Wireless medical device with a complementary split ring resonator arrangement for suppression of electromagnetic interference

Information

  • Patent Grant
  • 10238030
  • Patent Number
    10,238,030
  • Date Filed
    Tuesday, December 6, 2016
    8 years ago
  • Date Issued
    Tuesday, March 26, 2019
    5 years ago
  • Inventors
    • Urbani; Fabio F. (Torrance, CA, US)
  • Original Assignees
  • Examiners
    • Tran; Hai V
    Agents
    • Lorenz & Kopf, LLP
Abstract
A medical device as described herein includes a communication module to process radio frequency signals associated with operation of the medical device, an antenna associated with the communication module, and a microstrip transmission component coupled between the communication module and the antenna. The transmission component includes a dielectric substrate, an electrically conductive signal trace formed overlying the upper major surface of the substrate, an electrically conductive ground plane formed overlying the lower major surface of the substrate, and a complementary split ring resonator arrangement integrally formed in the ground plane, and having a layout and dimensions tuned to cause the resonator arrangement to resonate at one or more harmonic frequencies of the nominal transmission frequency of the radio frequency signals.
Description
TECHNICAL FIELD

Embodiments of the subject matter described herein relate generally to wireless medical devices. More particularly, embodiments of the subject matter relate to techniques and components that reduce the emission of electromagnetic interference from wireless medical devices, as well as their susceptibility from unwanted electromagnetic radiation.


BACKGROUND

The prior art is replete with electronic devices that support wireless data communication. Wireless medical devices are useful for patients that have conditions that must be monitored on a continuous or frequent basis. For example, individuals with Type 1 diabetes and some individuals with Type 2 diabetes use insulin pumps to control their blood glucose levels. An insulin pump is one example of a medical fluid infusion device that can be designed to support wireless communication with other electronic devices, computer-based systems, or medical system components. For example, a wireless-enabled insulin pump can be configured to support any of the following functions: wirelessly receive control commands or instructions from another device; wirelessly transmit pump status data and/or patient data to another device; wirelessly receive glucose data from a continuous glucose sensor transmitter component; and wirelessly upload/download configuration data, updates, or settings from a server system.


Ideally, wireless medical devices should be designed to be relatively immune to electromagnetic interference and, conversely, should be designed to minimize the emission of unwanted electromagnetic radiation. In this regard, wireless devices must fulfill certain international standards and regulations related to the management of electromagnetic emissions, to ensure compatibility with neighboring electronic devices. Electromagnetic interference is a complex mechanism that takes place at different levels, including the chassis, circuit board, electronic component, and device level. Radiation sources typically include conductive trace coupling, cables attached to circuit boards, components such as chip packages and heat sinks, power busses, and other elements that can provide a low impedance current path.


Accordingly, it is desirable to have an efficient and effective approach to handle electromagnetic emission of a wireless-enabled electronic device, such as a wireless medical device. Furthermore, other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.


BRIEF SUMMARY

An exemplary embodiment of a medical device is presented here. The medical device includes a radio frequency (RF) communication module to process RF signals associated with operation of the medical device, where the RF signals have a nominal transmission frequency. The medical device also includes an RF antenna associated with the RF communication module, and a microstrip transmission component coupled between the RF communication module and the RF antenna. The microstrip transmission component includes a dielectric substrate having an upper major surface and a lower major surface opposite the upper major surface, an electrically conductive signal trace formed overlying the upper major surface, an electrically conductive ground plane formed overlying the lower major surface, and a complementary split ring resonator (CSRR) arrangement integrally formed in the electrically conductive ground plane, and having a layout and dimensions tuned to cause the CSRR arrangement to resonate at the second harmonic frequency of the nominal transmission frequency.


Another exemplary embodiment of a medical fluid infusion device is also presented here. The medical device includes an RF communication module to process RF signals associated with operation of the medical device, where the RF signals have a nominal transmission frequency. The medical device also includes an RF antenna associated with the RF communication module, and a microstrip transmission component coupled between the RF communication module and the RF antenna. The microstrip transmission component includes a dielectric substrate having an upper major surface and a lower major surface opposite the upper major surface, an electrically conductive signal trace formed overlying the upper major surface, an electrically conductive ground plane formed overlying the lower major surface, and a CSRR arrangement for the microstrip transmission component. The CSRR arrangement has a layout and dimensions tuned to cause the CSRR arrangement to suppress the second harmonic frequency component of the nominal transmission frequency of the RF signals.


Another exemplary embodiment of a medical device is also presented here. The medical device includes an RF communication module to process RF signals associated with operation of the medical device, where the RF signals have a nominal transmission frequency. The medical device also includes an RF antenna associated with the RF communication module, and a microstrip transmission component coupled between the RF communication module and the RF antenna. The microstrip transmission component includes a dielectric substrate having an upper major surface and a lower major surface opposite the upper major surface, an electrically conductive signal trace formed on the upper major surface, and a layer of electrically conductive material formed on the lower major surface. The layer of electrically conductive material includes voids formed therein to define a CSRR arrangement having a layout and dimensions tuned to cause the CSRR arrangement to resonate at the second harmonic frequency of the nominal transmission frequency.


This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures. The drawings are not to scale, and the dimensions of certain features have been exaggerated for clarity and ease of description.



FIG. 1 is a plan view of an exemplary embodiment of a fluid delivery system that includes a medical fluid infusion device and an infusion set;



FIG. 2 is a schematic block diagram representation of a wireless communication subsystem suitable for use with the medical fluid infusion device shown in FIG. 1;



FIG. 3 is a perspective phantom view of a microstrip transmission component having a complementary split ring resonator (CSRR) arrangement integrally formed therein;



FIG. 4 is an exploded perspective view of the microstrip transmission component shown in FIG. 3;



FIG. 5 is a top phantom view of the microstrip transmission component shown in FIG. 3; and



FIG. 6 is a plan view of an exemplary embodiment of a CSRR element suitable for use with the microstrip transmission component shown in FIG. 3.





DETAILED DESCRIPTION

The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.


Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “side”, “outboard,” and “inboard” describe the orientation and/or location of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms “first”, “second” and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context.


The subject matter described here generally relates to the management of electromagnetic interference associated with the operation of wireless electronic devices, such as wireless medical devices. The solution presented here can be applied to any medical device using wireless communication that requires immunity and low emission of electromagnetic radiation (e.g., a defibrillator device, a pacemaker device, or the like). Although the subject matter described here can be implemented in a variety of different wireless devices, the exemplary embodiment presented here is a wireless medical fluid infusion device of the type used to treat a medical condition of a patient. The medical fluid infusion device is used for infusing a medication fluid into the body of a user. The non-limiting example described below relates to a medical device used to treat diabetes (more specifically, an insulin infusion pump), although embodiments of the disclosed subject matter are not so limited. Accordingly, the medication fluid is insulin in certain embodiments. In alternative embodiments, however, many other fluids may be administered through infusion such as, but not limited to, disease treatments, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, medications, vitamins, hormones, or the like.


