WIREPORT ASSEMBLY

Abstract
A quick installed autonomous traffic and pedestrian crossroad signaling system employing a mechanical support wire spanning between at least two structural support points, and an electrified wire with a plurality of hub receptacles running alongside the mechanical support wire whereas electrified devices are coupled to the hub receptacles.
Description
BACKGROUND OF THE INVENTION
Technical Field

This invention relates generally to a wired device and more particularly to a wireport assembly for an automated, self-powered, quick to install roadway intersection signaling system.


State of the Art

The global weather in the last decade has shown hurricanes/cyclones and tornadoes becoming more violent. Annual rainfall in some regions of the world has exceeded historical records resulting in massive flooding. In western U.S., drought and warmer year-round temperatures have resulted in devastating fires. When natural forces rain havoc on urban areas, electrical power service is often disrupted. Exposed to high wind and/or fire, infrastructure power and communication distribution networks can be destroyed. For example, in 2017, Hurricane Maria destroyed much of Puerto Rico's power distribution grid, causing significant hardship to first responders and the general population. In such events, the first responders' priority is to save lives and restore order. Among the first tasks the first responders carry out is to clear the roads of debris to enable emergency and food supply vehicles to pass through. In the absence of electrical power, the city's traffic lights are inoperative. In fact, subjected to hurricane wind, they may no longer exist. To manage the roadway intersection signaling first responder personnel is required to manage key intersection signaling wherein their presence is needed elsewhere where they can save lives. To overcome this problem, a self-powered quick to deploy automated traffic and/or pedestrian roadway signaling system can replace needed human resources.


SUMMARY OF THE INVENTION

An embodiment includes a wireport assembly comprising: a linear conductor; a plurality of devices; and a plurality of hubs integrated with the linear conductor along the length of the linear conductor, wherein each device of the plurality of devices is directly mounted to a hub of the plurality of hubs or indirectly mounted to the hub with a device platform, wherein the plurality of hubs are configured to provide mechanical connectivity, mechanical and electrical connectivity, or mechanical, electrical and data connectivity between the linear conductor and the plurality of devices.


Another embodiment includes a removable device platform comprising: a mechanical receptacle adapted to mechanically connect to a device and a hub, the hub integrated with a linear conductor, the mechanical receptacle to convey power or power and data from the linear conductor to the device; and at least one of a hub power receptacle, a device power receptacle, a wireless transceiver, a back-up power unit, a processor, a micro-switch, a spray nozzle, and a power supply/modulation unit.


Yet another embodiment includes a hub comprising: a mechanical receptacle; an electrical receptacle; and a data receptacle, wherein the hub is integrated into a prime conductor wire the receptacles providing mechanical connectivity, mechanical and electrical connectivity or mechanical, electrical and data connectivity to a device mounted to the hub.


The foregoing and other features and advantages of the present invention will be apparent from the following more detailed description of the particular embodiments of the invention, as illustrated in the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures, and:



FIG. 1a shows a partial frontal view of an automated, self-powered, quick to install roadway intersection signaling device platform according to an embodiment;



FIG. 1b shows another partial frontal view of an automated, self-powered, quick to install roadway intersection signaling device platform according to an embodiment;



FIG. 2 shows a perspective view of an automated, self-powered, quick to install roadway intersection signaling device platform according to an embodiment;



FIG. 3a shows a side elevation of an automated, self-powered, quick to install roadway intersection signaling device according to an embodiment;



FIG. 3b shows a top elevation of an automated, self-powered, quick to install roadway intersection signaling device according to an embodiment;



FIG. 3c shows a frontal elevation of an automated, self-powered, quick to install roadway intersection signaling device according to an embodiment;



FIG. 3d shows a back elevation of an automated, self-powered, quick to install roadway intersection signaling device according to an embodiment;



FIG. 3e shows a perspective of an automated, self-powered, quick to install roadway intersection signaling device according to an embodiment;



FIG. 4a shows a side elevation of an automated, self-powered, quick to install roadway photovoltaic intersection power generating device according to an embodiment;



FIG. 4b shows a top elevation of an automated, self-powered, quick to install roadway intersection photovoltaic power generating device according to an embodiment;



FIG. 4c shows a bottom elevation of an automated, self-powered, quick to install roadway intersection photovoltaic power generating device according to an embodiment;



FIG. 5a shows an enlarged longitudinal view of the automated, self-powered, quick to install roadway intersection conductors cable hub receptacle according to an embodiment; and,



FIG. 5b shows an enlarged transverse view of the automated, self-powered, quick to install roadway intersection conductors cable hub receptacle according to an embodiment;





