Wire pulling head apparatus with crimp zone indicators and method of using same

Information

  • Patent Grant
  • 11670920
  • Patent Number
    11,670,920
  • Date Filed
    Monday, December 20, 2021
    3 years ago
  • Date Issued
    Tuesday, June 6, 2023
    a year ago
Abstract
An enhanced apparatus and method for securing a wire to a pulling cable for pulling wire. Specifically, the pulling cable and wire are attached via a pulling head body. The wire is inserted into an end of the pulling head body and secured by crimping the pulling head body against the wire. Further, crimp zone indicators positioned on the outer surface of the pulling head body indicate the optimal zone of crimping to achieve substantial contact between the pulling head body and the wire. A pulling cable is secured to the pulling head body via a ball swage that comprises a tapped surface.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.


REFERENCE TO A COMPACT DISK APPENDIX

Not applicable.


BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention relates to pulling head bodies for pulling wires, and more particularly, to wire pulling head bodies having crimp zone indicators for facilitating proper crimping of the pulling head body onto the wire.


2. Description of Related Art

To distribute electricity throughout a building, insulated electrical wires are installed between the power source and power distribution box and routed to electrical boxes to supply electricity to a device. Often, these electrical wires are routed through multiple conduits throughout the building, and these conduits can span great distances and can include numerous twists and turns. As such, installing electrical wires throughout a building has presented both logistical and mechanical challenges.


The wire and cable industry have used many means for pulling wire through the building's infrastructure. For example, electric-powered machines have been used to pull the wires through the various conduits of the building's infrastructure. These wire pulling machines pulled wire through the building by applying a pulling tension to a pulling cable that was linked to the electrical wire. The pulling cable and wire were linked via a pulling head body. The pulling cable was attached to one end of the pulling head body, and the wire was secured to the opposite end of the pulling head body. To secure the wire to the pulling head body, an operator would insert the wire into the pulling head body and would use a crimping device to crimp the pulling head body against the wire.


During the crimping process, the position of the crimp on the pulling head body was estimated by the operator. For example, in some instances the operator would use a measuring device to determine where to crimp the pulling head onto the wire. In other instances, the operator would visually estimate the correct crimping position. Because of these crude techniques, often times an operator would place the crimp too close to the pulling cable side of the pulling head body. Sometimes, the result was that the crimp did not make enough contact between the pulling head body and the wire, and the wire would become detached from the cable during pulling. Alternatively, in some cases, the operator placed the crimp too close to the wire side of the pulling head body. The result was a weak crimp due to its close proximity to the end of the pulling head body. Again, the effect was the detachment of the wire from the pulling cable during a wire pull.


Inconsistent crimping resulted in pulling failures during a costly wire pull, loss of time, costs involved reattaching the wire to the pulling head, and the repeat of the process often many times before complete success. Although the crimps were occasionally properly positioned, the crimping procedure and sufficiency of engagement was at best inconsistent, time intensive, and required actual measuring of distances for crimp position by use of a separate device.


In addition, another potential point of failure occurred at the attachment between the pulling cable and the pulling head body. The pulling cable was attached to the pulling head body by some form of attachment means. During some wire pulls, the attachment means would fail, and the pulling cable would become detached from the wire.


Thus, there is need in the art for a more precise method of crimping a pulling head body to a wire to ensure that the wire remains secured to the pulling cable during a wire pull. What is needed is a pulling head body that enables a user to quickly and easily identify consistent and proper crimp zones, by way of a surface marking system, for providing proper attachment of a pulling head to a wire, all without the use of additional measuring devices or the need to reaccomplish the crimping procedure with additional devices and equipment. Furthermore, there is need for a more secure connection between the pulling cable and the pulling head body to prevent the pulling cable from detaching from the wire. What is needed is an attachment means designed with an improved grip to prevent the pulling cable from detaching from the pulling head body.


SUMMARY OF THE INVENTION

The present disclosure is directed to apparatuses and methods for pulling wire. In one preferred embodiment, a wire is linked to a pulling cable via a pulling head body. The pulling head body comprises one or more crimp zone indicators on the outer surface of the pulling head body. The crimp zone indicators indicate the approximately optimal position for crimping the pulling head body against a wire.


In another embodiment of the invention, a pulling cable is secured to the pulling head body via a ball swage that engages with the inner surface of the pulling head body. The ball swage is crimped to the end of the pulling cable, and the inner surface of the ball swage is tapped to increase friction between the ball swage and the pulling cable.