For the sake of brevity, conventional features and functionality related to infusion systems, insulin pumps, and their wireless communication capabilities may not be described in detail here. Examples of fluid infusion pumps having wireless features may be of the type described in, but not limited to, U.S. Pat. Nos. 8,208,973 and 8,344,847, which are herein incorporated by reference.


Referring to the drawings, FIG. 1 is a plan view of an exemplary embodiment of a fluid delivery system 100 that includes a portable medical fluid infusion device 102 and a fluid conduit assembly that takes the form of an infusion set 104. For this particular embodiment, the infusion set 104 can be coupled to the fluid infusion device 102 as depicted in FIG. 1. The fluid infusion device 102 accommodates a fluid reservoir (hidden from view in FIG. 1) for the medication fluid to be delivered to the user.


The illustrated embodiment of the infusion set 104 includes, without limitation: a length of tubing 110; an infusion unit 112 coupled to the distal end of the tubing 110; and a connector 114 coupled to the proximal end of the tubing 110. The fluid infusion device 102 is designed to be carried or worn by the patient, and the infusion set 104 terminates at the infusion unit 112 such that the fluid infusion device 102 can deliver fluid to the body of the patient via the tubing 110. The infusion unit 112 includes a cannula (hidden from view in FIG. 1) that is coupled to the distal end of the tubing 110. The cannula is inserted into the skin and is held in place during use of the fluid infusion device 102.


The infusion set 104 defines a fluid flow path that fluidly couples the fluid reservoir to the infusion unit 112. The connector 114 mates with and couples to a section of the fluid reservoir, which in turn is coupled to a housing 120 of the fluid infusion device 102. The connector 114 establishes the fluid path from the fluid reservoir to the tubing 110. Actuation of the fluid infusion device 102 causes the medication fluid to be expelled from the fluid reservoir, through the infusion set 104, and into the body of the patient via the infusion unit 112 and cannula at the distal end of the tubing 110. Accordingly, when the connector 114 is installed as depicted in FIG. 1, the tubing 110 extends from the fluid infusion device 102 to the infusion unit 112, which in turn provides a fluid pathway to the body of the patient.


The fluid infusion device 102 includes a radio frequency (RF) antenna to support wireless data communication with other devices, systems, and/or components. The RF antenna can be located inside the housing 120 or it can be integrally formed with the housing 120. Accordingly, the RF antenna is hidden from view in FIG. 1.



FIG. 2 is a schematic block diagram representation of a wireless communication subsystem 200 suitable for use with the medical fluid infusion device 102 shown in FIG. 1. It should be apparent that FIG. 2 depicts the wireless communication subsystem 200 in a very simplified manner, and that a practical embodiment of the fluid infusion device 102 will of course include many additional features and components. The wireless communication subsystem 200 generally includes, without limitation: an RF communication module 202; a transmission component 204; an RF antenna 206 coupled to the RF communication module 202 by way of the transmission component 204; a power supply 208; a processor 210; and an appropriate amount of memory 212. As explained in more detail below, an exemplary embodiment of the transmission component 204 includes a complementary split ring resonator (CSRR) arrangement incorporated therein. The various operating elements of the wireless communication subsystem 200 are coupled together as needed to facilitate the delivery of operating power from the power supply 208, the transfer of data, the transfer of control signals and commands, and the like.


The RF communication module 202 is suitably configured to process RF signals associated with the operation of the fluid infusion device 102, and to otherwise support the wireless communication functions of the fluid infusion device 102. In this regard, the RF communication module 202 may include a transceiver or radio element that generates RF signals suitable for transmission, and that is capable of receiving RF signals generated by neighboring devices, systems, or components. Thus, the RF communication module 202 is suitably configured to generate the RF signals to be transmitted by the antenna 206. For the exemplary embodiment described herein, the RF communication module 202 is designed to operate in the ultra-high frequency (UHF) band. Alternate embodiments may instead utilize other RF bands or frequencies as appropriate. In certain practical embodiments, the RF communication module 202 and the RF antenna are designed and tuned to accommodate RF signals having a nominal transmission frequency centered around 2.4 GHz. In this regard, the RF communication module 202 and the RF antenna 206 can be suitably configured to handle RF signals having frequencies within the range of about 2.402 GHz to about 2.480 GHz.


The RF antenna 206 is operationally associated with the RF communication module 202. Thus, the RF antenna 206 can be designed, configured, and tuned to accommodate the particular operating frequency band utilized by the RF communication module 202. The RF antenna 206 is suitably configured to transmit and receive RF energy associated with the operation of the host electronic device. Accordingly, the transmission component 204 is coupled between the RF communication module 202 and the RF antenna 206 to convey RF signals in a bidirectional manner. As described in more detail below, the transmission component 204 can be realized as a microstrip transmission line having an electrically conductive signal trace fabricated on the upper surface of a dielectric substrate, and having an electrically conductive ground plane fabricated on the lower surface of the dielectric substrate. Moreover, the wireless communication subsystem 200 includes a CSRR arrangement that is preferably realized as an integrated feature of the transmission component 204.


The power supply 208 may be a disposable or rechargeable battery, a set of batteries, or a battery pack that is rated to provide the necessary voltage and energy to support the operation of the wireless communication subsystem 200. Alternatively or additionally, the power supply 208 may receive power from an external source such as an ordinary AC outlet, a portable charger, or the like. In a typical implementation, the power supply 208 also provides operating energy to other components and subsystems of the host device.


The processor 210 may be any general purpose microprocessor, controller, or microcontroller that is suitably configured to control the operation of the host device, including the wireless communication subsystem 200. In practice, the processor 210 may execute one or more software applications or instruction sets that provide the desired functionality for the host device. In this regard, the processor 210 can control, manage, and regulate the generation and transmission of outgoing RF signals, and the receipt and handling of incoming RF signals as needed.


The memory 212 may be realized as any processor-readable medium, including an electronic circuit, a semiconductor memory device, a ROM, a flash memory, an erasable ROM, a floppy diskette, a CD-ROM, an optical disk, a hard disk, an organic memory element, or the like. For example, the memory 212 is capable of storing application software utilized by the host device and/or data utilized by the host device during operation, e.g., physiological data of the patient, device status data, control commands, configuration setting data, and the like.


In certain embodiments, the medical fluid infusion device 102 and the wireless communication subsystem 200 utilize circuit boards to mount electronic components and to implement conductive traces, signal paths, and voltage supply lines. In this regard, operating power/energy can be provided by power planes embedded in a multilayer structure of a circuit board. Such power planes can induce electromagnetic radiation in a manner that is highly analogous to the way microstrip antennas radiate RF energy. In a microstrip patch antenna and in a printed circuit board, radiation is induced by a time-varying fringing electric field at the edges of the board. It is desirable to have a low cost electromagnetic filtering technique that also reduces the size and footprint of traditional electromagnetic interference filter components.