LIST OF ELEMENTS IDENTIFIED IN THE DRAWINGS






    • 1. Wireport assembly


    • 2. Top cap


    • 3. Bottom cap


    • 4. Hub insulated walls


    • 5. Hub conductor/s


    • 6. Device platform electrical contact/s


    • 7. Gasket


    • 8. Hub through opening


    • 9. Hub electrical contact guide


    • 10. Hub bottom gasket cavity


    • 11. Top cap stem


    • 12. Top cap contact surface with hub


    • 13. Bottom cap threaded stem


    • 14. Bottom cap screw recess


    • 15. Hub


    • 16. Hub top


    • 17. Hub bottom


    • 18. Hub guide groove


    • 19. Device platform's internal device/s


    • 20. Device platform threaded stem


    • 21. Top cap threaded bore


    • 22. Top cap stem threaded bore


    • 23. Primary conductors' cable


    • 24. Device platform


    • 25. Device platform contact leads


    • 26. Device platform's exterior surface


    • 27. Stem guide


    • 28. Nut


    • 29. Threaded stem with threaded top bore


    • 30. Cable hanging loop


    • 31. Device platform receptacle


    • 32. Device platform bottom opening


    • 33. Lamp


    • 34. Lamp electrical contact


    • 35. I loop hanger


    • 36. Luminaire assembly


    • 37. Camera assembly


    • 38. Occupancy sensor/photocell assembly


    • 39. Fan assembly


    • 40. Speaker/microphone assembly


    • 41. Air quality/temperature sensor assembly


    • 42. Wireless transceiver assembly


    • 43. Mister assembly


    • 44. Cable


    • 45. Pipe extender


    • 46. Coupling


    • 47. Spray nozzle


    • 48. Mister hanger


    • 49. Threaded pipe coupling


    • 50. Power supply


    • 51. Micro-processor


    • 52. Transceiver


    • 53. Device platform optional back-up power module


    • 54. Mister fluid reservoir/pump


    • 55. Wireport wire suspended device


    • 56. Suspension hook/clamp/fastener


    • 57. Device platform hub's power receptacle


    • 58. Device platform's through conductors


    • 59. Device platform's power management unit


    • 60. Device platform's micro-processor


    • 61. Device platform's micro-switch


    • 62. Hub's power and data conductors


    • 63. Device platform's power and data hub receptacle


    • 64. Power management module


    • 65. Electrified or non-electrified device


    • 66. Micro-switch


    • 67. Spray nozzle coupling


    • 68. Mister body “T”


    • 69. Hub and caps assembly


    • 70. Bottom cap bottom surface


    • 71. Bottom cap top surface


    • 72. Top cap bottom surface


    • 73. Top cap top surface


    • 74. Master processor/controller


    • 75. Device platform stem guide


    • 76. Table


    • 77. Device platform and hub assembly


    • 78. Device platform, hub and device assembly


    • 79. Power storage device


    • 80. Power input


    • 90. Data input/output port/s


    • 91. Photovoltaic Panel


    • 92. Signaling Device


    • 93. Electrified Signage


    • 94. Pole


    • 95. Strap


    • 96. Hanger


    • 97. Fastening Device


    • 98. Visor


    • 99. Cord & Plug


    • 100. Fin


    • 101. Frame


    • 102. Back Strip


    • 103. Light Source Panel


    • 104. Adjustable Rigid Fastener


    • 105. Photovoltaic Cell


    • 106. Photo Voltaic Power Strip


    • 107. Hanging Nut


    • 108. Wind turbine


    • 109. Air quality/pressure sensing device


    • 110. Cable/chain


    • 111. Radar


    • 112. Hub receptacle threaded coupling





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

As discussed above, embodiments of the present invention relate to a wireport assembly generally including an electrified wire or other linear conductor containing a plurality of integrated hubs located along the wire's span providing mechanical and electrical and data connectivity to a plurality of removable device platforms with device assemblies coupled thereto.


The wireport has two key elements, the hub and the device platform.


The hub—The hub has dual functionality: (1) transmits power from primary conductors through the device platform to devices populated along the span of the electrified wire, and (2) provides mechanical mounting points for device platforms or devices. The hub may also provide power and data connectivity. The hub's miniaturized scale reduces visual pollution while it enables device connectivity where and when needed. Located at repeated intervals along the span of the electrified wire, the pre-fabricated hub is an integral element of the electrified wire. The hub design allows for both low voltage and line voltage device operation.


The device platform—Located between the hub and a device, the device platform is a universal mechanical and electrical or electrical and data connector. Power from primary conductors flows through the hub to the device platform and then to a device. In applications having wired data connectivity, the device platform relays signals between the associated network member/s and the local device. The device platform can also be fitted with a wireless transceiver, a micro-processor that may have an electrical micro-switch and a discrete address, a back-up power unit, and a power management unit. The device platform top has electrical or electrical/data leads for mating with corresponding receptacles in the hub. At its bottom, the device platform has receptacle/s for mating with a device. On top of the device platform a threaded bolt placed through the opening in the hub is secured against the hub from the top with a nut. The bolt's top end may contain a threaded bore into which an I-loop is placed. In long span or when the aggregate weight of devices exceeds the wireport's wire mechanical support capacity, a cable threaded through the I loop supports the wireport wire assembly.


The utility of the hub and the device platform assembly also include non-electrified devices. These devices may directly connect to the hub mechanically or employ a device platform.


The device platform accessories can be factory installed or added where and when needed. As such, the device platform's architecture may be scalable to allow adapting the device platform to suit its intended device operational needs.


The wireport's innovation:

    • a. Operates an array of same or different devices on the same wired span
    • b. Adds or removes devices to the wired span as needed
    • c. Places devices only where needed along the wire
    • d. Improves occupant sense of comfort and security by operating devices in unison
    • e. Supports the use of electrical and non-electrical devises
    • f. Communicates with onboard wireport devices and remote devices
    • g. Optimizes device and system operation by self-learning algorithms
    • h. Permits light source change throughout the seasons
    • i. Permits lamp light output modulation
    • j. Permits individual device operation when needed


The wireport device categories may include power, communication, processing, and sensory. The devices may be electrified and non-electrified. All or some of its devices may be addressable having a unique address.