A further embodiment of the invention comprises a method for linking a pulling cable to a pulling wire. A pulling cable is inserted into a first end of a pulling head body. A ball swage is crimped to the end of the pulling cable such that when tension is applied to the pulling cable the ball swage engages with an inner surface of the pulling head body. A wire is inserted into a second end of the pulling head body. Using a crimping device, an operator secures the wire to the pulling head body by crimping the pulling head body against the wire such that the position of the crimp dimples are substantially centered with respect to one or more crimp zone indicators positioned on the outer surface of the pulling head body.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The foregoing summary, as well as the following detailed description, will be better understood when read in conjunction with the appended drawings. For the purpose of illustration, there is shown in the drawings certain embodiments of the present disclosure. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.


In the drawings:



FIG. 1 illustrates a side view of a pulling head body according to an embodiment of the invention;



FIG. 2 illustrates a first end of a pulling head body according to an embodiment of the invention;



FIG. 3 illustrates a second end of the pulling head body according to an embodiment of the invention;



FIG. 4 illustrates a side sectional view of the pulling head body according to an embodiment of the invention;



FIG. 5 illustrates a ball swage attached to an end of a pulling cable according to an embodiment of the invention;



FIG. 6 illustrates a side sectional view of the pulling head body with ball swage attachment end of pulling cable operationally engaged according to an embodiment of the invention;



FIG. 7 illustrates a close-up side sectional view of the pulling head body with ball swage attachment end of pulling cable operationally engaged according to an embodiment of the invention;



FIG. 8 illustrates two pulling head bodies attached to a split pulling cable according to an embodiment of the invention;



FIG. 9 illustrates a side view of the pulling head body with crimp dimples substantially centered with respect to crimp zone indicators on the outer surface of the pulling head body according to an embodiment of the invention; and



FIG. 10 is a graphical depiction of the wire pulling process utilizing the pulling head body with crimp zone indicators according to an embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. It should be understood that any one of the features of the invention may be used separately or in combination with other features. Other systems, methods, features, and advantages of the invention will be or become apparent to one with skill in the art upon examination of the drawings and the detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.


The present disclosure is described below with reference to the Figures in which various embodiments of the present invention are shown. For the purpose of clarification, embodiments described herein reference the term “cable,” which refers to a pulling cable protruding from a “first end” of a pulling head body. Also, references are made to the term “wire,” which refers to a wire product that is inserted into a “second end” of the pulling head body. In other words, the wire is the object which is pulled by the pulling cable via the pulling head body.


Referring to FIGS. 1, 2, and 3 by way of non-limiting example, and consistent with embodiments of the invention, a pulling head body 5 is shown. The pulling head body 5 is manufactured such that it has a longitudinal, tubular shape, and has a substantially hollow two-part internal bore structure. As depicted in the drawings, the longitudinal axis of the pulling head body 5 runs between a first end 15 of the pulling head body 5 and a second end 20 of the pulling head body 5. The pulling head body 5 further comprises a tapered end 25 that begins on the outer surface 10 of the pulling head body 5 and tapers at an angle toward the first end 15. The pulling head body 5 further comprises a primary internal bore extending longitudinally between the first end 15 and second end 20 of the pulling head body 5. In a preferred embodiment, the primary internal bore is comprised of at least two different size inner diameter bores—a first end bore 17 and a second end bore 23. The first end bore 17 extends longitudinally from the first end 15 to the second end bore 23. The second end bore 23 is continuous with the first end bore 17, and terminates at the second end 20 of the pulling head body 5. The first end bore 17 is designed to easily receive common types and sizes of pulling cables 40 (Shown in FIG. 5). The second end bore 23 is designed to easily receive common types and sizes of wire 65 (Shown in FIG. 9).


In a preferred embodiment, the first end bore 17 is continuous with the second end bore 23 via a second tapered surface 18, which tapers outwardly from an end of the first end bore 17 into an end of the second end bore 23. In this way, the first end bore 17 and second end bore 23 are continuous, and the diameter of the first end bore 17 is smaller than the diameter of the second end bore 23. Furthermore, the second tapered surface 18 is tapered at an angle that can vary with the gauge of the wire 65. By way of a non-limiting example, for a 1000 kcmil gauge wire, the second tapered surface 18 can be designed to taper outwardly at an angle of approximately 120 degrees from the first end bore 17. The second tapered surface 18 operates to minimize movement of a ball swage 45 during wire pulling, which is discussed in more detail below.