The concept presented here utilizes the conductive ground plane of the transmission component 204 to form periodic or quasi-periodic structures with electromagnetically controllable properties and characteristics. More specifically, the transmission component 204 is suitably designed and fabricated to include sub-wavelength resonators that are configured to reduce electromagnetic interference. In this regard, the conductive ground plane is carefully fabricated to create a CSRR arrangement, which can be deployed as an alternative to microstrip stopband structures. The CSRR arrangement preferably includes a plurality of identical CSRR elements that cooperate to suppress certain RF signal frequencies, in particular, the second harmonic frequency of the RF signals of interest (which are transmitted and received by the host electronic device). For the exemplary embodiment described here, the CSRR arrangement is shaped, sized, dimensioned, and otherwise configured in accordance with the targeted pass band frequency range of 2.402 to 2.480 GHz, and in accordance with the targeted stop band frequency range of 4.804 to 4.960 GHz. It should be understood that the particular pass band and stop band frequency ranges will be dictated by the specific wireless protocol utilized by the host device. In this regard, a number of standard RF integrated circuit radios for medical device deployment use the 2.4 GHz industrial, scientific, and medical (ISM) band which implies the 4.804 to 4.960 GHz bandwidth. In practice, additional stop bands can be implemented by including multiple CSRRs of different sizes.



FIG. 3 is a perspective phantom view of a microstrip transmission component 300 having a CSRR arrangement 302 integrally formed therein, FIG. 4 is an exploded perspective view of the microstrip transmission component 300, and FIG. 5 is a top phantom view of the microstrip transmission component 300. The microstrip transmission component 300 is depicted in a simplified manner for clarity and ease of description. The shape, size, and topology of the microstrip transmission component 300 can vary as needed for the particular embodiment.


The microstrip transmission component 300 generally includes, without limitation: a dielectric substrate 304; an electrically conductive signal trace 306; and an electrically conductive ground plane 308. For this particular embodiment, the CSRR arrangement 302 is integrally formed in the ground plane 308. The dielectric substrate 304 is formed from a suitable dielectric or insulating material such as, without limitation, plastic, an FR-4 circuit board material, a ceramic material, a flexible vinyl material, or the like. In some embodiments, the dielectric substrate 304 is a distinct component of the wireless communication subsystem 200, as schematically depicted in FIG. 2. In other embodiments, the dielectric substrate 304 can be realized as an integrated part of the housing 120, an internal structure, or other part of the fluid infusion device 102.


The dielectric constant of the substrate 304 can be chosen to obtain the desired electromagnetic characteristics. For example, the substrate 304 can be formed from a material having a dielectric constant within the range of about 3.0 to 12.0. In accordance with certain exemplary embodiments, the substrate 304 is formed from a thin FR-4 material having a specified dielectric constant of 4.4. The thickness (i.e., the height dimension relative to the perspective shown in FIG. 3) of the substrate 304 can also vary from one embodiment to another, as appropriate to achieve the desired electromagnetic characteristics. The embodiment mentioned here employs an FR-4 substrate 304 having a nominal thickness of 1.0 mm.


The dielectric substrate 304 has an upper major surface 312 and a lower major surface 314 opposite the upper major surface 312 (see FIG. 4, which depicts the signal trace 306 and the ground plane 308 separated from the dielectric substrate 304). The electrically conductive signal trace 306 is formed overlying the upper major surface 312, and the electrically conductive ground plane 308 is formed overlying the lower major surface 314. For the illustrated embodiment, the signal trace 306 is formed directly on the upper major surface 312, and the ground plane 308 is formed directly on the lower major surface 314. The signal trace 306 and the ground plane 308 can be formed from an electrically conductive material such as, without limitation, copper, aluminum, gold, alloys thereof, or the like. In practice, the signal trace 306 and the ground plane 308 are formed from respective layers of electrically conductive material that reside on the dielectric substrate 304. The signal trace 306 can be fabricated by the selective removal of portions of the electrically conductive material on the upper major surface 312, e.g., by a conventional etching procedure. Likewise, the CSRR arrangement 302 can be defined by voids formed in the electrically conductive material on the lower major surface 314. Thus, the spaces corresponding to the CSRR arrangement 302 can be fabricated by the selective removal of portions of the electrically conductive material on the lower major surface 314, e.g., by a conventional etching procedure. Etching away the conductive material on the lower major surface 314 represents one suitable process for integrally forming the CSRR arrangement 302 in the electrically conductive ground plane 308.


The CSRR arrangement 302 has a layout and dimensions that are tuned to cause the CSRR arrangement 302 to resonate at the second harmonic frequency of the nominal transmission frequency of the RF signals carried by the microstrip transmission component 300. As mentioned above, the exemplary embodiment described here considers a nominal transmission frequency of 2.40 GHz, having a second harmonic frequency of 4.80 GHz. Thus, the layout and dimensions of the CSRR arrangement are tuned to cause the CSRR arrangement to suppress or filter frequencies in a band centered around 4.80 GHz.


Although not always required, the illustrated embodiment of the CSRR arrangement 302 includes a plurality of CSRR elements 320 in series with one another. The depicted embodiment includes four CSRR elements 320, which are all identical in layout and in their dimensions. As best shown in FIG. 5 (which is a top phantom view of the microstrip transmission component 300), the CSRR elements 320 are arranged such that they are all centered in alignment with the electrically conductive signal trace 306. In other words, the top-down (or, equivalently, the bottom-up) projection of the signal trace 306 has a longitudinal axis that intersects the centers of the CSRR elements 320. This arrangement is desirable to optimize the RF coupling between the signal trace and the CSRR elements 320.


A split ring resonator (SRR) is a resonant element having a high quality factor at microwave frequencies. An SRR is fabricated from concentric electrically conductive split rings. When an SRR is excited by an external time varying magnetic field applied parallel to the ring axis, an electromotive force around the SRR is generated, which gives rise to current loops in the SRR. These current loops are closed through the distributed capacitance between the concentric rings. In this regard, an SRR behaves as an externally driven LC circuit with a resonant frequency that can be tuned by varying certain dimensions of the SRR.


By invoking the concepts of duality and complementarity, a CSRR can be derived from an SRR structure in a straightforward way. In planar technology, a CSRR can be defined as the negative of an SRR. Accordingly, a CSRR exhibits an electromagnetic behavior that is almost the dual of that of an SRR. More specifically, a negative-ε effective permittivity can be expected for any CSRR-based medium, whereas a negative-μ behavior arises in an equivalent SRR system. In other words, an SRR can be considered to be a resonant magnetic dipole that can be excited by an axial magnetic field, while a CSRR essentially behaves as an electric dipole (with the same frequency of resonance) that can be excited by an axial electric field. The latter characteristic makes a CSRR an ideal candidate for microstrip technology implementation.