The wireport's assembly power devices may include step-down transformer, back-up power supply, power distribution module, power transmission conductors, and a myriad of devices.


The wireport's assembly communication devices communicate in real time with local and local-and-remote network devices unless programmed otherwise. The communication devices can be wired, wireless, or a combination of both methods. The devices' method of communication may include RF, optical, a combination of both, and any other combination in conjunction with other methods having open or encrypted communication protocols. The devices may include transceivers, input only, output only, or a combination thereof. The communication devices may be mounted inside the hub, the hub device platform and/or the device. The placement of any one communication module can be anywhere along the length of the electrified wire and/or in remote location.


The processing device may interact with a limited number or all of the wireport devices. The devices may all be mounted to the wireport wire hub or only to some, where others may be in the vicinity and/or remote location(s). The individual devices and/or the central processor may employ AI algorithms with self-learning capability. The wireport network of devices can be factory pre-programmed and/or receive updates periodically. The devices can be programmed to operate alone, in grouping of same functionality and/or in concert with other devices of a dissimilar functionality. The wireport innovation delivers 24/7 utility by integrating a myriad of devices on a common platform.


The sensory devices may include light source(s), fan, occupancy sensor, speaker, microphone, air quality sensor, projection pod, mister, and camera supported by analytics. The deployment of the wireport device array in concert multiplies the utility of the individual devices, all for lesser material, labor, and cost demands. Table 1 shows the expanded platform utility when dissimilar devices are operated in concert.


















TABLE 1











Air







Speaker/

Occupancy

Quality


Sound


Device
Lamp
Mic
Transceiver
Sensor
Fan
Sensor
Mister
Camera
Canceler







Comfort











Security


















The wireport's broad utility provides a new method to observe and control the exterior building environment, enhancing occupants' comfort as well as security.



FIGS. 1a, 1b, 1c, 1d, 1e, 1f, 1g and 1h show several wireport system assembly 1 configurations.



FIG. 1a depicts a non-powered wireport assembly 1 including a hub 15, a device platform 24 and a device 65.



FIG. 1b depicts a powered wireport assembly 1 having direct power 80 to device 65, the assembly including a hub 15, a device platform 24 and a device 65. The device platform 24 may also include a power receptacle 57, conductors 58 and a device platform receptacle 31.



FIG. 1c depicts a powered wireport assembly 1 having power supply/modulator, the assembly including a hub 15, a device platform 24 and a device 65. The device platform 24 may also include a power receptacle 57, a power management unit 59 and a device platform receptacle 31, wherein power input 80 is supplied to the hub 15.



FIG. 1d depicts a powered wireport assembly 1 having power supply/modulator and back-up power device, the assembly including a hub 15, a device platform 24 and a device 65. The device platform 24 may also include a power receptacle 57, a power management unit 59, a back-up power module 53 and a device platform receptacle 31, wherein power input 80 is supplied to the hub 15.



FIG. 1e depicts a powered wireport assembly 1 having a processor with a micro-switch, the assembly including a hub 15, a device platform 24 and a device 65. The device platform 24 may also include a power receptacle 57, a micro-processor 51, a micro switch 66 and a device platform receptacle 31, wherein power input 80 is supplied to the hub 15.


FIG. if depicts a powered wireport assembly 1 having a processor with a micro-switch and back-up power, the assembly including a hub 15, a device platform 24 and a device 65. The device platform 24 may also include a power receptacle 57, a micro-processor 51, a micro switch 66, a back-up power module 53 and a device platform receptacle 31, wherein power input 80 is supplied to the hub 15.



FIG. 1g depicts a powered wireport assembly 1 having a wireless transceiver, a processor, a micro-switch, a back-up power device, and a power management/modulation unit, the assembly including a hub 15, a device platform 24 and a device 65. The device platform 24 may also include a power receptacle 57, a micro-processor 51, a transceiver 52, a power management unit 59, a micro switch 66, a back-up power module 53 and a device platform receptacle 31, wherein power input 80 is supplied to the hub 15. The transceiver 52 may communicate with the micro-processor 51 and wirelessly to remote devices.



FIG. 1h depicts a powered wireport assembly 1 having a wired and wireless transceiver, a processor, a micro-switch, a back-up power device, and a power management/modulation unit, the assembly including a hub 15, a device platform 24 and a device 65. The device platform 24 may also include a power receptacle 57, a micro-processor 51, a transceiver 52, a power management unit 59, a micro switch 66, a back-up power module 53 and a device platform receptacle 31, wherein data input/output 90 and power input 80 is supplied through the hub 15. The transceiver 52 may communicate with the mircro-processor 51 and further communicate with remote devices through wired data connection 90 and/or wirelessly.



FIGS. 2a, 2b and 2c show the wireport system assembly 1.



FIG. 2a shows the assembly line diagram. The assembly includes the primary conductors 23 extending from one end of the linear conductor/s to the other having a suspension hook/clamp/fastening device 56 at both ends, hubs 15 spaced at repeated increments along the linear conductors and a device platform 24 with a device 55 mounted onto the primary conductor hub. Some devices 55 may have the capability of mounting directly to the hub absent a device platform 24. On at least one end, the primary conductor 23 is connected to at least a power supply 50, a master processor 51, a transceiver 74, a backup power unit 79 and in some assemblies also a mister fluid reservoir/pump 54 with pipe extender/s 45. The assembly can operate using either line voltage or low voltage whereas the conductor's mounted devices can be mounted onto any hub. The line diagram doesn't show a suspension cable 44. The cable is used when the wireport's span is long, causing wire bowing, and/or when the number of devices employed exerts too much weight. FIG. 7 herein shows the device platform 24 having an I-loop to suspend the conductor/s and a device from a cable.



