The present application generally relates to devices and methods for non-invasively indicating the position or setting of a mechanical device, and more particularly for indicating a setting in an implantable medical device, such as the pressure setting in a wireless shunt.
It is often desirable to non-invasively determine the position or setting of a mechanical device, such as a switch, valve, pressure setting mechanism, or other sensor or control, and to be able to indicate the setting to a remote device.
By way of illustration, treatment of hydrocephalus can involve selecting a pressure setting on an implantable valve to control the flow of cerebrospinal fluid through a hydrocephalus shunt. Hydrocephalus is a neurological condition that is caused by the abnormal accumulation of cerebrospinal fluid (CSF) within the ventricles, or cavities, of the brain. CSF is a clear, colorless fluid that is primarily produced by the choroid plexus and surrounds the brain and spinal cord, aiding in their protection. Hydrocephalus can arise when the normal drainage of CSF in the brain is blocked in some way, which creates an imbalance between the amount of CSF produced by the choroid plexus and the rate at which CSF is absorbed into the bloodstream, thereby increasing pressure on the brain.
Hydrocephalus is most often treated by surgically implanting a shunt system in a patient. The shunt system diverts the flow of CSF from the ventricle to another area of the body where the CSF can be absorbed as part of the circulatory system. Shunt systems come in a variety of models and typically share similar functional components. These components include a ventricular catheter, which is introduced through a bun hole in the skull and implanted in the patient's ventricle, a drainage catheter that carries the CSF to its ultimate drainage site, and optionally a flow-control mechanism, e.g., shunt valve, that regulates the one-way flow of CSF from the ventricle to the drainage site to maintain normal pressure within the ventricles. The shunt valve can have several settings which determine the pressure at which it will allow CSF to flow the ventricular catheter to the drainage catheter. It is this pressure setting, which can correspond to the position of components in the valve, that may need to be determined.
In some cases, determining the pressure setting of a shunt valve can be accomplished using X-rays, magnetic tools, and/or using acoustic feedback. However, it would be advantageous to provide a pressure setting indicator that offers more accurate information directly from the shunt valve, instantaneously and without the need for radiation or cumbersome instruments. Such considerations can apply to a wide range of applications involving settings for implanted or embedded controls, valves, switches, and so on, both in medical devices and elsewhere.
Accordingly, there remains a need for non-invasively indicating the position or setting of a mechanical device, particularly in implanted medical devices.
In one embodiment, an implantable valve is provided. The implantable valve can include a valve housing that has a valve inlet and a valve outlet, and that is adapted to receive fluid flow therethrough. The valve housing can have a valve assembly for controlling the rate of fluid flowing through the valve housing. The valve assembly can have a plurality of predetermined pressure settings for controlling the fluid flow. The implantable valve can also include a device that interacts with a wireless signal (for example, an electromagnetic wireless interrogation signal). For example, the implantable valve can include a radio frequency tag that interacts with a wireless signal emitted by an external reader. The radio frequency tag can produce a response to the wireless signal. A masking element can be disposed in the valve housing, and the masking element and the radio frequency tag can be configured to move relative to one another (for example, the masking element can move relative to the radio frequency tag, or vice versa) to alter the response of the radio frequency tag and thereby indicate a pressure setting of the valve assembly. The masking element, for example, can include a conductive member, for example an electrically conductive material, that alters the response of the radio frequency tag by covering at least a portion of it. The conductive member can influence one or several characteristics of the radio frequency tag. For example, the response of the radio frequency tag can have one or more characteristics, such as a resonant frequency, harmonic spectra, decay characteristic, and Q factor. One or more of the characteristics can indicate the pressure setting. In some embodiments, a sensor can be disposed within the valve housing and it can measure the pressure of fluid in the valve housing.
The valve assembly can also include an adjustment mechanism that is configured to move (for example, it can rotate) to select a pressure setting. The linear or angular movement can also cause the masking element to move, for example, relative to the radio frequency tag. The valve assembly can also include a movable adjustment mechanism that selects a pressure setting in response to a magnetic field created by an external control device.
The radio frequency tag can have a variety of configurations. For example, the radio frequency tag can include a disk that has an asymmetrical antenna formed on it, and the masking element can be configured to at least partially mask the antenna. In some embodiments, the radio frequency tag can include a chip for storing data and an antenna adapted to communicate the stored data to an external reading device.