Materials with negative permeability and/or negative permittivity are known as metamaterials (MTMs). The concept of MTMs plays an important role in science and technology due to the large applicability of MTMs in the development of efficient devices. MTMs are artificial structures with electromagnetic properties different from conventional materials. They are constructed to accomplish specifically desired physical properties such as negative permeability and/or negative permittivity, and/or to alter the electromagnetic response of a device for the frequency region of interest. Most metamaterials include scattering element arrays embedded in a host matrix. The scattering elements are typically identical, and the electromagnetic properties of the medium can be inferred from the properties of the unit cell (formed by one repeated element as depicted in FIG. 6). This characteristic allows the designer to engineer the effective electromagnetic parameters of the medium by modifying the size, shape, and composition of the unit cell.


CSRRs are sub-lambda structures, i.e., their dimensions are electrically small at the resonant frequency (typically ≤λg/10). As used here, λg is the guide wavelength in the guiding structure (e.g., microstrip) as opposed to the wavelength in free space. Due to the small electrical dimensions, a high level of miniaturization is expected when using CSRRs. Moreover, the proposed stopband arrangement described herein has the advantage of an easier and low-cost implementation in microstrip technology, because coupling between the CSRR arrangement 302 and the electrically conductive signal trace 306 can be simply achieved by etching the CSRR elements 320 directly in the conductive ground plane 308.


The CSRR elements 320 (and, therefore, the CSRR arrangement 302) and/or the microstrip transmission component 300 can be tuned to resonate at the desired frequency or frequency band. More specifically, any of the following parameters can be adjusted individually or in any desired combination: the type of dielectric material (and, inherently, the dielectric constant) used for the dielectric substrate 304; the thickness/height of the dielectric substrate 304; the type of conductive material used for the signal trace 306; the type of conductive material used for the ground plane 308; the overall shape of each CSRR element 320; the number of CSRR elements 320 deployed; the location of the CSRR elements 320 relative to the signal trace 306; the array period used for the CSRR elements 320 (i.e., the distance between neighboring CSRR elements 320); the width of the signal trace 306; and certain dimensions of the CSRR elements 320. In this regard, FIG. 6 is a plan view of an exemplary embodiment of a CSRR element 320; FIG. 6 employs an exaggerated scale for ease of illustration.


As mentioned above, each CSRR element 320 in the CSRR arrangement 302 is identically configured as depicted in FIG. 6. The CSRR element 320 includes an outer split ring shaped void 350 formed in the electrically conductive material 352, and an inner split ring shaped void 354 formed in the electrically conductive material 352. The inner split ring shaped void 354 resides in an interior space 356 defined by the outer split ring shaped void 350, and the two split ring shaped voids 350, 354 are concentric. The outer split ring shaped void 350 defines a gap 360, wherein the electrically conductive material 352 fills the gap 360. Similarly, the inner split ring shaped void 354 defines a gap 362, wherein the electrically conductive material 352 fills the gap 362.



FIG. 6 includes labels that indicate certain tunable dimensions of the CSRR element 320. The labels and their corresponding dimensions are listed below:


r=innermost radius of the inner split ring shaped void 354;


c=line width of the inner split ring shaped void 354, which equals the line width of the outer split ring shaped void 350 for this particular embodiment;


d=line width (separation distance) between the inner split ring shaped void 354 and the outer split ring shaped void 350;


g=distance of the gap 360 of the outer split ring shaped void, which equals the distance of the gap 362 of the inner split ring shaped void for this particular embodiment.


Any of the above dimensions can be adjusted to tune the electromagnetic performance of the CSRR arrangement 302. Moreover, the dielectric constant of the substrate 304, the height of the substrate 304, the line width of the signal trace 306, and the center-to-center distance between neighboring CSRR elements 320 (i.e., the array period) can be adjusted to tune the electromagnetic characteristics and properties of the CSRR arrangement 302. In particular, any one or any combination of these parameters can be adjusted to influence the passband of the microstrip transmission component 300, the stopband (resonant frequency band) of the CSRR arrangement 302, and the like.


In accordance with certain exemplary embodiments, the dielectric substrate 304 is formed from a thin FR-4 board having a thickness of 1.0 mm, and having a dielectric constant of 4.4. For this particular embodiment: the line width of the signal trace 306 is 1.9 mm; the line widths for c, d, and g are all equal to 0.25 mm; the radius r equals 1.75 mm; and the array period equals 5.83 mm. Simulated results for a microstrip transmission component 300 having this configuration indicate a stopband (−20.0 dB rejection) of 4.60 GHz to 5.29 GHz, which encompasses the first harmonic frequency of the desired RF signals (4.80 GHz). Therefore, a wireless electronic device, such as a medical fluid infusion device, can utilize the microstrip transmission component 300 to facilitate the communication of RF signals at the nominal transmission frequency of 2.4 GHz while effectively suppressing unwanted frequency components centered around the first harmonic frequency of 4.8 GHz. Of course, the dimensions outlined above are merely exemplary, and an embodiment of the microstrip transmission component 300 can utilize a CSRR arrangement 302 having alternative specifications if so desired, especially if needed to reject or suppress a different frequency band.


While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application.

