The present application generally relates to electronic device controllers. More particularly, it relates to wireless electronic device control units for gaming environments.
Home video game systems generally have a game console coupled to a television monitor and one or more game controllers connected to the console which permit user interaction with a game being played. Most video game systems are sold with game controllers that are connected to the console through a hard-wire link. More recently, wireless game controller accessories have been developed which provide players with more freedom of movement. Such wireless controller accessories replicate the basic control features found on conventional hard-wired controllers but use infrared (IR), radio frequency (RF) or other electromagnetic radiation to send signals to the console.
To operate the video game system, a user (or player) inserts a game program which may be stored in a game cartridge or on a compact disc into the console and typically depresses a start switch to begin play of the particular game programmed into the cartridge or on the compact disc. As a game is played, a player or players control various visual aspects of the game using either the hard-wired or wireless controllers. For example, certain video games allow players to maneuver persons or aliens over various types of terrain, through tunnels, under water and over other various obstacles in order to score points. Some of these video games allow players to fly planes, helicopters, tanks and the like to attack various installations and score points. Other video games allow players to maneuver a person and to fire weapons at program generated images or at images of a person controlled by another player.
To allow players to continuously fire a weapon some conventional hard-wired video game systems include an auto fire function. In the hard-wired systems, the auto fire function can be activated by a single switch or the activation of a sequence of switches on the game controller. Activation of the auto fire function causes the game controller to continuously send to the game console a fire signal which results in the continuous firing of one or more game weapons.
Some current wireless game controllers include a power save (or sleep) function intended to conserve battery power when the controller is not in use for a predetermined period of time. The sleep function was mainly developed to conserve battery power when a controller's power switch is inadvertently left on after a player finishes playing a game. The sleep function automatically monitors the activity of the controller switches and turns off the power to the internal circuits of the controller after a predetermined period of time elapses without any switches on the controller being actuated.
However, since certain current wireless game controllers include the sleep function it is impractical to also include the auto fire function because if the auto fire function is activated and a user stops playing a game but fails to turn the controller power switch off, the auto fire function will continue to function so that the controller continues to generate and send the fire signal. The fire signal would then be detected by the sleep circuitry so that the sleep function does not activate and the controller would continue to draw battery power to generate and send the fire signals.
The present application provides various embodiments of wireless game control units that provides an auto activate function that is activated by a controller in the game control unit and maintained by a console interface in the game control unit.
In one embodiment, the wireless control unit includes a controller having at least one user operable switch and wireless transmitter circuitry for transmitting game information, including an auto fire start signal, and a console interface having wireless receiver circuitry for receiving the game information, including an auto activate start signal, from the controller and for modifying the game information so that an activate signal is continuously sent from the console interface to the console and at least one object, such as a weapon, in a game being played with the video game system is continuously activated.
In an alternative embodiment, the wireless control unit can be configured for multiple player operation. The control unit includes a plurality of controllers each having at least one user operable switch and wireless transmitter circuitry for transmitting game information, including an auto activate start signal, and at least one console interface having wireless receiver circuitry for receiving the game information, including the auto activate start signal, from each of the plurality of controllers and for selectively modifying the game information from each controller so that when the auto activate start signal is received at least one fire signal is continuously sent from the console interface to the console and at least one object, such as a weapon, in a game being played with the video game system is continuously activated. The console interface can also include at least one connection port to receive at least one memory cartridge for storing game information associated with a game being played with each controller.
The present application also provides a video game system that includes a game console, a controller having at least one user operable switch and wireless transmitter circuitry for transmitting game information, including an auto activate start signal, and a console interface connectable to the game console and having wireless receiver circuitry for receiving the game information, including the auto activate start signal, from the controller and for modifying the game information so that an activate signal is continuously sent from the console interface to the console and at least one weapon in a game being played with the video game system is continuously activated. The video system may also include a connection port for receiving a memory cartridge that stores game information.