The masking element can also have a variety of configurations. For example, the masking element can include a disk formed at least in part of a conductive material and configured to rotate around an axis thereof such that the conductive material selectively masks at least part of the radio frequency tag. In some embodiments, the conductive material can be in the form of a spiral or a plurality of discrete conductive sections, each of which can be formed on the disk. In other embodiments, the masking element can be a wedge formed at least in part of a conductive material. For example, the valve assembly can have a movable adjustment mechanism configured to select a pressure setting and to cause the masking element to move, which can result in lateral movement of the wedge.
In another embodiment, an implantable valve is provided which has a valve inlet and a valve outlet that are adapted to receive fluid flow therethrough, and which also has a valve assembly for controlling the rate of fluid flowing through the valve housing. The valve assembly can have a plurality of predetermined pressure settings for controlling the fluid flow. The implantable valve can also have a conductive member disposed within the valve assembly that is configured to selectively cover at least a portion of a radio frequency tag, for example depending on the pressure setting, and thereby alter the response of the radio frequency tag to indicate the selected pressure setting. The response can have at least one measurable characteristic, such as resonance frequency, harmonic spectra, decay characteristic, and Q factor, which for example can indicate the selected pressure setting. The radio frequency tag can produce the response when interrogated by a wireless signal emitted from an external reading device. In some embodiments, the radio frequency tag can include a chip for storing data and an antenna adapted to communicate the stored data to such an external reading device.
The radio frequency tag can be configured to move relative to the conductive member, for example, such that at least a portion of the radio frequency tag is covered by the conductive material. In some embodiments, the radio frequency tag can include a disk having an asymmetrical antenna formed thereon.
The conductive member can also be configured to move relative to the radio frequency tag, for example, such that at least a portion of the radio frequency tag is covered by the conductive member. The conductive member can form part of a rotatable disk, and/or the conductive member can be in the form of a layer (on the disk, for example) in the shape of, for example, a spiral or a plurality of discrete conductive sections.
In yet another exemplary embodiment, an implantable valve can include a valve housing adapted to receive fluid flow therethrough between a valve inlet and a valve outlet, and a valve assembly disposed within the valve housing and having a plurality of selectable positions. The implantable valve can also include a radio frequency tag disposed in the valve housing and adapted to interact with a wireless signal to produce a response thereto, and can include a masking element disposed in the valve housing. The masking element and the radio frequency tag can be configured to move relative to one another to alter the response of the radio frequency tag and thereby indicate the selected position of the valve assembly.
In other aspects, methods for indicating the pressure setting of an implanted valve are provided. In one embodiment, an exemplary method includes transmitting a wireless signal from a reading device to the radio frequency tag disposed within a valve housing positioned between an inlet tube and an outlet tube, and the radio frequency tag can be adapted to indicate a pressure setting of a valve disposed within the valve housing. In some embodiments, for example, the inlet tube can be coupled to a catheter within a patient's ventricle, and the outlet tube can be coupled to a drainage catheter for draining the patient's cerebrospinal fluid. The valve housing can also be coupled to a sensor assembly that is adapted to measure a pressure of fluid within the valve housing. The valve housing can have a radio frequency tag disposed therein, and the valve housing can be adapted to control a rate of fluid flowing therethrough according to a pressure setting selected from the plurality of pressure settings. The method can further include wirelessly receiving a response to the wireless signal from the radio frequency tag that indicates the current pressure setting. In some embodiments, the response from the radio frequency tag can communicate information previously stored therein.
The method can further include changing the pressure setting of the valve to a second pressure setting, and wirelessly receiving a second response from the radio frequency tag that indicates the second pressure setting. The selection of one of the plurality of pressure settings can be performed, for example, with an external control device adapted to emit a magnetic field. The method can also include analyzing the response from the radio frequency tag to detect any of resonant frequency, harmonic spectra, decay characteristics, and Q factor.
Various exemplary embodiments disclosed herein will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present application.
The present application generally provides methods and devices for non-invasively indicating the position or setting of a mechanical device, such as a mechanical control, and for indicating that information to another device, e.g., using telemetry. The methods and devices are particularly useful in the context of implantable devices, such as hydrocephalus shunts and associated valves. While the description herein sometimes refers to hydrocephalus shunts, such description is by way of illustration only. The devices and methods described herein can be used to indicate the settings and/or positions of a wide variety of controls, including valves, switches, and so on, both in and out of the context of hydrocephalus shunts. They can also be used to indicate the settings and/or positions of sensors that may adopt a particular position in response to a physical or environmental stimulus. The devices and methods provided herein can be used in a range of medical devices and in virtually any medical procedure now or later in use.