The pulling head body 5 can be manufactured from aluminum, steel, or any other sufficiently strong and rigid material as one of skill in the art would contemplate for wire pulling uses. It is also understood that the length, first end bore 17 diameter, second end bore 23 diameter, and outer surface 10 diameter of the pulling head body 5 can vary, and can be manufactured to accommodate any size of pulling cable 40 or wire 65, depending on the size of wire to be pulled and needs of the operator.


Referring to FIG. 1, the outer surface 10 of the pulling head body 5 is further designed to include one or more crimp zone indicators 30. The crimp zone indicators 30 are disposed at predetermined strategic zones on the pulling head surface 10 of the pulling head body 5. In this way, the crimp zone indicators 30 indicate the approximate optimal position for crimping, such that when wire 65 is properly inserted into the pulling head body 5, a crimp substantially centered with respect to the crimp zone indicators 30 will achieve substantial contact between the pulling head body 5 and the wire 65.


The crimp zone indicators 30 can be flush with outer surface 10, etched into the exterior of the outer surface 10, or raised from the outer surface 10. For example, an etched or raised crimp zone indicator 30 could include, but is not limited to, notches, grooves, depressions, striations or ridges. Furthermore, the crimp zone indicators 30 can comprise various shapes and sizes. The crimp zone indicators 30 can also span the entire diameter of the pulling head body 5, or alternatively, can be positioned on one or more sides of the pulling head body 5. It is understood that the appearance, design or size of the crimp zone indicators 30 is not limited, so long as it is visible to the naked eye during operation, and so long as it identifies an approximate optimal crimping zone. In this way, the crimp zone indicators 30 provide for a consistent and accurate indicator for the area for which a crimp achieves substantial contact between the pulling head body 5 and the wire 65.


The position of the crimp zone indicators 30 is directly related to the gauge of the wire 65. As discussed above, the pulling head body 5 can be manufactured to a plurality of lengths, first end bore 17 diameters, second end bore 23 diameters, and other internal bore measurements and angles. The placement of the crimp zone indicators 30 are predetermined and disposed on the pulling head body 5 during its manufacturing process based upon the size of the end product pulling head body 5. Table 1 illustrates some examples of positions of crimp zone indicators 30. For example, for gauges of wire 65 less than or equal to 4/0 AWG, the first crimp zone indicator is placed approximately ¾″ from the second end 20 of the pulling head body 5, and the second crimp zone indicator is placed approximately 1¾″ from the second end 20 of the pulling head body 5. For wire 65 gauges between 250 kcmil and 400 kcmil, the first crimp zone indicator is placed approximately 1¼″ from the second end 20 of the pulling head body 5, and the second crimp zone indicator is placed approximately 2½″ from the second end 20 of the pulling head body 5. Finally, for wire 65 gauges between 500 kcmil and 1000 kcmil, the first crimp zone indicator is placed approximately 1¼″ from the second end 20 of the pulling head body 5, and the second crimp zone indicator is placed approximately 2¾″ from the second end 20 of the pulling head body 5.