In the drawings wherein like reference numerals denote similar elements throughout the views:
The present application provides a wireless control unit for video game systems that provides an auto fire function that does not interfere with the proper operation of a sleep function incorporated into the wireless control unit. Preferably, the wireless control unit transfers game information by infrared (IR) transmissions. However, other known electromagnetic radiation techniques, such as radio frequency (RF) transmissions, may be employed. In accordance with other embodiments (to be discussed later), the combined use of IR and RF wireless communication protocols provides superior communication results between a game controller and a game console. Referring to
The game console 12 also includes known circuitry for executing the video game program stored in the cartridge or on disc. For example, the console may include a processor, memory and stored system programs for controlling the operation of the console, controller interface circuitry, and audio/video generating and outputting circuitry. An example of suitable game consoles are included in the Nintendo N64®, SEGA Genesis and Sony Playstation™ and Playstation II™ game systems. In the video game system 10 according to this embodiment of the present invention, the console 12 is connected to a video outputting apparatus 14 via a direct wire link. Further, the wireless control unit 16 can be connected to the console by, for example, a direct wire link or by mating connectors.
Referring generally to
Typically, a player grips the center handle 30 and one of the side handles 26, 28 during play and operates the switches corresponding to the handles gripped. A player may also grip the left and right side handles 26, 28, where rocker switch 38 and push-button switches 40 are the user activated switches. Rocker switch 38 can be used for two or three dimensional movement of an object controlled by the controller 20 and push-button switches 40 can be used for performing control functions associated with the object. Further, the orientation of the switches 40 and the three handle configuration of the controller 20 also facilitates single handed as well as two handed gripping and operation of the controller by a player. For single handed gripping and operation, a player can grip the center handle 30 and joystick 34 and trigger switch 36 are the user activated switches, Joystick 34 can be used for two or three dimensional movement of an object controlled by the controller 20, and trigger switch 36 can be used for performing at least one control function associated with the object. In this embodiment, trigger switch 36 is typically used to fire weapons during a game.
Referring to
To conserve battery power in the controller, the control logic 44 can be configured control battery power to the internal components of the controller and to monitor the activation of the switches and if none of the switches are activated for a predetermined period of time, e.g., about 2 minutes, the control logic shuts off the battery power to the internal circuits of the controller. This function is also known as a sleep function.
Referring now to
Game information from the controller 20 and game condition information saved on the memory cartridge 58 are transferred to the game console 12 for subsequent processing via cable 62 or a connector extending from the console interface. In addition, when a player wants to end a game, the player can instruct the game console 12 to save the current game conditions in the memory cartridge 58 in the interface console.
Referring to
As noted, the auto activate function in hard-wired systems is actuated and 20 generated at the controller so that the controller continuously sends an activate signal to the game console. In the wireless control unit according to the present application, the controller 20 sends an auto activate start signal which is included in the bit stream to the receiver circuitry 70, which decodes the game information from the bit stream. The console interface logic 76 also monitors the bit stream for the auto activate start signal, and when it is detected in the stream the console interface automatically includes in the game information to be transmitted to the game console 12 an activate signal so that one or more objects, such as weapons, in the game being played and controlled by the controller is continuously activated. The console interface logic 76 continues to insert the activate signal into the game information signals sent to the game console 12 until the receiver circuitry 70 detects auto activate stop signal from the controller. When auto activate stop signal is detected by the receiver circuitry 70 the receiver circuitry stops inserting the activate signal into the game information sent to the game console 12.
By having the controller 20 send a signal to start the auto activate function in the console interface 50 to continuously provide the activate signals to the game console 12, the auto activate function does not prevent the activation of the sleep function in the controller. That is, the controller 20 of the wireless control unit according to the present application does not continuously send the activate signals when the auto activate function is active and therefore, the sleep circuitry in the controller does not continuously detect the auto activate start signal even after a player has stopped playing a game but has inadvertently left the controller power switch on.