FIG. 2b shows a 3D representation of two wireport assemblies side by side over a space containing furniture below. This depiction illustrates the targeted use of devices 55 only where needed. The devices employed in this representation include a fan assembly 39, a speaker/microphone 40, luminaire assembly 36 and a camera 37. This depiction illustrates that luminaires can be placed only where needed, minimizing energy consumption and visual pollution. FIG. 2c shows a warm eye perspective of the wireport device assembly. The assembly is anchored at both ends by a suspension hook/clamp/fastening device 56 having hubs 15 populated at repeated increments along the primary conductor/s 23, with several devices mounted to the hubs. The devices shown include a speaker/microphone 40, a luminaire assembly 36, a camera assembly 37 and a mister assembly 43. The mister piping system is above the primary conductors 23 and is shown in FIG. 10.



FIGS. 3a, 3b, 3c and 3d show the hub 15. The hub is one of the two key elements of the wireport system. The hub 15 can provide mechanical, electrical and data connectivity to the wireport's wire-suspended device platform 24, devices 55 and assemblies including the device platform 24 and devices 55. The hub 15 is integrated into the primary conductor/s 23 typically spaced at repeating increments and is provided having a top cap 2 and a bottom cap 3 to protect the conductor/s from the elements.



FIG. 3a shows the hub's 15 top view without its top cap 2. In the center of the hub 15 a through opening 8 enables a device platform 24 or device 55 through bolt to pass through and be secured to the hub's top 16. Inside the opening a hub guide groove 18 enables orienting the device platform 23 and/or a directly-mounted device 55 to form a firm and precise mechanical and electrical contact with the device platform and/or device. The hub top 16 may include a gasket 7. The gasket shown in this description is wedged between the hub top 16 and the bottom of the cap 19. FIG. 3b shows a side view of the hub 15 with sections of the primary conductor/s 23 shown on both sides. Not shown in this depiction are the top cap 2 and the bottom cap 3 which accompany the hub 15 when it is not occupied by a device 55 and/or a device platform 23. FIG. 3c shows the hub's 15 bottom view without its bottom cap 13. In the center of the hub 15 a through opening 8 enables a device platform 24 or device 55 through bolt to pass through and be secured to the hub's top 16. Inside the opening, a hub guide groove 18 enables orienting the device platform 23 and/or a directly-mounted device 55 to form a firm and precise mechanical and electrical contact with the device platform and/or the device. Across the opening 8 formed into the insulated hub material are the hub's electrical contact guides 9. Electrical contacts on top of the device platform 24 or on top of a device 55 become electrically engaged when these elements are mechanically secured to the hub 15. Not shown in this depiction is a gasket 7. The gasket is wedged between the bottom of the hub and top of the device platform 24 or device 55 to form an insulated bond. FIG. 3d shows a cross section of the hub 15. Inside the hub, the hub conductor/s 5 are embedded in insulated non-corrosive material permitting electrical connectivity through the hub electrical contact guide 9. At the hub center, the hub through opening 8 extends from the hub's bottom to top having the hub guide groove 18 at its center. At the hub's bottom, the hub's bottom gasket cavity 10 employing a gasket 7 insulates and protects the assembly's electrical components from the elements.


It should be understood that while is depicted in the figures that the hub 15 has a through opening in the center of the hub 15 for coupling a device platform 24 or a device 55, other embodiments are contemplated without departing from the scope of the invention and claims. In some embodiments, the device platform 24 or the device 55 may be coupled to the hub in any manner that provides mechanical connectivity; mechanical and electrical connectivity; or mechanical, electrical and data connectivity.



FIGS. 4a, 4b, 4c, 4d, 4e and 4f show the hub's 15 top cap 2 and bottom cap 3. The caps 2, 3 keep the hub's 15 electrical contact/s 6 protected from the elements when the hub 15 is not occupied by a device platform 24 and/or a device 55. The removable caps are factory-installed and can be reused when a device platform 24 or a directly-mounted device 55 is removed from the hub 15. The caps are made of plastic or other material having similar non-corrosive, fire-retardant, insulating properties.



FIG. 4a shows the top cap 2 top view. At the center of the cap, a top cap hanging I-bolt bore 21 enables suspending the hub 15 from a cable 44 by using a looped I-bolt 35.



FIG. 4b shows the bottom view of the top cap 2. At the center of the cap a cylindrical stem with a threaded bore 22 is configured to mate with the bottom cap 3 threaded bolt 13. Not shown in this depiction is a gasket 7. The gasket shaped O-ring is wedged between the top cap 2 and the hub 15. Upon mating with the bottom cap 3, the gasket 7 is compressed, sealing the connection from moisture penetration.