The implantable valve 100 can include a valve assembly 110 for controlling the flow of fluid according to one of a plurality of selectable pressure settings. As shown, the valve assembly 110 includes a ball 112 engaging a valve seat 114, which sits in a valve opening 115 in the fluid path between the valve inlet 104 and the valve outlet 106, and which controls fluid flow therethrough. The ball 112 can be under the force of a spring 118 or other biasing element. The spring 118 can be in the form of an arm extending from an adjustment mechanism, which as shown in
The implantable valve 100 can also include a radio frequency (RF) tag 124 and a masking element 126 coupled to the stepper motor 120. (For clarity, the masking element 124 and RF tag 126 are represented together by an icon in
The masking element 126 can have a wide variety of configurations and it can be adapted to interact with the RF tag 124 in a variety of ways. In one exemplary embodiment shown in
The masking element and the RF tag can have a wide variety of other configurations. For example,
In another embodiment, shown in
In yet another embodiment, the masking element 126 can be configured to translate relative to the RF tag 124. For example,
The RF tag 124 and the masking element 126 can be coupled to the stepper motor 120 in a variety of ways. For example, the stepper motor 120 can have a shaft running through its rotational axis, and the masking element 126 can be connected to this shaft such that the masking element 126 is driven by and rotates with the rotation of the stepper motor 120. Such a configuration can be advantageous for rotationally moving masking elements, as described above.
As one skilled in the art will appreciate, the masking element and the RF tag can have a wide variety of other configurations, including virtually any configuration in which a masking element and an RF tag move relative to one another to indicate a setting or the position of a control. For example, in some embodiments a variety of masking element shapes can be provided, in some embodiments only one or both of the masking element and the RF tag can be configured to move relative to the other, and so on. In other embodiments, the masking element covers or is disposed in between the reading device and the RF tag. A wide variety of settings, including rotationally-determined and/or linearly determined settings, can be indicated and are not limited to stepper motors or pressure settings. The embodiments described are not meant to be limited to a particular type or category. For example, the configurations of
Returning to
It should be understood that in many embodiments, the RF tag 124 can be chipless, and its physical/electromagnetic parameters can be used to determine position. The RF tag 124 need not have the capability to store data or to communicate according to a protocol, and need not have processing circuitry or digital logic. A chipless RF tag can provide a circuit (for example, having measurable characteristics, such as a tank circuit) and can be powered from the reading device signal. Such an RF tag can be advantageous due to its relatively low power requirements, and need not have the ability to communicate stored data or “identify” itself. However, in other embodiments the RF tag 124 can be chip-based, and can provide data storage for storing additional information related to the application. An example of chip-based tags are the commonly used RF identification tags. Some of these RF identification tags provide minimal information (such as a TRUE or FALSE value), while others can store several bytes of data. A chip-based RF tag can include processing circuitry, digital logic, a separate antenna, and/or a battery. For example, the RF tag 124 can include a memory for storing data related to the patient and/or sensor. By way of non-limiting example, the RF tag 124 can store sensed pressure data, sensor identification information (e.g., implantation date, sensor type, and sensor identifier code), sensor calibration data, historical data stored from the sensor, tag identification information (e.g., implantation date, tag type, and tag identifier code), and/or patient data (e.g., desired CSF flow rate, previous sensor measurements, and patient medical history). An external reading device, described further below, can read and/or store data in such an RF tag 124.
The RF tag 124 can have any shape, such as elliptical (including circular) or rectangular (including square), and can have virtually any size. The following table lists, by way of example only, available RF tags suitable for use with the devices and methods described herein. Passive as well as semi-passive and active tags can be used, although semi-passive and active tags sometimes are larger than passive tags because they can incorporate an internal battery, e.g., for power purposes.
By way of further explanation, one exemplary circuit for modeling an RF tag can be generally represented by a resonator circuit 900 as shown in
with f representing the resonant frequency, L representing inductance of the inductor 904, and C representing capacitance of the capacitor 902.