The embodiment discussed above for the controller and console interface is for single player applications. For single player applications the controller 20 and the console interface 50 are pre-configured to transmit and receive the bit streams at one frequency band, e.g., 100 KHZ using one data coding scheme. However, many game programs executed by the game console permit multiple players to play at one time. For multiple player applications, a plurality of controllers 20 and either a single console interface 50 having receiver circuitry 70 to receive game information from the plurality of controllers (FIG. 9), or a plurality of console interfaces in one to one correspondence with the plurality of controllers (
In an exemplary embodiment for two players in which the frequency band used is different for each player, the controller 20 includes player select switch 80, seen in
For multiple player applications, the transmitter driver logic 44 of the controller 20, seen in
As noted, an alternative embodiment for the wireless control unit 16 is shown in FIG. 9. In this embodiment, the console interface 50 includes a plurality of sensors 72 and a plurality of corresponding receiver logic blocks 74 each block being reconfigured to receive bit streams at one frequency band.
In this embodiment, in order to allow each player to save his own game information, multiple memory cartridges 58 may be used, one for each player. However, a single memory cartridge may also be used to store game information for every player. Data transfers between each memory card and the game console would be by separate cables 62 (or connectors) connected to the player port on the game console.
Referring now to
In addition,
In the two player embodiments, each controller 20 in the wireless control unit according to the present application can send an auto fire start signal which is included in the bit stream to the corresponding receiver circuitry 70 which decodes the game information from the bit stream. Similar to the above-described embodiments, the console interface logic 76 for each controller monitors the bit stream for the auto activate start signal, and when it is detected in the stream, the console interface logic automatically inserts an activate signal into the game information to be transmitted to the game console 12 so that one or more objects, such as weapons, in the game being played is continuously activated. The console interface logic 76 for each controller 20 which sends the auto activate start signal continues to insert the activate signal into the corresponding bit stream until the receiver circuitry 70 detects an auto activate stop signal for the corresponding controller 20. When auto activate stop signal is detected by the receiver circuitry 70, the receiver circuitry stops inserting the activate signal into the game information sent to the game console 12.
As noted above, by having the controller 20 send a information to start the 15 auto activate function and the receiver circuitry 70 in the console interface 50 to continuously provide the activate signals to the game console 12, the auto activate function does not prevent the activation of the sleep function in the controllers. That is, the controllers 20 of each wireless control unit according to this embodiment does not continuously send the activate signals when the auto activate function is active and the sleep circuitry in each controller does not continuously detect the auto activate start signal even after a player has stopped playing a game but has inadvertently left the controller power switch on.
Console 100 and similar video game consoles, such as, for example. The SONY Playstation II™ are advancing to the point where they are no longer dedicated video game playing devices. This means that console 100 is now capable of playing other media, such as Digital Video (Versatile) Discs (DVD). These DVD type gaming consoles will likely include and IR receiver 116 or RF receiver 118 adapted to receive remote control codes for the DVD functions of the console and not primarily for wireless game controllers. Although these receivers could be used for receiving wireless controllers, they do not include wireless transmitters for transmitting information to the wireless controllers. This information can include, but is not limited to, controlling internal vibration members of the game controller, programming the controller, etc. As such, there is a need to provide IR and/or RF transmission capability to the game console 100, which is provided by the wireless adapters of the present invention.
In one embodiment, adapter 130 converts the game controller port 108a or 108b of a video game console into an IR receiver/transmitter capable of receiving and inputting control commands into the game console and transmitting control commands to the controller such as, for example, commands to provide feedback to the game controller, for example, to control an internal vibration member (e.g., internal rumble pack). In this embodiment, when adapter/receiver 130 is in its operable position within the game controller port 108a or 108b, the used game controller port is no longer available for use with a game controller. However, in accordance with a preferred embodiment, adapter 130 includes an additional female game port 136 that effectively provides the user with another game controller port for connecting a wired game controller or other accessory items to the game console while adapter 130 is in its operable position within the game controller port 108a or 108b.