Claims
  • 1. A medical device comprising: a housing;a radio frequency (RF) communication module to process RF signals associated with operation of the medical device, the RF signals having a nominal transmission frequency;an RF antenna associated with the RF communication module, the RF antenna integrally formed with the housing;a physically distinct microstrip transmission component coupled between the RF communication module and the RF antenna, the microstrip transmission component comprising: a dielectric substrate having an upper major surface and a lower major surface opposite the upper major surface;an electrically conductive signal trace formed overlying the upper major surface;an electrically conductive ground plane formed overlying the lower major surface; anda complementary split ring resonator (CSRR) arrangement integrally formed in the electrically conductive ground plane, and having a layout and dimensions tuned to cause the CSRR arrangement to resonate at a harmonic frequency of the nominal transmission frequency.
  • 2. The medical device of claim 1, wherein the CSRR arrangement comprises a plurality of CSRR elements in series and centered in alignment with the electrically conductive signal trace.
  • 3. The medical device of claim 2, wherein the CSRR elements are identical in layout and dimensions.
  • 4. The medical device of claim 1, wherein: the RF communication module and the RF antenna accommodate RF signals having the nominal transmission frequency centered around 2.4 GHz; andthe layout and dimensions of the CSRR arrangement are tuned to cause the CSRR arrangement to resonate at a frequency centered around 4.8 GHz.
  • 5. The medical device of claim 1, wherein: the electrically conductive signal trace is formed directly on the upper major surface; andthe electrically conductive ground plane is formed directly on the lower major surface.
  • 6. The medical device of claim 1, wherein: the electrically conductive ground plane comprises a layer of electrically conductive material formed directly on the lower major surface; andthe CSRR arrangement is defined by voids formed in the electrically conductive material.
  • 7. The medical device of claim 1, wherein: the electrically conductive ground plane comprises a layer of electrically conductive material formed directly on the lower major surface; andthe CSRR arrangement is defined by selective removal of portions of the electrically conductive material.
  • 8. A medical fluid infusion device comprising: a housing;a radio frequency (RF) communication module to process RF signals associated with operation of the medical device, the RF signals having a nominal transmission frequency;an RF antenna associated with the RF communication module, the RF antenna integrally formed with the housing;a physically distinct microstrip transmission component coupled between the RF communication module and the RF antenna, the microstrip transmission component comprising: a dielectric substrate having an upper major surface and a lower major surface opposite the upper major surface;an electrically conductive signal trace formed overlying the upper major surface; andan electrically conductive ground plane formed overlying the lower major surface; anda complementary split ring resonator (CSRR) arrangement for the microstrip transmission component, the CSRR arrangement having a layout and dimensions tuned to cause the CSRR arrangement to suppress a harmonic frequency component of the nominal transmission frequency of the RF signals.
  • 9. The medical fluid infusion device of claim 8, wherein the CSRR arrangement comprises a plurality of CSRR elements in series and centered in alignment with the electrically conductive signal trace.
  • 10. The medical fluid infusion device of claim 8, wherein: the electrically conductive signal trace is formed directly on the upper major surface; andthe electrically conductive ground plane is formed directly on the lower major surface.
  • 11. The medical fluid infusion device of claim 8, wherein the layout and dimensions of the CSRR arrangement are tuned to cause the CSRR arrangement to resonate at the harmonic frequency.
  • 12. The medical fluid infusion device of claim 8, wherein the CSRR arrangement is integrally formed in the electrically conductive ground plane.
  • 13. The medical fluid infusion device of claim 12, wherein: the electrically conductive ground plane comprises a layer of electrically conductive material formed directly on the lower major surface; andthe CSRR arrangement is defined by voids formed in the electrically conductive material.
  • 14. The medical fluid infusion device of claim 12, wherein: the electrically conductive ground plane comprises a layer of electrically conductive material formed directly on the lower major surface; andthe CSRR arrangement is defined by selective removal of portions of the electrically conductive material.
  • 15. A medical device comprising: a housing;a radio frequency (RF) communication module to process RF signals associated with operation of the medical device, the RF signals having a nominal transmission frequency;an RF antenna associated with the RF communication module, the RF antenna integrally formed with the housing;a physically distinct microstrip transmission component coupled between the RF communication module and the RF antenna, the microstrip transmission component comprising: a dielectric substrate having an upper major surface and a lower major surface opposite the upper major surface;an electrically conductive signal trace formed on the upper major surface; anda layer of electrically conductive material formed on the lower major surface, the layer of electrically conductive material comprising voids formed therein to define a complementary split ring resonator (CSRR) arrangement having a layout and dimensions tuned to cause the CSRR arrangement to resonate at a harmonic frequency of the nominal transmission frequency.
  • 16. The medical device of claim 15, wherein the layer of electrically conductive material serves as a ground plane for the electrically conductive signal trace.
  • 17. The medical device of claim 15, wherein the CSRR arrangement comprises a plurality of CSRR elements in series and centered in alignment with the electrically conductive signal trace.
  • 18. The medical device of claim 17, wherein the CSRR elements are identical in layout and dimensions.
  • 19. The medical device of claim 17, wherein each of the CSRR elements comprises: an outer split ring shaped void formed in the electrically conductive material; andan inner split ring shaped void formed in the electrically conductive material, the inner split ring shaped void residing in an interior space defined by the outer split ring shaped void, and the inner split ring shaped void being concentric with the outer split ring shaped void.