FIG. 4c shows a side view of the top cap 2. Below the cap's top, a gasket 7 is shown around the top cap stem 11. The top cap stem threaded bore 22 is shown in a dashed line. FIG. 4d shows the bottom cap 3 top view. The bottom cap threaded stem 13 is shown in the center of the cap. Surrounding the threaded stem 13 is a gasket 7. Once the top and bottom caps mate, the gasket 7 seals the hub's bottom 17 from the elements, protecting the hub's electrical conductor/s. FIG. 4e shows the bottom of the bottom cap 3. At the center of it, a screw recess 14 enables screwing the bottom cap 3 into the top cap 2 having the hub 15 wedged in the middle. FIG. 4f shows a side view of the bottom cap 3. An integral threaded bolt 13 is located at the cap's center having an O-ring shaped gasket 7 looped through it. Upon mating the bottom cap 3 with the top cap 2, the gasket 7 is compressed against the hub bottom 17 forming a seal to protect the hub's electrical conductor/s 5 from the elements.



FIGS. 5a, 5b, 5c, 5d, 5e and 5f show the hub 15, the top cap 2 and the bottom cap 3 assembly in sections and perspective views.



FIG. 5a shows the hub's 15 vertical section through its center, perpendicular to the hub's conductor/s 5. The top cap 2 is shown mating the bottom cap 3 with the hub 15 wedged between the two caps. Wedged between both caps and the hub 15 are top and bottom gaskets 7. The hub's conductor/s 5 are shown embedded in the hub's non-corrosive enclosure with the bottom cap 3 gasket 7 pressed against the hub 15 protecting the hub's electrical contact guide from being exposed to the elements.



FIG. 5b shows a vertical section through the center of the hub and caps assembly parallel with the primary conductor/s 23.



FIG. 5c shows a horizontal section through the hub's conductor/s 5. The primary conductor/s 23 can become the hub's conductor/s when passing through the hub 15 or be in contact with conductive surfaces below.



FIG. 5d shows a horizontal section perspective through the hub center having the bottom cap threaded stem 13 protruding from below. One method of fabricating the prime conductor/s 23 and the hub 15 assembly is employing harden hub core material on to which the conductor/s are wrapped around and then pulled through molten insulation material. FIG. 5e shows a top perspective of the hub 15 and top cap 2. Also shown at the center of the top cap 2 is a threaded bore 21. The threaded bore accommodates an I-loop 35 used when the wireport assembly 1 employ a cable to mechanically support its devices 55. FIG. 5f shows a bottom perspective of the hub 15, the top cap 2 and the bottom cap 3. At the bottom center of the top cap 2 a screw recess enables screwing the bottom cap 3 with its threaded stem into the top cap 2.



FIGS. 6a, 6b, 6c, 6d, 6e and 6f show the wireport's detachable device platform 24. The device platform conveys power and data to an array of I.O.T. devices and provides mechanical connectivity to the wireport's hub/s 15. The primary conductor/s 23 span between and anchored by the hub/s 15. The wireport's hubs populate the primary conductor/s 23 at regularly repeated intervals, enabling the placement of I.O.T devices with their device platform 24 where and when needed. The device platform 24 may house components needed to operate its bottom-mounted device. These components may be removable and used only in association with a specific device. However, the device platform architecture is universal aimed at reducing device complexity to enable the device platform to efficiently operate different devices. The device platform's internal devices may include at least one wireless transceiver 42, a micro-processor 51, a backup power unit 53, and a power supply/modulation unit 50. FIG. 1 shows several device platform internal device configurations. The device platform may have a unique address and may be communicated by wireless, wired or a combination of both means. The device platform 24 may communicate with all other networked device platforms, only with selected device platforms or with all network system devices including non-wire suspended devices.



FIG. 6a shows the top view of the device platform 24. At the device platform's 24 top a threaded stem bore 29 is shown at the device platform threaded stem 20 center having the device platform nut 28 threaded to the stem. FIG. 6b shows the top view with the device platform threaded stem 20 nut removed. On both sides of the device platform threaded stem 20 the device platform contact leads 25 are shown extending out from the top face of the device platform 24. At one side of the device platform threaded stem 20 a stem guide 75 locks the stem 20 against rotation when the nut 28 is secured to the hub's top 16. Between the device platform 20 top surface and the hub bottom 17 a gasket 7 protects the assembly's components from the elements. An opening in the gasket 7 enables the electrical contact/s or electrical and data contact/s to engage the corresponding receptacle inside the hub 15.



FIG. 6c shows the device platform bottom opening 32. The recessed device platform opening 32 provides a protective area to mechanically and electrically engage devices to the device platform 24. This depiction shows a standard industry receptacle for a GU base lamp holder 31. The receptacle may be employed by a number of other devices not related to lighting. In addition, the receptacle can be removable and adapted to receive other receptacle types capable of conveying electrical and/or non-electrical power and/or data. FIG. 6d shows an elevation of the device platform 24 and the hub 15 assembly in perpendicular view to the primary conductor 23 axis. The depiction shows the hub in a dashed line exposing the device platform contact leads 25 having the device platform threaded stem 20 secure the assembly to the hub 15 by means of a nut 28.



FIG. 6e shows the elevation of FIG. 6d rotated at 90° to its vertical axis. This depiction shows the primary conductor/s at both sides of the hub 15 and the device platform threaded stem 20 at the assembly vertical center.



FIG. 6f is a section view taken vertically at the center of the device platform 24. The elements shown in this depiction include the device platform opening 32 recess at its bottom, a device platform internal devices cavity 19, a gasket 7 at the hub's 15 top and bottom surface, a threaded stem bore 29 to hang the assembly from a cable 44 when needed, and a nut 28 securing the device platform 24 to the hub 15. The tighter the nut is to the hub 15, the better secured the internal assembly components are from the elements.