Referring again to
As previously mentioned, the implantable valve 100 and/or the RF tag 124 and masking element 126 can also optionally include a coating 128 that is adapted to hermetically seal all or at least a portion of the RF tag 114 and/or masking element 126. The coating 128 can be applied to only a portion of the RF tag 124 and/or masking element 126 that could be exposed to fluid. The RF tag 124 and the valve 100 can be coated separately, with different coatings, or together in a single coating. An adhesive or other mating technique can optionally be used to affix the RF tag 124 and/or masking element 126 within the housing 102, however, in some embodiments it can be useful to allow the RF tag 124 and/or masking element 126 to be removed from the valve 100 if necessary. Alternatively, the valve 100 can be coated after the RF tag 124 and/or masking element 126 are disposed in the valve 100 to form a protective sheath. The valve inlet 104 and valve outlet 106 can be protected from any coating applied thereto, formed after the coating is applied, or be cleared of any coating applied thereto to allow fluid to flow therethrough. In other embodiments, only certain components of the valve 100 can be coated. A person skilled in the art will appreciate that a variety of other techniques can be used to seal the components of the valve 100.
The material used to form the coating 128 can vary, and a variety of techniques can be used to apply the coating. By way of non-limiting example, suitable materials include polyurethane, silicone, solvent-based polymer solutions, and any other polymer that will adhere to the components to which it is applied to, and suitable techniques for applying the coating include spray-coating or dip-coating.
In another aspect, a method is provided for non-invasively determining the position or setting of a mechanical device, such as a control or sensor in an implanted medical device, and for indicating that information to another device. In one embodiment, an exemplary method can include implanting a valve, such as the valve 100 described above in connection with
The method can further include wirelessly transmitting a wireless signal to an RF tag embedded in the valve, for example using a reading device such as reading device 1000 described above in connection with
Further information on wireless shunts can be obtained from U.S. patent application Ser. No. 11/931,127, entitled “Wireless Flow Sensor” and published as U.S. Publication No. 2009/0107233, U.S. patent application Ser. No. 11/931,151, entitled “Wireless Pressure Sensing Shunts” and published as U.S. Publication No. 2009/0112103, and U.S. patent Ser. No. 11/931,187, entitled “Wireless Shunts With Storage” and published as U.S. Publication No. 2009/0112308, all of which were filed on Oct. 31, 2007 and which are hereby incorporated by reference in their entirety. Also incorporated by reference in its entirety is co-pending, commonly assigned U.S. patent application Ser. No. 10/907,665, entitled “Pressure Sensing Valve” and published as U.S. Publication No. 2006/0211946 A1.
A person skilled in the art will appreciate that the various methods and devices disclosed herein can be formed from a variety of materials. Moreover, particular components can be implantable and in such embodiments the components can be formed from various biocompatible materials known in the art. Exemplary biocompatible materials include, by way of non-limiting example, composite plastic materials, biocompatible metals and alloys such as stainless steel, titanium, titanium alloys and cobalt-chromium alloys, glass, and any other material that is biologically compatible and non-toxic to the human body.