TABLE 1







Illustrative Predetermined Positions of Crimp Zone Indicators











Approximate
Approximate




Location of
Location of












Wire
Crimp Zone
Crimp Zone
# of Crimps
# of Crimps


Gauge
Indicator 1
Indicator 2
at Location 1
at Location 2















6
AWG
¾″
1¾″
1 crimp
1 crimp


4
AWG
¾″
1¾″
1 crimp
1 crimp


3
AWG
¾″
1¾″
1 crimp
1 crimp


2
AWG
¾″
1¾″
1 crimp
1 crimp


1
AWG
¾″
1¾″
1 crimp
1 crimp


1/0
AWG
¾″
1¾″
1 crimp
1 crimp


2/0
AWG
¾″
1¾″
1 crimp
1 crimp


3/0
AWG
¾″
1¾″
1 crimp
1 crimp


4/0
AWG
¾″
1¾″
1 crimp
1 crimp


250
kcmil
1¼″
2½″
1 crimp
1 crimp


300
kcmil
1¼″
2½″
1 crimp
1 crimp


350
kcmil
1¼″
2½″
1 crimp
1 crimp


400
kcmil
1¼″
2½″
1 crimp
1 crimp


500
kcmil
1¼″
2¾″
2 crimps
2 crimps


600
kcmil
1¼″
2¾″
2 crimps
2 crimps


750
kcmil
1¼″
2¾″
2 crimps
2 crimps


1000
kcmil
1¼″
2¾″
2 crimps
2 crimps









It is understood that the positions of the crimp zone indicators 30 indicated in Table 1 are merely illustrative, and do not limit the scope of the invention. A person of ordinary skill in the art would also understand that the positioning of the crimp zone indicators 30 has an acceptable degree of error. For example, for wire 65 gauges between 6 AWG and 4/0 AWG, the crimp zone indicators 30 can be positioned within an error of approximately ⅛″. For wire 65 gauges between 250 kcmil and 1000 kcmil, the crimp zone indicators 30 can be positioned within an error of approximately ¼″.


In an alternative embodiment, the crimp zone indicators 30 also indicate the location of a tapped surface within the exposed surface of the second end bore 23. After crimping, this tapped surface can provide for greater friction between the pulling head body 5 and the wire 65. The tapped surface can be textured, striated, ridged, furrowed or any other surface that would increase friction between the pulling head body 5 and the wire 65.


Referring now to FIGS. 5, 6 and 7 by way of non-limiting example, and consistent with embodiments of the invention, a pulling cable 40 attached to a pulling head body 5 is shown. The pulling cable 40 is secured to the pulling head body 5 by engagement of a ball swage 45 with the pulling head body 5. Engagement of the ball swage 45 with the pulling head body 5 is more clearly depicted with reference to FIG. 7. The ball swage 45 is fixed to the pulling cable 40 via a neck 50, which is crimped against an attachment end of the pulling cable 40. The ball swage head 55 is engaged with the second tapered surface 18 within the second end bore 23. Due to its tapered angle, the design of the second tapered surface 18 functions to minimize movement of the ball swage 45 once it is engaged in the pulling head body 5 by application of a pulling tension on the pulling cable 40. The ball swage head 55 effectuates a stopping, engaging effect within the pulling head body 5 and prevents the pulling cable 40 from slipping through the first end bore 17 of the pulling head body 5. It is understood that the pulling cable 40, ball swage 55 or neck 50 can be manufactured from aluminum, steel, or any other sufficiently strong and rigid material as one of skill in the art would contemplate for wire pulling uses.


As depicted in FIG. 5, in one preferred embodiment, the exposed surface of the neck 50 is tapped to create further friction between the neck 50 and the end of the pulling cable 40. The tapped surface 60 can comprise a spiraling groove, or any other textured surface known in the art. The result is greater friction between the pulling cable 40 and ball swage 55 to further prevent the pulling cable 40 from detaching from the pulling head body 5 and wire 65.


With reference to FIG. 8, it is also understood that a single pulling cable 40 can be split into one or more pulling cables for attachment to one or more wires 65 via one or more pulling head bodies 5. In this way, a single wire pull is capable of pulling multiple cables through the conduits of a building's infrastructure.


Referring to FIG. 9, the crimp zone indicators 30 provide a recognizable and immediate sensory (i.e., via sight or feel) indication of a predetermined zone or area that is best suited for positioning of a crimping tool to engage, squeeze and form crimp dimples 70 on the pulling head body 5 for engaging an underlying wire 65. The crimp dimples 70, which can be formed by any crimping device having sufficient crimping force to exert, are substantially centered with respect to the crimp zone indicators 30. The dimples 70 created in one embodiment were created by using a hand-held eleven ton hydraulic press. It is understood that the crimping process has a zone of error that is acceptable with respect to placement of the crimp dimples 70.


In another embodiment of the invention, the size of the wire gauge determines the number of crimps required per crimp zone indicator 30. Referring to Table 1 by way of non-limiting examples, for wire gauges less than or equal to 400 kcmil, each crimp zone indicator receives one crimp on a side of the pulling head body 5. However, for wire gauges greater than 400 kcmil, each crimp zone indicator 30 receives two crimps. Thus, for example, a 500 kcmil pulling head body 5 having two crimp zone indicators 30 would comprise a total of four crimp dimples 70. Furthermore, two crimp dimples 70 on the same crimp zone indicator 30 are positioned 180 degrees apart.


