b) includes at least one of chromium, titanium, chromium carbide, chromium nitride and titanium nitride; the first coating provided in step (b) has a thickness of 0.5 to 10 microns; the first coating provided in step (b) has a thickness of 0.5 to 2 microns; the second coating provided in step (c) is resistant to at least one of stiction and friction; the second coating provided in step (c) is carbon-based; the second coating provided in step (c) includes at least one of a diamond-like carbon, a non-hydrogenated diamond-like carbon, a tetragonal amorphous carbon, and a carbon-based coating; the second coating provided in step (c) has a thickness of 0.1 to 10 microns; the second coating provided in step (c) has a thickness of 0.3 to 5 microns; the method further comprises the steps of cleaning a surface of tip portion prior to step (b) and activating the surface of the tip portion after the step of cleaning but before step (b); the step of cleaning includes degreasing the surface of the tip portion; the step of cleaning includes plasma cleaning the surface of the tip portion; the method further comprises the step of activating the surface of the tip portion after step (b) but before step (c); step (b) includes applying the first coating using at least one of cathodic arc, filtered cathodic vacuum arc, and chemical vapor deposition; and step (c) includes applying the second coating using at least one of cathodic arc, filtered cathodic vacuum arc, and chemical vapor deposition.
The invention is best understood from the following detailed description when read in connection with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures:
As used herein, the term “wire bonding tool” is intended to refer to any of a number of types of wire bonding tools such as wedge bonding tools (e.g., small wire wedges, heavy wire wedges, etc.), ball bonding tools (e.g., a capillary tools), ribbon bonding tools, etc.
As used herein, a “coating” refers to a material applied to a surface of a wire bonding tool. Although a second coating may be “applied” to a first coating, this does not necessarily mean the second coating is directly applied to a first coating. In other words, an intermediate coating or layer may separate the second and first coating; thus, a second coating may be indirectly applied to a first coating. Similarly, a coating (e.g., a first coating, a second coating, etc.) may be indirectly applied to a wire bonding tool. A “first” coating is not necessarily the innermost coating or layer to a wire bonding tool; further, the “second” coating may not necessarily be the outermost coating.
Referring now to the drawings,
Referring specifically to
Referring now to
Referring now to
Wire bonding tool 100, wire bonding tool 102, and wire bonding tool 104 may be described as “uncoated”. Prior to an application of coatings to the wire bonding tools, each of wire bonding tools 100, 102 and 104 may be cleaned (e.g., degreased or otherwise cleaned as needed based on the type of tool and the coating to be applied). More specifically, at least the tip portion of each of the wire bonding tools may be cleaned (e.g., surface 100b1, surface 102b1, and bonding surface 102c). Of course, the entire surface of each of the wire bonding tools may also be cleaned. Further, a surface of each of the wire bonding tools (e.g., at least at the respective tip portion) may be “activated” such that the surfaces are more receptive to coating (e.g., see Step 506 of
Referring now to
Referring now to
Referring now to
At Step 502, a body portion of a wire bonding tool is provided, the body portion including a tip portion (e.g., see body portions 100a, 102a, and 104a including respective tip portions in
At Step 508, a first coating is applied to the tip portion (e.g., see
At Step 512, a second coating is applied to the first coating (e.g., see
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
This application claims the benefit of U.S. Provisional Application No. 63/336,033, filed on Apr. 28, 2022, the content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63336033 | Apr 2022 | US |