One skilled in the art will appreciate further features and advantages based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
The present application is a divisional of U.S. application Ser. No. 11/931,041, filed on Oct. 31, 2007 and entitled “Wireless Pressure Setting Indicator,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2396351 | Thompson | Mar 1946 | A |
3886948 | Hakim | Jun 1975 | A |
3960142 | Elliott et al. | Jun 1976 | A |
3976278 | Dye et al. | Aug 1976 | A |
4077882 | Gangemi | Mar 1978 | A |
4114603 | Wilkinson | Sep 1978 | A |
4127110 | Bullara | Nov 1978 | A |
4135509 | Shannon | Jan 1979 | A |
4237900 | Schulman et al. | Dec 1980 | A |
4332255 | Hakim et al. | Jun 1982 | A |
4385636 | Cosman | May 1983 | A |
4387715 | Hakim et al. | Jun 1983 | A |
4421124 | Marshall | Dec 1983 | A |
4494950 | Fischell | Jan 1985 | A |
4540400 | Hooven | Sep 1985 | A |
4551128 | Hakim et al. | Nov 1985 | A |
4556086 | Raines | Dec 1985 | A |
4576181 | Wallace et al. | Mar 1986 | A |
4593703 | Cosman | Jun 1986 | A |
4595390 | Hakim et al. | Jun 1986 | A |
4611578 | Heimes | Sep 1986 | A |
4615691 | Hakim et al. | Oct 1986 | A |
4625730 | Fountain et al. | Dec 1986 | A |
4660568 | Cosman | Apr 1987 | A |
4676772 | Hooven | Jun 1987 | A |
4711249 | Brooks | Dec 1987 | A |
4718425 | Tanaka et al. | Jan 1988 | A |
4723556 | Sussman | Feb 1988 | A |
4727887 | Haber | Mar 1988 | A |
4772257 | Hakim et al. | Sep 1988 | A |
4785822 | Wallace | Nov 1988 | A |
4787886 | Cosman | Nov 1988 | A |
4820265 | DeSatnick et al. | Apr 1989 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4850358 | Millar | Jul 1989 | A |
4885002 | Watanabe et al. | Dec 1989 | A |
4893630 | Bray, Jr. | Jan 1990 | A |
5004472 | Wallace | Apr 1991 | A |
5009662 | Wallace et al. | Apr 1991 | A |
5021046 | Wallace | Jun 1991 | A |
5163904 | Lampropoulos et al. | Nov 1992 | A |
5201753 | Lampropoulos et al. | Apr 1993 | A |
5252962 | Urbas et al. | Oct 1993 | A |
5265606 | Kujawski | Nov 1993 | A |
5280789 | Potts | Jan 1994 | A |
5321989 | Zimmer et al. | Jun 1994 | A |
5337612 | Evans | Aug 1994 | A |
5385514 | Dawe | Jan 1995 | A |
5396899 | Strittmatter | Mar 1995 | A |
5417235 | Wise et al. | May 1995 | A |
5425713 | Taylor et al. | Jun 1995 | A |
5431057 | Zimmer et al. | Jul 1995 | A |
5431629 | Lampropoulos et al. | Jul 1995 | A |
5437627 | Lecuyer | Aug 1995 | A |
5449345 | Taylor et al. | Sep 1995 | A |
5490514 | Rosenberg | Feb 1996 | A |
5591171 | Brown | Jan 1997 | A |
5622869 | Lewis et al. | Apr 1997 | A |
5630836 | Prem et al. | May 1997 | A |
5643194 | Negre | Jul 1997 | A |
5651767 | Schulman et al. | Jul 1997 | A |
5704352 | Tremblay et al. | Jan 1998 | A |
5711302 | Lampropoulos et al. | Jan 1998 | A |
5716342 | Dumbraveanu et al. | Feb 1998 | A |
5721382 | Kriesel et al. | Feb 1998 | A |
5797403 | DiLorenzo | Aug 1998 | A |
5803917 | Butterfield et al. | Sep 1998 | A |
5836886 | Itoigawa et al. | Nov 1998 | A |
5873840 | Neff | Feb 1999 | A |
5928182 | Kraus et al. | Jul 1999 | A |
5935083 | Williams | Aug 1999 | A |
5970801 | Ciobanu et al. | Oct 1999 | A |
5993395 | Shulze | Nov 1999 | A |
5993398 | Alperin | Nov 1999 | A |
6010482 | Kriesel et al. | Jan 2000 | A |