  • 20. The medical device of claim 17, wherein: the outer split ring shaped void has a first line width;the inner split ring shaped void has a second line width;the outer split ring shaped void is separated from the inner split ring shaped void by a third line width; andthe first line width, the second line width, and the third line width are equal.
US Referenced Citations (233)
Number Name Date Kind
3631847 Hobbs, II Jan 1972 A
4212738 Henne Jul 1980 A
4270532 Franetzki et al. Jun 1981 A
4282872 Franetzki et al. Aug 1981 A
4373527 Fischell Feb 1983 A
4395259 Prestele et al. Jul 1983 A
4433072 Pusineri et al. Feb 1984 A
4443218 Decant, Jr. et al. Apr 1984 A
4494950 Fischell Jan 1985 A
4542532 McQuilkin Sep 1985 A
4550731 Batina et al. Nov 1985 A
4559037 Franetzki et al. Dec 1985 A
4562751 Nason et al. Jan 1986 A
4671288 Gough Jun 1987 A
4678408 Nason et al. Jul 1987 A
4685903 Cable et al. Aug 1987 A
4731051 Fischell Mar 1988 A
4731726 Allen, III Mar 1988 A
4781798 Gough Nov 1988 A
4803625 Fu et al. Feb 1989 A
4809697 Causey, III et al. Mar 1989 A
4826810 Aoki May 1989 A
4871351 Feingold Oct 1989 A
4898578 Rubalcaba, Jr. Feb 1990 A
5003298 Havel Mar 1991 A
5011468 Lundquist et al. Apr 1991 A
5019974 Beckers May 1991 A
5050612 Matsumura Sep 1991 A
5078683 Sancoff et al. Jan 1992 A
5080653 Voss et al. Jan 1992 A
5097122 Colman et al. Mar 1992 A
5100380 Epstein et al. Mar 1992 A
5101814 Palti Apr 1992 A
5108819 Heller et al. Apr 1992 A
5153827 Coutre et al. Oct 1992 A
5165407 Wilson et al. Nov 1992 A
5247434 Peterson et al. Sep 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5284140 Allen et al. Feb 1994 A
5299571 Mastrototaro Apr 1994 A
5307263 Brown Apr 1994 A
5317506 Coutre et al. May 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5338157 Blomquist Aug 1994 A
5339821 Fujimoto Aug 1994 A
5341291 Roizen et al. Aug 1994 A
5350411 Ryan et al. Sep 1994 A
5356786 Heller et al. Oct 1994 A
5357427 Langen et al. Oct 1994 A
5368562 Blomquist et al. Nov 1994 A
5370622 Livingston et al. Dec 1994 A
5371687 Holmes, II et al. Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5403700 Heller et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5482473 Lord et al. Jan 1996 A
5485408 Blomquist Jan 1996 A
5505709 Funderburk et al. Apr 1996 A
5497772 Schulman et al. May 1996 A
5543326 Heller et al. Aug 1996 A
5569186 Lord et al. Oct 1996 A
5569187 Kaiser Oct 1996 A
5573506 Vasko Nov 1996 A
5582593 Hultman Dec 1996 A
5586553 Halili et al. Dec 1996 A
5593390 Castellano et al. Jan 1997 A
5593852 Heller et al. Jan 1997 A
5594638 Illiff Jan 1997 A
5609060 Dent Mar 1997 A
5626144 Tacklind et al. May 1997 A
5630710 Tune et al. May 1997 A
5643212 Coutre et al. Jul 1997 A
5660163 Schulman et al. Aug 1997 A
5660176 Iliff Aug 1997 A
5665065 Colman et al. Sep 1997 A
5665222 Heller et al. Sep 1997 A
5685844 Marttila Nov 1997 A
5687734 Dempsey et al. Nov 1997 A
5704366 Tacklind et al. Jan 1998 A
5750926 Schulman et al. May 1998 A
5754111 Garcia May 1998 A
5764159 Neftel Jun 1998 A
5772635 Dastur et al. Jun 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5788669 Peterson Aug 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807336 Russo et al. Sep 1998 A
5814015 Gargano et al. Sep 1998 A
5822715 Worthington et al. Oct 1998 A
5832448 Brown Nov 1998 A
5840020 Heinonen et al. Nov 1998 A
5861018 Feierbach et al. Jan 1999 A
5868669 Iliff Feb 1999 A
5871465 Vasko Feb 1999 A
5879163 Brown et al. Mar 1999 A
5885245 Lynch et al. Mar 1999 A
5897493 Brown Apr 1999 A
5899855 Brown May 1999 A
5904708 Goedeke May 1999 A
5913310 Brown Jun 1999 A
5917346 Gord Jun 1999 A
5918603 Brown Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5933136 Brown Aug 1999 A
5935099 Peterson et al. Aug 1999 A
5940801 Brown Aug 1999 A
5956501 Brown Sep 1999 A
5960403 Brown Sep 1999 A
5965380 Heller et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5978236 Faberman et al. Nov 1999 A
5997476 Brown Dec 1999 A
5999848 Gord et al. Dec 1999 A
5999849 Gord et al. Dec 1999 A
6009339 Bentsen et al. Dec 1999 A
6032119 Brown et al. Feb 2000 A
6043437 Schulman et al. Mar 2000 A
6081736 Colvin et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6101478 Brown Aug 2000 A
6103033 Say et al. Aug 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Feller et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6183412 Benkowski et al. Feb 2001 B1
6246992 Brown Jun 2001 B1
6259937 Schulman et al. Jul 2001 B1
6329161 Heller et al. Dec 2001 B1
6408330 DeLaHuerga Jun 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6472122 Schulman et al. Oct 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6514718 Heller et al. Feb 2003 B2
6544173 West et al. Apr 2003 B2
6553263 Meadows et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560741 Gerety et al. May 2003 B1
6565509 Say et al. May 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607658 Heller et al. Aug 2003 B1
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659980 Moberg et al. Dec 2003 B2
6671554 Gibson et al. Dec 2003 B2
6676816 Mao et al. Jan 2004 B2
6689265 Heller et al. Feb 2004 B2
6728576 Thompson et al. Apr 2004 B2
6733471 Ericson et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6747556 Medema et al. Jun 2004 B2
6749740 Liamos et al. Jun 2004 B2
6752787 Causey, III et al. Jun 2004 B1
6809653 Mann et al. Oct 2004 B1
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893545 Gotoh et al. May 2005 B2
6895263 Shin et al. May 2005 B2
6916159 Rush et al. Jul 2005 B2
6932584 Gray et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
7153263 Carter et al. Dec 2006 B2
7153289 Vasko Dec 2006 B2
7396330 Banet et al. Jul 2008 B2
7522124 Smith Apr 2009 B2
8208973 Mehta Jun 2012 B2
8344847 Moberg et al. Jan 2013 B2
20010044731 Coffman et al. Nov 2001 A1
20020013518 West et al. Jan 2002 A1
20020055857 Mault et al. May 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020137997 Mastrototaro et al. Sep 2002 A1
20020161288 Shin et al. Oct 2002 A1
20030060765 Campbell et al. Mar 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030088166 Say et al. May 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030152823 Heller Aug 2003 A1
20030176183 Drucker et al. Sep 2003 A1
20030188427 Say et al. Oct 2003 A1
20030199744 Buse et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030220552 Reghabi et al. Nov 2003 A1
20040061232 Shah et al. Apr 2004 A1
20040061234 Shah et al. Apr 2004 A1
20040064133 Miller et al. Apr 2004 A1
20040064156 Shah et al. Apr 2004 A1
20040073095 Causey, III et al. Apr 2004 A1
20040074785 Holker et al. Apr 2004 A1
20040093167 Braig et al. May 2004 A1
20040097796 Berman et al. May 2004 A1
20040102683 Khanuja et al. May 2004 A1
20040111017 Say et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040167465 Mihai et al. Aug 2004 A1
20040263354 Mann et al. Dec 2004 A1
20050038331 Silaski et al. Feb 2005 A1
20050038680 McMahon et al. Feb 2005 A1