FIGS. 7a and 7b show top and bottom perspectives of the device platform 24 assembly with a hub 15 assembly 77. FIG. 7a shows the platform's top view. At the top of both FIGS. 7a and 7b, an I-loop 35 is shown threaded into the device platform threaded stem 20. The loop is used to suspend the wireport assembly from a cable 44 when the wireport span is long and/or heavy.



FIGS. 8a, 8b and 8c show a vertical section through the device platform 24 assembly 78 center.



FIG. 8a and FIG. 8b are views of the same assembly whereas FIG. 8b is rotated at 90° along its vertical axis. Both FIG. 8a and FIG. 8b show an I-loop 30 bolted onto the device platform stem bore 29. Connected to the device platform 24 from below is lamp 33 having a standard industry lamp base.



FIG. 8c shows the same assembly as FIG. 8a and FIG. 8b absent the I-loop 30. Short span wireport assembly may not require a support cable. Also, some short span wireports may have support cables embedded in the primary conductor/s 23 wire and/or the primary conductor/s coating may have sufficient structural strength to support the wireport assembly 1.



FIGS. 9a, 9b, 9c, 9d, 9e and 9f show several examples of the device platform 24 devices.



FIG. 9a shows a camera 37. The camera 37 can be supported by analytics and may not require visible light to observe, record or transmit imagery. The camera 37 image transmission can be in real time or delayed by wireless and/or wired means. The camera 37 can operate independently or in concert with other wireport network devices, including network members not physically connected to the wireport's primary conductor/s hung devices. FIG. 9b shows a speaker/mic 40. The speaker/mic 40 can transmit sound, or transmit sound and record sound. FIG. 9c shows a wireless transceiver 52. The transceiver can receive/transmit data between wireport devices, Between wireport devices and remote location/s and the wireport devices, and other local devices having permission to join the network. The transceiver can relay instructions between the wireport's master processor with controller to the network devices and transmit back or to remote location/s input from the network devices. This input may include alerting when a device experiences anomalies. FIG. 9d shows an occupancy sensor 38. The occupancy sensor 38 senses activity below and can transmit an instruction to network members to turn on. The occupancy sensor may be coupled with a photocell turning on lighting devices when light levels fall below a set threshold. The occupancy sensor 38 may have switching capability directly or indirectly to activate network devices. FIG. 9e shows a fan 39 forcing air in a narrow cone downwardly. The fan may be coupled with an air quality/temperature sensor assembly 41 or such an assembly can be mounted to the wireport assembly 1 as a standalone device. The fan can be switched on/off wirelessly and may have an occupancy sensor built in. FIG. 9f shows a lamp 33 assembly. The wireport may employ a variety of lamps types where and when needed. FIG. 2 shows the wireport assembly 1 employing lamps having targeted field of illumination. The lamp's light source can be incandescent, LED, OLED or any other source compatible with the premises' needs. The light distribution pattern may be spherical or cone shaped having a downwardly direction where the cone may be narrow or wide. The wireport assembly 1 may employ several lamps having different features on the same wired span and also may change the lamp types through the year or seasonally. The lamps employed may have in-built wireless connectivity, having adjustable optical focus and/or aiming ability.



FIGS. 10a and 10b show a mister assembly 43.



FIG. 10a shows the mister assembly components in exploded view and FIG. 10b shows the same components assembled. The mister assembly 43 components include the mister body 68, the mister hanger 48, coupling 46, spray nozzle coupling 67, spray nozzle 47, and gasket 7. The mister assembly connects to the primary conductor/s 23 hub 15 by inserting the mister assembly 43 body 68 stem through the hub 15 and securing it by tightening the spray nozzle coupling 67 against the hub bottom 17. The mister assembly 43 is hung from a cable 44 which is threaded through the mister hanger 48. Pressurized fluid is delivered to the mister body 68 and travels downstream through the mister's pipe extenders 45. The pipe extender sections are modular and based on the wireport's hubs spacing modularity. The pipe extender 45 connects to the mister body by threading a coupler 46 onto the threaded mister body 68 “T's” having gaskets 7.


Self-Powered Traffic Signaling Wireport Device Assembly Detailed Description of Embodiments of the Invention

The present invention relates to a wireport device assembly platform generally including an electrified linear prime conductors cable containing a plurality of integrated hubs located along the cable's span mechanically coupled to a mechanical support cable providing electrical and data connectivity to a plurality of removable device platforms with device assemblies coupled thereto.


More specifically the present innovation aims at providing rapidly deployed self-powered traffic signaling systems to populated localities subject to severe weather having undependable and/or non-existent electrical power supply grid.


The present innovation is an automated, self-powered, quick to install roadway intersection signaling system. The innovation is a continuation to U.S. Pat. No. 10,292,289 (now allowed) and application U.S. Patent Publication No. 2019/0090371. This innovation adapts the core patented novelty to provide a solution to communities devastated by a disaster where control roadway traffic signaling must be restored in short order. The signaling system is a modular and scalable assembly composed of at least one of a structural suspension linear cable fastened to two support end points, a power or power and data linear conductors with a plurality of hubs receptacles spaced apart along the cable length, at least one device coupled to said conductors cable hub receptacles, a power management module enclosure containing a power supply, a power storage device, a processor/controller with resident memory and code and an optional transceiver.