Referring to FIG. 10 and by way of non-limiting example, and consistent with embodiments of the invention, a method for attaching a pulling head body 5 to a pulling cable 40 and wire 65 is illustrated. At step 100, a pulling cable 40 is inserted through the first end 15 and into the first end bore 17 of the pulling head body 5. At step 110, a ball swage 45 is crimped to the attachment end of the pulling cable 40, and a pulling tension is applied to the pulling cable 40 so that the ball swage head 55 engages with the second tapered surface 18 of the pulling head body 5. As such, the pulling cable 40 is fixed to the pulling head body 5. At step 115, a wire 65 is inserted into the second end 20 and through the second end bore 23 until the wire 65 is fully inserted into the pulling head body 5 and in contact with the ball swage head 55. At step 120, the operator visually locates the one or more crimp zone indicators 30 on the outer surface 10 of the pulling head body 5. At step 125, the operator uses a hydraulic crimping device to crimp the pulling head body 5 against the wire 65 at approximately the crimp zone indicators 30 so that the resulting crimp zone dimples 70 are substantially centered with respect to the crimp zone indicators 30. Once the wire 65 is secured within the pulling head body 5, the wire can be pulled as desired through the building's infrastructure, as recited in step 130.


It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that the invention disclosed herein is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A method for attaching a pulling head body to a pulling cable and a wire, the method comprising: inserting the pulling cable through a bore of the pulling head body;attaching a tapped ball swage to the end of the pulling cable inserted through the bore of the pulling head body, wherein the tapped ball swage comprises a neck providing friction between the tapped ball swag and the pulling cable;inserting the wire to be pulled in the pulling head body; andcrimping the pulling head body into gripping contact of the wire.
  • 2. The method of claim 1, wherein the tapped ball swage neck is a textured tapped ball swag neck.
  • 3. The method of claim 1, wherein the tapped ball swage neck is a striated tapped ball swag neck.
  • 4. The method of claim 1, wherein the tapped ball swage neck is a ridged tapped ball swag neck.
  • 5. The method of claim 1, wherein the tapped ball swage neck is a furrowed tapped ball swag neck.
  • 6. The method of claim 1, wherein the tapped ball swage neck prevents the detachment of the pulling wire from the tapped ball swage neck.
  • 7. The method of claim 1 further comprising applying a pulling tension to the pulling cable after the ball swage is attached to the pulling cable.
  • 8. The method of claim 7, wherein after applying a pulling tension to the pulling cable, the tapped ball swage engages the pulling head body.
  • 9. The method of claim 8, wherein the tapped ball swage engages a tapered surface of the pulling head body.
  • 10. The method of claim 9, wherein the tapped ball swage comprises a neck.
  • 11. The method of claim 10, wherein the tapped ball swage neck comprises a spiral groove tapped ball swage neck.
  • 12. The method of claim 1, wherein the step of attaching a tapped ball swage to the end of the pulling cable inserted through the bore of the pulling head body comprises the step of crimping the tapped ball swage onto the pulling cable.
  • 13. The method of claim 1, wherein the step of inserting the wire to be pulled in the pulling head body further comprises the step of inserting the wire to be pulled in the end of the pulling head body opposite the end of the tapped ball swage.
  • 14. A method for attaching a pulling head body to a pulling cable and a wire, the method comprising: inserting the pulling cable through a bore of the pulling head body;attaching a ball swage to the end of the pulling cable inserted through the bore of the pulling head body;inserting the wire to be pulled in the pulling head body;crimping the pulling head body into gripping contact of the wire;applying a pulling tension to the pulling cable after the ball swage is attached to the pulling cable, wherein after applying a pulling tension to the pulling cable, wherein the ball swage engages a tapered surface of the pulling head body.
  • 15. The method of claim 14, wherein the ball swage comprises a neck.
  • 16. The method of claim 15, wherein the ball swage neck comprises a spiral groove tapped ball swage neck.
  • 17. The method of claim 14, wherein the step of attaching a ball swage to the end of the pulling cable inserted through the bore of the pulling head body further comprises the step of crimping the ball swage onto the pulling cable.
  • 18. The method of claim 14, wherein the step of crimping the pulling head body into gripping contact of the wire further comprises the step of crimping the pulling head body into gripping contact of the wire with a hydraulic crimping device.
  • 19. The method of claim 14, wherein the step of inserting the wire to be pulled in the pulling head body further comprises the step of inserting the wire to be pulled in the end of the pulling head body opposite the end of the ball swage.
  • 20. The method of claim 14, wherein the step of attaching a ball swage to the end of the pulling cable inserted through the bore of the pulling head body further comprises the step of attaching a tapped ball swage.
  • 21. The method of claim 20, wherein the step of attaching a tapped ball swage further comprises attaching a tapped ball swage wherein the tapped ball swage comprises a neck providing friction between the tapped ball swag and the pulling cable.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/515,975, filed Jul. 18, 2019, which is a continuation of U.S. patent application Ser. No. 15/899,765, filed Feb. 20, 2018, now issued as U.S. Pat. No. 10,374,402, issued Aug. 6, 2019, which is a continuation of U.S. patent application Ser. No. 15/359,065, filed Nov. 22, 2016, now issued as U.S. Pat. No. 9,923,345, issued on Mar. 20, 2018 which is a continuation of U.S. patent application Ser. No. 13/408,586 filed Feb. 29, 2012, now issued as U.S. Pat. No. 9,537,293, issued Jan. 3, 2017, all of which are herein incorporated in their entirety by reference.