In another embodiment, console 100 includes IR window 116 and corresponding circuitry for receiving IR commands from and to the wireless controller. As such, adapter 130 will provide IR transmission capability to the console and enable the console to wirelessly transmit control commands to the game controller. Again, these control commands can include, but are not limited to, programming/configuration commands and feedback commands for controlling internal elements of the game controller, such as an internal vibration member.
Console 100 may also include and RF antenna 118 and corresponding circuitry for receiving RF signals. As such, the wireless adapter 130 can be used to send either IR or RF signals to the controller and the controller can send RF signals directly back to the console.
In accordance with other embodiments of the invention, the console interface or wireless adapter can be operably disposed within any one of the communication ports of the game console. For example, referring to
In each of the above described embodiments, RF antennae 138, 168, 198 and 218 are shown disposed external to their respective housings. Those of skill in the art understand that these antennae may be internally disposed in their respective housings so as to eliminate the possibility of accidental breaking or damage during handling.
As mentioned, it is contemplated herein to utilize a combination of IR and RF technology in order to effect the most efficient and cost effective wireless communication between the console 100 and the game controllers. Those of skill in the art will recognize that the use of each technology (i.e., IR and RF) comes with their own advantages and disadvantages. For example, IR is generally the wireless method of choice because it is cheaper to implement than RF, and therefore is suitable for keeping products costs down during manufacturing and subsequent sale prices low. However, those of skill in the art will appreciate the “line of sight” limitation associated with IR. This limitation requires a clear line of sight between the game controller and the game console. Without a clear line of sight, the IR wireless commands cannot reliably be received by the IR receiver. Radio frequency (RF), on the other hand, has proven most reliable in a wireless gaming and remote control environments, however it is generally more expensive to implement and therefore is not desirable when attempting to keep product manufacturing costs and sale prices down. RF effectively eliminates the “line of sight” limitation on IR.
According to a preferred embodiment of the invention, wireless communication from the game controller to the console is performed using RF and wireless communication from the console to the game controller is performed using IR. Thus, the game controller includes an RF transmitter and an IR receiver, while the console interface (i.e., adapter of
Since the disclosed adapters 130, 160, 190 and 210 will all contain wireless transmitting capability in one form or another (i.e., IR, RF or both) it is necessary for these adapters to have power. In one embodiment, each adapter can obtain the power necessary for wireless transmitting from the game console via the corresponding male plug 134, 164, 194 and 214. In yet another contemplated embodiment, each adapter can have its own on board power supply. For example, each adapter 130, 160, 190 and 210 can have internal batteries 133, 163, 193 and 213, respectively, which provide the necessary power to the adapter. The batteries may be removable through the releasable removal of the adapter housing (e.g., by sliding) or may be rechargeable through the connection of an appropriate charger and a charging jack 135, 165, 195 and 215.
Those of ordinary skill in the art will recognize that the concepts described herein may been applied to various different types of game controllers without departing from the spirit of the invention. These different types of game controllers include standard, enhanced, programmable and genre specific game controllers, such as, for example, racing controllers, fighting controllers, shooting controllers (e.g., first person shooter), platform/adventure controller, flight simulator, motorcycle/bike controllers, pool cues, fishing, snow boards, golf, and baseball controllers.
It will be understood that various modifications can be made to the embodiments of the present application without departing from the spirit and scope thereof. For example, various types of game consoles executing various types of game programs and interacting with various video outputting apparatus may be used with the wireless control unit. Likewise, various memory cartridges and other peripheral devices may be used with the wireless control unit. Further, the wireless control unit may use other transmission techniques for transferring game information and/or controller information. Therefore, the above description should not be construed as limiting the invention, but merely as disclosing preferred embodiments thereof. Those skilled in the art will envision other modifications within the scope and spirit of the invention as defined by the claims appended hereto.