In the wake of a natural and/or manmade disaster existing structures supporting signal devices and/or lighting devices may be destroyed or rendered unusable. This innovation's mounting system can make use of existing vertical structures such as poles, elevated horizontal surface/s and/or walls to the extent that they are structurally sound. In the absence of the sound vertical and/or horizontal mounting surface/s, ready to ship poles can be transported to the devastated locality. The poles can be embedded directly in the ground or placed in a prefabricated foundation also readily available for transport. An example of such foundation is taught in applicant's U.S. Patent Publication No. 2019/0169814. The pole foundation in this patent for the ballasting purpose can be filled with sand, gravel, or water.


Altogether the signaling system design minimizes the devices' weight and surface size to reduce structural loading. For reasons of brevity this innovation teaches of two structural suspension cables mounted at both ends to poles with a power or power and data conductor cable mounted below the top structural suspension cable extending the length of the cable. In between the two cables, several I/O generating electronic devices are mounted secured to the top or top and bottom of the structural cables with an outdoors rated wire and/or arms. To eliminate the risk of harmonic action, the pole can be fabricated from material non-conducive to harmonic action and/or employ dampening device/s.


These electrical devices connect to the power or power and data conductors cable hub receptacle directly or by an outdoor rated cord & plug cable having a connector that connects to the conductors cable hub receptacles. The power or power and data conductors cable connects to a typically pole or wall mounted power management module enclosure. The enclosure retains at least one of, a power storage device, processor/controller with resident memory and resident code, power management module and a communication device.


DETAILED DESCRIPTION OF THE INNOVATION

The traffic Wireport is an automated cable suspended traffic signaling platform. This signaling platform is configured to be self-powered and/or receive power from external source. The present embodiment employs two suspended mechanical support cables 44 vertically positioned one on top of the other and secured to vertical support structures 94. The spacing between the mechanical support cables 44 is typically constant and the cables 44 are typically mounted horizontal to the ground surface. The cables 44 can made of metallic and/or nonmetallic material or a combination thereof. The cables 44 are configured to be noncorrosive and resistant to the elements. Metallic cables 44 can be treated and coated with a polymer resistant to UV. The cables' 44 thermal expansion coefficient is negligible, and the cable caliber is sized to support all possible devices' configuration factoring also environmental condition loads. The cables 44 can be secured to the pole 94 with straps 95, torqueing screws, counterweights or any other durable means for secured suspension. The suspended device support mechanical cable 44 can mount to at least one of; a wall, an elevated surface, a pole 94 or any other vertical or horizontal structure/s capable of withstanding the structural loading applied on the Wireport platform system.


The primary conductors cable 23 comprised of at least one circuit, carries single and/or bi-directional power between the power management module 64 and at least one cable mounted electrical device 55. The conductors cable 23 can also transmit single or bidirectional communication signal/s. Having power generating devices 91, 108 coupled to the conductors cable 23, power can also flow directly between the cabled mounted electrical devices 55. The conductors cable 23 employs a plurality of hub receptacles 31, 57. The hub receptacles 31, 57 are factory pre-configured to be spaced apart and populate the length of the conductors cable 23.


The Hub receptacles 31,57 can be configured to employ a single circuit or be multi-circuited. The multi-circuited hub receptacle 31,57 can be configured to allow device circuit selectivity. The primary conductors cable 23 can employ a plurality of hub receptacles 31,57 that differ from one another by size, shape, circuitry, and means of power, data, or power and data connectivity to the electrified wired mounted devices 55. The present embodiment shows in FIG. 15 circuit designations on the hub receptacle 31,37. These designations are configured to align the cord & plug 99 connector orientation with the selected device 55 circuit. In another embodiment (not shown), the hub receptacle 31,37 may have a circuit selector lever. Yet in another embodiment (not shown), a circuit rotating ring can be used and so on. When a hub receptacles 31,37 are not occupied by a cord & plug 99 connectors, threaded caps 2 (not shown), isolates the hub receptacles 31,37 from the elements.


The present embodiment employs a coupling element that enables coupling the conductors cable 23 hub receptacle 31, 57 to the suspended mechanical support cable 44. In addition, straps 95 or other coupling device/s can also be placed intermittently between the conductors cable 23 hub receptacles 31, 57 of devices to eliminate cable 23 slack. The latter is used when spacing between such hub receptacles 31, 57 is exceedingly long. In U.S. Pat. No. 10,292,289, the applicant teaches about the receptacle's means of connectivity to the devices and to the suspension cable 44. FIGS. 3D, 5A-5D, 6F, and 8A-8C shows an example of a cross-sectional view of one embodiment of a hub receptacle 31, 57.


The present innovation can include several conductors inside the prime conductors cable 23 insulated exterior enclosure. The conductors can transmit power, data, or a combination thereof. Given the relatively low electrical loads the Wireport platform devices 55 consume, the relatively short distance between the power management module/s 64 and a device 55, and the hazardous risk of using line voltage, this innovation focuses on low voltage power systems. Other advantages of low voltage systems are the ability of using PoE and avoiding the use of stepdown device transformers. Nonetheless, line power systems can be configured for the Wireport device platform system especially when a lengthy suspended span is required.


The Wireport platform devices 55 receive their power from a power management module 64 typically mounted and/or attached to a vertical structure that supports the suspended cabled device platform. In some embodiments, the power management module 64 can be ground mounted in a sheltered enclosure or located on a structure nearby. Though these configurations are possible, they are not recommended. In a different embodiment (not shown), cable mounted power generating device/s can directly supply power to cable mounted power consuming devices, support structure devices and/or nearby devices. In yet another embodiment (not shown), power to the power consuming devices can be transmitted from both the power management module 64 and the cable and/or structure mounted power generating device/s.