US Referenced Citations (137)
Number Name Date Kind
631747 Lloyd Aug 1899 A
1573737 Norman Feb 1926 A
1672324 Kepler Jun 1928 A
1819430 Martin et al. Aug 1931 A
1853681 Hayes Apr 1932 A
1994674 Van Inwagen, Jr. Mar 1935 A
2017625 Kellems Oct 1935 A
2040992 Harris May 1936 A
2247041 Bergan Jun 1941 A
2251189 Jensen Jul 1941 A
2327831 Sutton Aug 1943 A
2339671 Bergman Jan 1944 A
2509115 Wait et al. May 1950 A
2532504 Lapsley Dec 1950 A
2587095 Bergan Feb 1952 A
2615074 Bronovicki Oct 1952 A
2629921 Gray Mar 1953 A
2650400 Kellems Sep 1953 A
2657371 Huston Oct 1953 A
2668280 Dupre Feb 1954 A
2712953 Snow Jul 1955 A
2740178 Kellems Apr 1956 A
2766501 Kellems Oct 1956 A
2901822 Hayden Sep 1959 A
3048908 Bryan Aug 1962 A
3089567 Sullivan May 1963 A
3100924 Trier et al. Aug 1963 A
3102715 Weitzel et al. Sep 1963 A
3122806 Lewis Mar 1964 A
3137765 Lanum Jun 1964 A
3156449 Ensley Nov 1964 A
3346284 Petersen et al. Oct 1967 A
3522961 Cave, Sr. et al. Aug 1970 A
3551959 Mastalski Jan 1971 A
3570074 Schimmeyer et al. Mar 1971 A
3672006 Fidrych Jun 1972 A
3675898 Fattor et al. Jul 1972 A
3697188 Pope Oct 1972 A
3716894 Kingston et al. Feb 1973 A
3727967 Anatasiu et al. Apr 1973 A
3784860 Cocks Jan 1974 A
3858848 MacFetrich Jan 1975 A
3898011 Linguist et al. Aug 1975 A
3906619 Shaffer Sep 1975 A
3909886 Hocke Oct 1975 A
3979106 Jaques Sep 1976 A
3989400 Smith et al. Nov 1976 A
3999253 Hoadley Dec 1976 A
4078767 Battaglia Mar 1978 A
4101114 Martin et al. Jul 1978 A
4123133 Pickett et al. Oct 1978 A
4171123 Woelkers Oct 1979 A
4183692 Durr Jan 1980 A
4195798 Costantino Apr 1980 A
4293157 Fidrych Oct 1981 A
4337923 Smith Jul 1982 A
4368910 Fidrych Jan 1983 A
4403667 Reichman et al. Sep 1983 A
4411409 Smith Oct 1983 A
4419534 Dwyer Dec 1983 A
4432663 Lasak et al. Feb 1984 A
4453291 Fidrych Jun 1984 A
4460159 Charlesbois et al. Jul 1984 A
4461059 Bury Jul 1984 A
4552338 Lindgren Nov 1985 A
4563032 Knowles Jan 1986 A
4601507 Fallon Jul 1986 A
4635989 Tremblay et al. Jan 1987 A
4678360 Miller Jul 1987 A
4684161 Egner et al. Aug 1987 A
4684211 Weber et al. Aug 1987 A
4691988 Tremblay et al. Sep 1987 A
4736978 Ciekier Apr 1988 A
4796347 Aguillen, Jr. et al. Jan 1989 A
4847447 Eiswirth et al. Jul 1989 A
4969677 Melegari Nov 1990 A
5013125 Nilsson et al. May 1991 A
5039196 Nilsson Aug 1991 A
5067843 Nova Nov 1991 A
5122007 Smith Jun 1992 A
5129027 Boero et al. Jul 1992 A
5133583 Wagman et al. Jul 1992 A