6025725 | Gershenfeld et al. | Feb 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6083174 | Brehmeier-Flick et al. | Jul 2000 | A |
6111520 | Allen et al. | Aug 2000 | A |
6113553 | Chubbuck | Sep 2000 | A |
6120457 | Coombes et al. | Sep 2000 | A |
6158965 | Butterfield et al. | Dec 2000 | A |
6171252 | Roberts | Jan 2001 | B1 |
6208254 | McQueen et al. | Mar 2001 | B1 |
6248080 | Miesel et al. | Jun 2001 | B1 |
6264612 | McConnell et al. | Jul 2001 | B1 |
6278379 | Allen et al. | Aug 2001 | B1 |
6316522 | Loomis et al. | Nov 2001 | B1 |
6371976 | Vrzalik et al. | Apr 2002 | B1 |
6416291 | Butterfield et al. | Jul 2002 | B1 |
6439538 | Ito | Aug 2002 | B1 |
6447449 | Fleischman et al. | Sep 2002 | B1 |
6470213 | Alley | Oct 2002 | B1 |
6481292 | Reich | Nov 2002 | B1 |
6503208 | Skovlund et al. | Jan 2003 | B1 |
6533733 | Hylton et al. | Mar 2003 | B1 |
6537232 | Kucharczyk et al. | Mar 2003 | B1 |
6589189 | Meyerson et al. | Jul 2003 | B2 |
6626902 | Kucharczyk et al. | Sep 2003 | B1 |
6636769 | Govari et al. | Oct 2003 | B2 |
6682490 | Roy et al. | Jan 2004 | B2 |
6724310 | Gershenfeld et al. | Apr 2004 | B1 |
6731976 | Penn et al. | May 2004 | B2 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6796942 | Kreiner et al. | Sep 2004 | B1 |
6855115 | Fonseca et al. | Feb 2005 | B2 |
6891474 | Fletcher | May 2005 | B1 |
7147604 | Allen et al. | Dec 2006 | B1 |
7435229 | Wolf | Oct 2008 | B2 |
7842004 | Kassem | Nov 2010 | B2 |
20020035331 | Brockway et al. | Mar 2002 | A1 |
20020038072 | Muller et al. | Mar 2002 | A1 |
20020052563 | Penn et al. | May 2002 | A1 |
20020077553 | Govari et al. | Jun 2002 | A1 |
20020087059 | O'keefe | Jul 2002 | A1 |
20020099428 | Kaufman | Jul 2002 | A1 |
20020151770 | Noll et al. | Oct 2002 | A1 |
20030023134 | Tracey | Jan 2003 | A1 |
20030032915 | Saul | Feb 2003 | A1 |
20030135110 | Leussler | Jul 2003 | A1 |
20030216666 | Ericson et al. | Nov 2003 | A1 |
20040073137 | Lloyd et al. | Apr 2004 | A1 |
20040134991 | Fletcher et al. | Jul 2004 | A1 |
20040147871 | Burnett | Jul 2004 | A1 |
20040193021 | Zdeblick et al. | Sep 2004 | A1 |
20040260229 | Meir | Dec 2004 | A1 |
20050027330 | Govari | Feb 2005 | A1 |
20050043669 | Rosenberg | Feb 2005 | A1 |
20050043670 | Rosenberg | Feb 2005 | A1 |
20050165317 | Turner et al. | Jul 2005 | A1 |
20050187487 | Azizkhan et al. | Aug 2005 | A1 |
20050187488 | Wolf | Aug 2005 | A1 |
20050187509 | Wolf | Aug 2005 | A1 |
20050197585 | Brockway et al. | Sep 2005 | A1 |
20050204811 | Neff | Sep 2005 | A1 |
20050277839 | Alderman et al. | Dec 2005 | A1 |
20060009699 | Roteliuk et al. | Jan 2006 | A1 |
20060020239 | Geiger et al. | Jan 2006 | A1 |
20060036208 | Burnett | Feb 2006 | A1 |
20060149161 | Wilson et al. | Jul 2006 | A1 |
20060189888 | Hassler et al. | Aug 2006 | A1 |
20060195043 | Rutherford et al. | Aug 2006 | A1 |
20060211944 | Mauge et al. | Sep 2006 | A1 |
20060211945 | Mauge et al. | Sep 2006 | A1 |
20060211946 | Mauge et al. | Sep 2006 | A1 |
20060235310 | O'Brien et al. | Oct 2006 | A1 |
20060283007 | Cros et al. | Dec 2006 | A1 |
20070049845 | Fleischman et al. | Mar 2007 | A1 |
20070118038 | Bodecker et al. | May 2007 | A1 |
20070167867 | Wolf | Jul 2007 | A1 |
20070208293 | Mansour et al. | Sep 2007 | A1 |
20070210923 | Butler et al. | Sep 2007 | A1 |
20070282210 | Stern | Dec 2007 | A1 |
20080058652 | Payne | Mar 2008 | A1 |
20080139959 | Miethke et al. | Jun 2008 | A1 |
20080208083 | Lin et al. | Aug 2008 | A1 |
20090107233 | Kassem | Apr 2009 | A1 |