This application is a continuation of U.S. patent application Ser. No. 09/708,213 filed Nov. 8, 2000 now U.S. Pat. No. 6,719,633, which is a Continuation-in-Part of U.S. patent application Ser. No. 09/023,813, filed Feb. 13, 1998, abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3919691 | Noll | Nov 1975 | A |
4477043 | Repperger | Oct 1984 | A |
4531740 | Green et al. | Jul 1985 | A |
4560983 | Williams | Dec 1985 | A |
4604016 | Joyce | Aug 1986 | A |
4716527 | Graciotti | Dec 1987 | A |
4731603 | McRae et al. | Mar 1988 | A |
4754268 | Mori | Jun 1988 | A |
4791416 | Adler | Dec 1988 | A |
4858930 | Sato | Aug 1989 | A |
4868549 | Affinito et al. | Sep 1989 | A |
4870389 | Ishiwata et al. | Sep 1989 | A |
4924216 | Leung | May 1990 | A |
5185561 | Good et al. | Feb 1993 | A |
5203563 | Loper, III | Apr 1993 | A |
5296871 | Paley | Mar 1994 | A |
5396266 | Brimhall | Mar 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5589854 | Tsai | Dec 1996 | A |
5605505 | Han | Feb 1997 | A |
5632680 | Chung | May 1997 | A |
5643087 | Marcus et al. | Jul 1997 | A |
5648797 | Lam | Jul 1997 | A |
5684722 | Thorner et al. | Nov 1997 | A |
5691898 | Rosenberg et al. | Nov 1997 | A |
5702305 | Norman et al. | Dec 1997 | A |
5714981 | Scott-Jackson et al. | Feb 1998 | A |
5734373 | Rosenberg et al. | Mar 1998 | A |
5759100 | Nakanishi | Jun 1998 | A |
5767839 | Rosenberg | Jun 1998 | A |
5806849 | Rutkowski | Sep 1998 | A |
5854621 | Junod et al. | Dec 1998 | A |
5855483 | Collins et al. | Jan 1999 | A |
5874944 | Khoury | Feb 1999 | A |
5881366 | Bodenmann et al. | Mar 1999 | A |
5890964 | Aoki et al. | Apr 1999 | A |
5897437 | Nishiumi et al. | Apr 1999 | A |
5907487 | Rosenberg et al. | May 1999 | A |
5935224 | Svancarek et al. | Aug 1999 | A |
5959613 | Rosenberg et al. | Sep 1999 | A |
5984785 | Takeda et al. | Nov 1999 | A |
5986644 | Herder et al. | Nov 1999 | A |
5999798 | Yang | Dec 1999 | A |
6008777 | Yiu | Dec 1999 | A |
6022274 | Takeda et al. | Feb 2000 | A |
6078789 | Bodenmann et al. | Jun 2000 | A |
6144367 | Berstis | Nov 2000 | A |
6166723 | Schena et al. | Dec 2000 | A |
6169540 | Rosenberg et al. | Jan 2001 | B1 |
6238289 | Sobota et al. | May 2001 | B1 |
6252579 | Rosenberg et al. | Jun 2001 | B1 |
6252583 | Braun et al. | Jun 2001 | B1 |
6271833 | Rosenberg et al. | Aug 2001 | B1 |
6279906 | Sanderson et al. | Aug 2001 | B1 |
6280327 | Leifer et al. | Aug 2001 | B1 |
6288705 | Rosenberg et al. | Sep 2001 | B1 |
6300936 | Braun et al. | Oct 2001 | B1 |
6342010 | Slifer | Jan 2002 | B1 |
6348911 | Rosenberg et al. | Feb 2002 | B1 |
6415439 | Randell et al. | Jul 2002 | B1 |
6480723 | Davidson et al. | Nov 2002 | B1 |
6503147 | Stockdale et al. | Jan 2003 | B1 |
6585596 | Leifer et al. | Jul 2003 | B1 |
6659871 | Leifer et al. | Dec 2003 | B2 |
Number | Date | Country |
---|---|---|
0265011 | Apr 1988 | EP |
0607580 | Jul 1994 | EP |
0626634 | Nov 1994 | EP |
Number | Date | Country | |
---|---|---|---|
20040166939 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09708213 | Nov 2000 | US |
Child | 10801322 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09023813 | Feb 1998 | US |
Child | 09708213 | US |