5192144 Doninger Mar 1993 A
5231752 Hereford Aug 1993 A
5283930 Krauss Feb 1994 A
5289613 Kohl Mar 1994 A
5310294 Perkins May 1994 A
5480203 Favalora et al. Jan 1996 A
5582447 Leon et al. Dec 1996 A
D386052 Nassir Nov 1997 S
D390763 Nassir Feb 1998 S
5807026 Valette Sep 1998 A
5863083 Giebel et al. Jan 1999 A
5938181 Holden Aug 1999 A
6193216 Holen et al. Feb 2001 B1
6193217 Zimmer Feb 2001 B1
6266469 Roth Jul 2001 B1
6278823 Goldner Aug 2001 B1
6352112 Mills Mar 2002 B1
6396993 Giebel et al. May 2002 B1
6398422 Szilagyi et al. Jun 2002 B1
6719274 Bowling Apr 2004 B2
6786473 Alles Sep 2004 B1
6883782 Ames et al. Apr 2005 B2
6974169 Upton Dec 2005 B1
6993237 Cooke et al. Jan 2006 B2
7128306 Ames et al. Oct 2006 B2
7175160 Diggle, III et al. Feb 2007 B2
7246789 Ames et al. Jul 2007 B2
7360342 Hayes et al. Apr 2008 B2
D571735 Scherer et al. Jun 2008 S
D572201 Scherer et al. Jul 2008 S
7478794 Gohlke et al. Jan 2009 B1
D635450 Deese Apr 2011 S
D686061 Daniel et al. Jul 2013 S
8800967 Carlson et al. Aug 2014 B2
8973235 Henderson et al. Mar 2015 B2
9537293 Bennett Jan 2017 B2
9923345 Bennett Mar 2018 B2
10374402 Bennett Aug 2019 B2
11228162 Bennett Jan 2022 B2
20040041136 Ames et al. Mar 2004 A1
20050001429 Abercrombie et al. Jan 2005 A1
20070177707 Rawdon Aug 2007 A1
20090070966 Gohlke et al. Mar 2009 A1
20090224220 Jordan et al. Sep 2009 A1
20100072440 Wright Mar 2010 A1
20100176357 Wen Jul 2010 A1
20100202748 Pierce et al. Aug 2010 A1
20100258771 White Oct 2010 A1
20110133141 Carlson Jun 2011 A1
20120193088 Benzie et al. Aug 2012 A1
20130221298 Bennett Aug 2013 A1
20170077685 Bennett Mar 2017 A1
20180175594 Bennett Jun 2018 A1
20190341751 Bennett Nov 2019 A1
20220115847 Bennett Apr 2022 A1
Foreign Referenced Citations (11)
Number Date Country
9405929 Mar 1994 WO
9742531 Nov 1997 WO
0034117 Jun 2000 WO
0161813 Aug 2001 WO
0237632 May 2002 WO
03043154 May 2003 WO
2006021055 Mar 2006 WO
2008036994 Apr 2008 WO
2009108594 Sep 2009 WO
2009111659 Sep 2009 WO
2010105674 Sep 2010 WO
Non-Patent Literature Citations (1)
Entry
condux.com, “Engineer to Order Products”, printed via the web on Nov. 23, 2010, pp. 1-3.
Related Publications (1)
Number Date Country
20220115847 A1 Apr 2022 US
Continuations (4)
Number Date Country
Parent 16515975 Jul 2019 US
Child 17556759 US
Parent 15899765 Feb 2018 US
Child 16515975 US
Parent 15359065 Nov 2016 US
Child 15899765 US
Parent 13408586 Feb 2012 US
Child 15359065 US