An embodiment of the present invention relates to communications technologies, and in particular, to a wireless terminal.
With the development of wireless communications technologies, a wireless terminal is integrated with an increasing number of application functions, and a positioning function is among the functions. The wireless terminal is disposed with a positioning antenna for receiving a positioning carrier signal from a satellite, for example, a positioning antenna in a positioning system such as a global positioning system (Global Positioning System, abbreviated as GPS), a Galileo satellite navigation system, and a global navigation satellite system (Global Navigation Satellite System, abbreviated as GLONASS).
However, in the prior art, not all energy from the positioning antenna is radiated to space, but a part of the energy is returned through a feeder of the antenna to a printed circuit board (Printed Circuit Board, abbreviated as PCB) and is radiated and consumed by the PCB, thereby decreasing radiation efficiency of the positioning antenna.
An embodiment of the present invention provides a wireless terminal, which is used for improving radiation efficiency.
The embodiment of the present invention provides a wireless terminal, including a PCB and an antenna system, where the antenna system includes a positioning antenna for receiving a positioning carrier signal from a satellite; and a wave director is disposed in a radiation area of the positioning antenna, and is used to couple energy from the positioning antenna to the wave director and radiate the energy to space.
It can be known from the foregoing technical solution that, in an embodiment of the present invention, a wave director is disposed in a radiation area of a positioning antenna, and a space low-resistance path for a carrier signal (namely 1575.42 MHz radio frequency signal) from a satellite is formed, so that it can be implemented that energy of the positioning antenna is coupled to the wave director, and the coupled energy is radiated by the wave director to space to form a coupling radiation field, thereby improving radiation efficiency of an antenna system and further implementing directional guidance for radiation at the same time.
To illustrate the technical solution in an embodiment of the present invention or in the prior art more clearly, the following briefly introduces accompanying drawings required for describing the embodiment or the prior art. Apparently, the accompanying drawings in the following description show merely some embodiments of the present invention, and persons of ordinary skill in the art may further obtain other drawings according to these accompanying drawings without creative efforts.
To make the objective, the technical solution, and the advantage of the embodiment of the present invention more clearly, the following clearly describes the technical solution in the embodiment of the present invention with reference to the accompanying drawings in the embodiment of the present invention. Apparently, the embodiment to be described is merely a part rather than all of the embodiments of the present invention. All other embodiments obtained by persons of ordinary skill in the art based on the embodiment of the present invention without creative efforts shall fall within the protection scope of the present invention.
It should be noted that: a wireless terminal involved in the embodiment of the present invention includes, but is not limited to, a terminal having a positioning function, such as a mobile phone, a personal digital assistant (Personal Digital Assistant, abbreviated as PDA), a wireless handheld device, a personal computer, a wireless netbook, a portable computer, an MP3 player, and an MP4 player.
The positioning antenna 21 may include, but is not limited to, a monopole (monopole) antenna, an inverted F-shaped antenna (Inverted F-shaped Antenna, abbreviated as IFA) or a planar inverted F-shaped antenna (Planar Inverted F-shaped Antenna, abbreviated as PIFA), which is not limited in this embodiment.
Because an electromagnetic wave is propagated in space as a periodical sine or cosine wave, one-fourth of a wavelength in a dielectric medium is considered as an interval, that is, from a zero-crossing to a wave peak or from a zero-crossing to a wave trough. When a length of the wave director is an integer multiple of half of the wavelength in the dielectric medium, the wave director has gravitation for an electromagnetic wave of a corresponding frequency, and can guide the electromagnetic wave to radiate towards the direction, that is, a directing effect is produced. In some circumstances, the wave director is limited by a size of the entire wireless terminal. Although space of one-fourth of the wavelength in the dielectric medium may not be created between the wave director and the positioning antenna 2, a short-distance coupling may be further produced, an effect of which is similar to that produced when the space of one-fourth of the wavelength in the dielectric medium is created between the wave director and the poisoning antenna 21 dielectric medium.
For example, the wave director 22 in this embodiment may be a wave director with a head end connected to a tail end, and its length may be an even multiple of half of the wavelength in the dielectric medium. Because for a closed curve, resonance is mainly related to a perimeter. When the perimeter is an even multiple of half of the wavelength in the dielectric medium, the resonance is the strongest.
For example: optionally, the wave director 22 in this embodiment may also be a wave director with a head end not connected to a tail end, which is not limited in this embodiment, and its length may be an odd multiple of half of the wavelength in the dielectric medium. Because for a thin and long metallic conductor, resonance is the strongest when its length is half of the wavelength (an odd multiple of half of the wavelength in the dielectric medium).
In this embodiment, the wave director 22 may be disposed at any position in the radiation area of the positioning antenna 21 to implement the coupling of the energy from the positioning antenna 21 to the wave director 22 and the radiation of the energy coupled in the wave director 22 to space. Preferably, the wave director 22 in this embodiment may specifically be disposed parallel to a near tail end portion of the positioning antenna 21. As shown in
Specifically, the positioning antenna 21 may be disposed on a back cover of the wireless terminal, and the wave director 22 may be disposed on the top of the entire wireless terminal. As shown in
Specifically, radiation efficiency of the antenna system may be as shown in Table 1.
In this embodiment, a wave director is disposed in a radiation area of a positioning antenna, and a space low-resistance path for a carrier signal (namely 1575.42 MHz radio frequency signal) from a satellite is formed, so that it can be implemented that energy of the positioning antenna is coupled to the wave director, and the coupled energy is radiated by the wave director to space to form a coupling radiation field, thereby improving radiation efficiency of an antenna system and further implementing directional guidance for radiation at the same time.
Finally, it should be noted that the foregoing embodiment is merely intended for describing the technical solution of the present invention rather than limiting the present invention. Although the present invention is described in detail with reference to the foregoing embodiment, persons of ordinary skill in the art should understand that they may still make modifications to the technical solution described in the foregoing embodiment or make equivalent replacements to a part of the technical features of the technical solution described in the foregoing embodiment; however, these modification or replacements do not make the essence of the corresponding technical solution depart from the spirit and scope of the technical solution of the embodiment of the present invention.
This application is a continuation of International Application No. PCT/CN2011/075297, filed on Jun. 3, 2011, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2011/075297 | Jun 2011 | US |
Child | 14095183 | US |