20050154271 Rasdal et al. Jul 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20060229694 Schulman et al. Oct 2006 A1
20060238333 Welch et al. Oct 2006 A1
20060293571 Bao et al. Dec 2006 A1
20070088521 Shmueli et al. Apr 2007 A1
20070135866 Baker et al. Jun 2007 A1
20080154503 Wittenber et al. Jun 2008 A1
20090081951 Erdmann et al. Mar 2009 A1
20090082635 Baldus et al. Mar 2009 A1
20140266974 Sharawi Sep 2014 A1
20150070228 Gu Mar 2015 A1
Foreign Referenced Citations (27)
Number Date Country
4329229 Mar 1995 DE
0319268 Nov 1988 EP
0806738 Nov 1997 EP
0880936 Dec 1998 EP
1338295 Aug 2003 EP
1631036 Mar 2006 EP
2218831 Nov 1989 GB
WO 9620745 Jul 1996 WO
WO 9636389 Nov 1996 WO
WO 9637246 Nov 1996 WO
WO 9721456 Jun 1997 WO
WO 9820439 May 1998 WO
WO 9824358 Jun 1998 WO
WO 9842407 Oct 1998 WO
WO 9849659 Nov 1998 WO
WO 9859487 Dec 1998 WO
WO 9908183 Feb 1999 WO
WO 9910801 Mar 1999 WO
WO 9918532 Apr 1999 WO
WO 9922236 May 1999 WO
WO 0010628 Mar 2000 WO
WO 0019887 Apr 2000 WO
WO 0048112 Aug 2000 WO
WO 02058537 Aug 2002 WO
WO 03001329 Jan 2003 WO
WO 03094090 Nov 2003 WO
WO 2005065538 Jul 2005 WO
Non-Patent Literature Citations (92)
Entry
PCT Search Report (PCT/US02/03299), dated Oct. 31, 2002, Medtronic Minimed, Inc.
(Animas Corporation, 1999). Animas . . . bringing new life to insulin therapy.
Bode B W, et al. (1996). Reduction in Severe Hypoglycemia with Long-Term Continuous Subcutaneous Insulin Infusion in Type I Diabetes. Diabetes Care, vol. 19, No. 4, 324-327.
Boland E (1998). Teens Pumping it Up! Insulin Pump Therapy Guide for Adolescents. 2nd Edition.
Brackenridge B P (1992). Carbohydrate Gram Counting a Key to Accurate Mealtime Boluses in Intensive Diabetes Therapy. Practical Diabetology, vol. 11, No. 2, pp. 22-28.
Brackenridge, B P et al. (1995). Counting Carbohydrates How to Zero in on Good Control. MiniMed Technologies Inc.
Farkas-Hirsch R et al. (1994). Continuous Subcutaneous Insulin Infusion: A Review of the Past and Its Implementation for the Future. Diabetes Spectrum From Research to Practice, vol. 7, No. 2, pp. 80-84, 136-138.
Hirsch I B et al. (1990). Intensive Insulin Therapy for Treatment of Type I Diabetes. Diabetes Care, vol. 13, No. 12, pp. 1265-1283.
Kulkarni K et al. (1999). Carbohydrate Counting a Primer for Insulin Pump Users to Zero in on Good Control. MiniMed Inc.
Marcus A O et al. (1996). Insulin Pump Therapy Acceptable Alternative to Injection Therapy. Postgraduate Medicine, vol. 99, No. 3, pp. 125-142.
Reed J et al. (1996). Voice of the Diabetic, vol. 11, No. 3, pp. 1-38.
Skyler J S (1989). Continuous Subcutaneous insulin Infusion [CSII] With External Devices: Current Status. Update in Drug Delivery Systems, Chapter 13, pp. 163-183. Futura Publishing Company.
Skyler J S et al. (1995). The Insulin Pump Therapy Book Insights from the Experts. MiniMed⋅Technologies.
Strowig S M (1993). Initiation and Management of Insulin Pump Therapy. The Diabetes Educator, vol. 19, No. 1, pp. 50-60.
Walsh J, et al. (1989). Pumping Insulin: The Art of Using an Insulin Pump. Published by MiniMed⋅ Technologies.
(Intensive Diabetes Management, 1995). Insulin Infusion Pump Therapy. pp. 66-78.
Disetronic My Choice™ D-TRON™ Insulin Pump Reference Manual. (no date).
Disetronic H-TRON® plus Quick Start Manual. (no date).
Disetronic My Choice H-TRONplus Insulin Pump Reference Manual. (no date).
Disetronic H-TRON® plus Reference Manual. (no date).
(MiniMed, 1996). The MiniMed 506. 7 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054527/www.minimed.com/files/506_pic.htrn.
(MiniMed, 1997). MiniMed 507 Specifications. 2 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234841/www.minimed.com/files/mmn075.htm.
(MiniMed, 1996). FAQ: The Practical Things . . . pp. 1-4. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054546/www.minimed.com/files/faq_pract.htm.
(MiniMed, 1997). Wanted: a Few Good Belt Clips! 1 page. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234559/www.minimed.com/files/mmn002.htm.
(MiniMed Technologies, 1994). MiniMed 506 Insulin Pump User's Guide.
(MiniMed Technologies, 1994). MiniMed™ Dosage Calculator Initial Meal Bolus Guidelines / MiniMed™ Dosage Calculator Initial Basal Rate Guidelines Percentage Method. 4 pages.
(MiniMed, 1996). MiniMed™ 507 Insulin Pump User's Guide.
(MiniMed, 1997). MiniMed™ 507 Insulin Pump User's Guide.
(MiniMed, 1998). MiniMed 507C Insulin Pump User's Guide.
(MiniMed International, 1998). MiniMed 507C Insulin Pump for those who appreciate the difference.
(MiniMed Inc., 1999). MiniMed 508 Flipchart Guide to Insulin Pump Therapy.
(MiniMed Inc., 1999). Insulin Pump Comparison / Pump Therapy Will Change Your Life.
(MiniMed, 2000). MiniMed® 508 User's Guide.
(MiniMed Inc., 2000). MiniMed® Now [I] Can Meal Bolus Calculator / MiniMed® Now [I] Can Correction Bolus Calculator.
(MiniMed Inc., 2000). Now [I] Can MiniMed Pump Therapy.
(MiniMed Inc., 2000). Now [I] Can MiniMed Diabetes Management.
(Medtronic MiniMed, 2002). The 508 Insulin Pump A Tradition of Excellence.
(Medtronic MiniMed, 2002). Medtronic MiniMed Meal Bolus Calculator and Correction Bolus Calculator. International Version.
Abel, P., et al., “Experience with an implantable glucose sensor as a prerequiste of an artificial beta cell,” Biomed. Biochim. Acta 43 (1984) 5, pp. 577-584.
Bindra, Dilbir S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for a Subcutaneous Monitoring,” American Chemistry Society, 1991, 63, pp. 1692-1696.
Boguslavsky, Leonid, et al., “Applications of redox polymers in biosensors,” Sold State Ionics 60, 1993, pp. 189-197.
Geise, Robert J., et al., “Electropolymerized 1,3-diaminobenzene for the construction of a 1,1′-dimethylferrocene mediated glucose biosensor,” Analytica Chimica Acta, 281 1993, pp. 467-473.
Gernet, S., et al., “A Planar Glucose Enzyme Electrode,” Sensors and Actuators, 17, 1989, pp. 537-540.
Gernet, S., et al., “Fabrication and Characterization of a Planar Electromechanical Cell and its Application as a Glucose Sensor,” Sensors and Actuators, 18, 1989, pp. 59-70.
Gorton, L., et al., “Amperometric Biosensors Based on an Apparent Direct Electron Transfer Between Electrodes and Immobilized Peroxiases,” Analyst, Aug. 1991, vol. 117. pp. 1235-1241.
Gorton, L., et al., “Arnperometric Glucose Sensors Based on Immobilized Glucose-Oxidizing Enymes and Chemically Modified Electrodes,” Analytica Chimica Acta. 249, 1991, pp. 43-54.
Gough, D. A., et al., “Two-Dimensional Enzyme Electrode Sensor for Glucose,” Analytical Chemistry, vol. 57, No. 5, 1985, pp. 2351-2357.
Gregg, Brian A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperornetric Biosensor Applications,” Analytical Chemistry, 62, pp. 258-263.
Gregg, Brian A., et al., “Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone,” The Journal of Physical Chemistry, vol. 95, No. 15, 1991, pp. 5970-5975.
Hashiguchi, Yasuhiro, MD, et al., “Development of a Miniaturized Glucose Monitoring System by Combining a Needle-Type Glucose Sensor With Microdialysis Sampling Method,” Diabetes Care, vol. 17, No. 5, May 1994, pp. 387-389.