20090112103 | Kassem | Apr 2009 | A1 |
20090112147 | Kassem | Apr 2009 | A1 |
20090112308 | Kassem | Apr 2009 | A1 |
20100168673 | Stergiopulos et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
729467 | Feb 2001 | AU |
2555770 | Jun 2003 | CN |
4042335 | Aug 1991 | DE |
4042336 | Aug 1991 | DE |
0115548 | Aug 1984 | EP |
0619101 | Oct 1994 | EP |
1312302 | May 2003 | EP |
1389477 | Feb 2004 | EP |
1491137 | Dec 2004 | EP |
1738792 | Jan 2007 | EP |
2003821 | Jan 1990 | JP |
WO-9105575 | May 1991 | WO |
WO-9953990 | Oct 1999 | WO |
WO-0121066 | Mar 2001 | WO |
WO-2005046467 | May 2005 | WO |
WO-2006048664 | May 2006 | WO |
WO-2006117123 | Nov 2006 | WO |
WO-2007041843 | Apr 2007 | WO |
WO-2007081741 | Jul 2007 | WO |
Entry |
---|
“Sensor Transponder for Pressure and Temperature”, data sheet of Institut Mikroelektronische Schaultungen und Systeme, pp. 1-2, Feb. 2000. |
“Surface Micromachined Pressure Sensor Technologies”, product data sheet of Institut Mikroelektronische Schaultungen und Systeme, pp. 1-2, Sep. 2002. |
“Telemetric Integrated Pressure Sensors”, product data sheet of Institut Mikroelektronische Schaultungen und Systeme, p. 1, Sep. 2002. |
“User's Manual HD2114.0-HD2134.0, HD2164.0-HD2114B.0, HD2114, 2-HD2134.2, HD2164.2-HD2114B.2; Rev. 1.0,” Delta OHM, Via g. Marconi, 5-35020 Caselle Di Selvazzano (PD)—Italy, pp. 2-6 (2004). |
Dobkin et al., “A Radio-Oriented Introduction to RFID-Protocols, Tags and Applications,” High Frequency Electronics, 32-46 (2005). |
Ekstedt, J., “CSFS Hydrodynamic Studies in Man, 1. Method of Constant Pressure CSF Infusion,” J. Neurology, Neurosurgery & Psych.40:105-19 (1977). |
European Search Report, Appl. No. 052580800.0, dated May 15, 2006. |
European Search Report, EP Application No. 08253545.1-1526, Mailed May 3, 2009. |
European Search Report, EP Application No. 08253554, Mailed Feb. 19, 2009. |
J.S. Kroin, et al., “Long-term testing of an intracranial pressure monitoring device”, J. Neurosurg, V. 93, pp. 852-858, 2000. |
Ko Wh et al: “Cerebrospinal Fluid Control System,” Proceeding of the IEEE, IEEE. New York, US, vol. 76, No. 9, Sep. 1, 1988, pp. 1226-1235, XP000094517 ISSN: 0018-9219. |
Shapiro, K. et al. “Characterization of Clinical CSF Dynamics and Neural Zxis Compliance Using the Pressure—vol. Index: 1. The Normal Pressure—vol. Index,” Annals of Neurology, 7(6):508-14 (1980). |
U.S. Office Action for U.S. Appl. No. 11/931,041 (Publication No. US-2009-0107233-A1) dated Dec. 30, 2009, 19 pages. |
U.S. Office Action for U.S. Appl. No. 11/931,187 dated May 11, 2010, 8 pages. |
U.S. Office Action for U.S. Appl. No. 11/931,187 dated Oct. 6, 2010, 8 pages. |
U.S. Office Action for U.S. Appl. No. 11/931,151 dated Feb. 6, 2012. |
U.S. Office Action for U.S. Appl. No. 11/931,187 dated Apr. 24, 2012. |
U.S. Office Action for U.S. Appl. No. 11/931,127 dated May 10, 2012. |
U.S. Office Action for U.S. Appl. No. 11/931,187 dated May 9, 2011, 7 pages. |
U.S. Office Action for U.S. Appl. No. 11/931,151 dated Jul. 13, 2012 (23 pages). |
U.S. Office Action for U.S. Appl. No. 11/931,151 dated Jul. 19, 2011, 23 pages. |
U.S. Office Action for U.S. Appl. No. 11/931,187 dated Oct. 31, 2011. |
U.S. Office Action for U.S. Appl. No. 11/931,151 dated May 15, 2013, 21 pages. |
U.S. Office Action for U.S. Appl. No. 11/931,151 dated Feb. 20, 2013, 25 pages. |
Number | Date | Country | |
---|---|---|---|
20110040233 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11931041 | Oct 2007 | US |
Child | 12913054 | US |