Heller, Adam, “Electrical Wring of Redox Enzymes,” Acc. Chem. Res., vol. 23, No. 5, May 1990, pp. 128-134.
Jobst, Gerhard, et al., “Thin-Film Microbiosensors for Glucose-Lactate Monitoring,” Analytical Chemistry, vol. 68, No. 18, Sep. 15, 1996, pp. 3173-3179.
Johnson, K.W., et al., “In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue,” Biosensors & Bioelectronics, 7, 1992, pp. 709-714.
Jönsson, G., et al. “An Electromechanical Sensor for Hydrogen Peroxide Based on Peroxidase Adsorbed on a Spectrographic Graphite Electrode,” Electroanalysis, 1989, pp. 465-468.
Kanapieniene, J. J., et al., “Miniature Glucose Biosensor with Extended Linearity,” Sensors and Actuators, B. 10, 1992, pp. 37-40.
Kawamori, Ryuzo, et al., “Perfect Normalization of Excessive Glucagon Responses to Intraveneous Arginine in Human Diabetes Mellitus With the Artificial Beta-Cell,” Diabetes vol. 29, Sep. 1980, pp. 762-765.
Kimura, J., et al., “An Immobilized Enzyme Membrane Fabrication Method,” Biosensors 4, 1988, pp. 41-52.
Koudelka, M., et al., “In-vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors,” Biosensors & Bioelectronics 6, 1991, pp. 31-36.
Koudelka, M., et al., “Planar Amperometric Enzyme-Based Glucose Microelectrode,” Sensors & Actuators, 18, 1989, pp. 157-165.
Mastrototaro, John J., et al., “An electroenzymatic glucose sensor fabricated on a flexible substrate,” Sensors & Actuators, B. 5, 1991, pp. 139-144.
Mastrototaro, John J., et al., “An Electroenzymatic Sensor Capable of 72 Hour Continuous Monitoring of Subcutaneous Glucose,” 14th Annual International Diabetes Federation Congress, Washington D.C., Jun. 23-28, 1991.
McKean, Brian D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors,” IEEE Transactions on Biomedical Engineering, Vo. 35, No. 7. Jul. 1983, pp. 526-532.
Monroe, D.,“Novel Implantable Glucose Sensors,” ACL, Dec. 1989, pp. 8-16.
Morff, Robert J. et al., “Microfabrication of Reproducible, Economical, Electroenzyrnatic Glucose Sensors,” Annuaal International Conference of teh IEEE Engineering in Medicine and Biology Society, Vo. 12, No. 2, 1990, pp. 483-434.
Moussy, Francis, et al., “Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating,” Analytical Chemistry, vol. 65, No. 15, Aug. 1, 1993, pp. 2072-2077.
Nakamoto, S., et al., “A Lift-Off Method for Patterning Enzyme-Immobilized Membranes in Multi-Biosensors,” Sensors and Actuators 13, 1933, pp. 165-172.
Nishida, Kenro, et al., “Clinical applications of teh wearable artifical endocrine pancreas with the newly designed needle-type glucose sensor,” Elsevier Sciences B.V., 1994, pp. 353-358.
Nishida, Kenro, et al., “Development of a ferrocene-mediated needle-type glucose sensor covereed with newly designd biocompatible membrane, 2-methacryloyloxyethylphosphorylcholine-co-n-butyl nethacrylate,” Medical Progress Through Technology, vol. 21, 1995, pp. 91-103.
Poitout, V., et al., “A glucose monitoring system for on line estimation oin man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue adn a wearable control unit,” Diabetologia, vol. 36, 1991, pp. 658-663.
Reach, G., “A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors,” Biosensors 2, 1986, pp. 211-220.
Shaw, G. W., et al., “In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients,” Biosensors & Bioelectronics 6, 1991, pp. 401-406.
Shichiri, M., “A Needle-Type Glucose Sensor—A Valuable Tool Not Only for a Self-Blood Glucose Monitoring but for a Wearable Artifiical Pancreas,” Life Support Systems Proceedings, XI Annual Meeting ESAO, Alpbach-Innsbruck, Austria, Sep. 1984, pp. 7-9.
Shichiri, Motoaki, et al., “An artificial endocrine pancreas—problems awaiting solution for long-term clinical applications of a glucose sensor,” Frontiers Med. Biol. Engng., 1991, vol. 3, No. 4, pp. 283-292.
Shichiri, Motoaki, et al., “Closed-Loop Glycemic Control with a Wearable Artificial Endocrine Pancreas—Variations in Daily Insulin Requirements to Glycemic Response,” Diabetes, vol. 33, Dec. 1984, pp. 1200-1202.
Shichiri, Motoaki, et al., “Glycaemic Control in a Pacreatectornized Dogs with a Wearable Artificial Endocrine Pancreas,” Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers,” Hormone and Metabolic Research, Supplement Series vol. No. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane design for extending the long-life of an implantable glucose sensor,” Diab. Nutr. Metab., vol. 2, No. 4, 1989, pp. 309-313.
Shichiri, Motoaki, et al., “Normalization of the Paradoxic Secretion of Glucagon in Diabetes Who Were Controlled by the Artificial Beta Cell,” Diabetes, vol. 28, Apr. 1979, pp. 272-275.
Shichiri, Motoaki, et al., “Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A useful Tool for Blood Glucose Monitoring in Diabetic Individuals,” Diabetes Care, vol. 9, No. 3, May-Jun. 1986, pp. 298-301.
Shichiri, Motoaki, et al., “Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor,” The Lancet, Nov. 20, 1982, pp. 1129-1131.
Shichiri, Motoaki, et al., “The Wearable Artificial Endocrine Pancreas with a Needle-Type Glucose Sensor: Perfect Glycemic Control in Ambulatory Diabetes,” Acta Paediatr Jpn 1984, vol. 26, pp. 359-370.
Shinkai, Seiji, “Molecular Recognitiion of Mono- and Di-saccharides by Phenylboronic Acids in Solvent Extraction and as a Monolayer,” J. Chem. Soc., Chem. Commun., 1991, pp. 1039-1041.
Shults, Mark C., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors,” IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, Oct. 1994, pp. 937-942.
Sternberg, Robert, et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40.
Tamiya, E., et al., “Micro Glucose Sensors using Electron Mediators Immobilized on a Polypyrrole-Modified Electrode,” Sensors and Actuators, vol. 18, 1989, pp. 297-307.
Tsukagoshi, Kazuhiko, et al., “Specific Complexation with Mono- and Disaccharides that can be Detected by Circular Dichroism,” J. Org. Chem., vol. 56, 1991, pp. 4089-4091.
Urban, G., et al., “Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applciations,” Biosensors & Bioelectronics, vol. 7, 1992, pp. 733-739.
Ubran, G., et al., “Miniaturized thin-film biosensors using covalently immobilized glucose oxidase,” Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562.
Velho, G., et al., “In vivo calibration of a subcutaneous glucose sensor for determination of subcutaneous glucose kinetics,” Diab. Nutr. Metab., vol. 3, 1988, pp. 227-233.
Wang, Joseph, et al., “Needle-Type Dual Microsensor for the Simultaneous Monitoring of Glucose and Insulin,” Analytical Chemistry, vol. 73, 2001, pp. 844-847.
Yamasaki, Yoshimitsu, et al., “Direct Measurement of Whole Blood Glucose by a Needle-Type Sensor,” Clinics Chimica Acta, vol. 93, 1989, pp. 93-98.
Yokoyama, K., “Integrated Biosensor for Glucose and Galactose,” Analytics Chiniica Acta, vol. 218, 1989, pp. 137-142.
Related Publications (1)
Number Date Country
20180159234 A1 Jun 2018 US