This innovation adapts the Wireport device platform to operate as an autonomous traffic signaling system. Employing power generating devices 91,108, the system does not rely on wired power or power and data connectivity to a grid. However, when available, it is possible for the system to connect and operate under grid power or power and communication. In such scenarios, when power is disrupted, the system can switch over to the self-powered autonomous mode.


There are several autonomous power generating sources capable of providing power to the signaling system. These power sources include wind, solar, geothermal and fuel cell. For reasons of brevity, this innovation teaches only on solar and wind generated power devices. The generated power is stored in a power storage device 79 housed inside a weather proofed enclosure typically mounted to a vertical structure in the proximity of the cabled system. The enclosure is referred to herein as the power management module 64.


Inside the power management module's 64 enclosure are at least one of a master processor/controller 74 with resident memory and code, a transceiver 52 and a power storage device 79. The processor's 74 program/s may employ AI code and can receive input from at least one external device 55, process the input in conjunction with other resident and/or remote inputs/parameters and generate output to at least one system mounted device 55, device/s 55 in proximity and/or remote device/s 55. The processor 74 can employ basic code and/or AI code The processor operating the AI code can in real time accurately predict events outcomes factoring the environmental conditions sensed in the vicinity of the system, remotely communicated inputs, and locally programmed operational parameters and resident stored data. The AI code can employ self-learning algorithms that improve the Wireport device platform's efficiency. The AI code can generate outputs that prioritize and control the operation mode of each device 55 coupled to the primary conductors cable 23 or the primary conductors cable 23 and remote devices 55. Signal to or from the system network of devices can be transmitted by means of wire, wireless and a combination of both thereof.


The electrical devices 55 coupled to the suspended primary electrical cable 23 can include at least one of a power generating 91, 108, a sensing 37, 38, 41, 111, a signaling 92, 93, other output 36, 40, and a communication device 52. The suspended primary conductors cable 23 can span across the length of the mechanical support cable/s 44 or a portion of it. A single primary electrical conductors cable 23 can be employed or a plurality of cables 23, wherein each cable 23 can employ several circuits.


In this embodiment the power generating devices include photovoltaic panels 91 and wind operated micro turbines 108. The power generating devices' generated output is regulated not to exceed higher output than an allowable threshold. For example, if the wind velocity exceeds a pre-determined speed, the micro turbine 108 will stop generating power or generate power intermittently. In some conditions, excess power generated can be discharged to the ground. Also, the mechanical or the mechanical and electrical suspended cabled 23, 44 system can discharge to the ground external power overloads like lightning strike without damaging the system's devices 55.


The photovoltaic panel 91 top surface retains photovoltaic cells 105 that convert solar energy to electrical power. The panel depth is minimal, and its position is relatively horizontal to the ground, to reduce wind load stresses on the cabled system 44. In some latitudes the panel 91 can be tilted to maximize exposure to sun angle. Power generated from the photovoltaic cells 105 can be stored onboard on the panel's 91 back strip 102 and/or conveyed to the power management module's 64 power storage device 79. The power can also be transmitted directly to neighboring device/s 55 while transmitting excess power to the power storage device 79. The panel 91 employs mechanical and electrical means of connectivity. The mechanical means include top and bottom cables/chains/110 or rigid rod restrainers 104 fixing the panel 91 in position. Electrically, a detachable weather protected cord & plug 99 extends from the panel 91 to a reciprocating hub receptacle connector 112 coupled to the primary conductors cable 23. The panel's 91 length and width is scalable per an application's requirement.


Power generated from a wind micro turbine 108 can be used in locations where prevailing wind is common. The benefit of a wind turbine 108 is its ability to generate power throughout the day cycle. The wind turbine power storage and distribution circuitry is configured the same or similarly to the photovoltaic panelized system 91 including the means of connectivity to the cable primary conductors cable 23 hub receptacles 31, 57. The scaling of the device 108 is proportionate to the mechanical support cable 44 capacity to withstand wind loads and torque forces exerted by the rotating turbine 108. The wind turbine 108 can be affixed to the top and the bottom of the suspension mechanical support cables 44 by adjustable rigid rods 104.


The sensing devices include at least one of visual 37, occupancy 38, audio 40, air quality/barometric pressure 41 devices. Other sensing devices can include vibration, radiation, and wind velocity meter sensors, or any other sensing device specifically required. These devices have output capability or output and input capability operating independently or in conjunction with other device/s. At least one device can be governed by a master processor/controller 74 and/or by a localized device processor/controller. Devices likely to be employed include camera/s 37 operated by a master processor/controller 74.


The camera/s 37 can provide the processor 74 real time inputs which are processed by the processor. The input compiled with stored program/s parameters and other local and remote device input/s are compiled, generating output/s. The output/s are transmitted to coupled onboard and/or nearby signaling system devices 92, 93. For example, a camera 37 can provide input data and/or vehicle/s and/or pedestrian traffic approaching an intersection and already located in the intersection. In conjunction with other intersection signaling systems, the processor/controller 74 program/s can gauge the intersection's traffic load and make device 92, 93 output decision/s that optimize the traffic flow through the intersection. Supported by AI code, the camera's 37 input to the master processor 74 can prioritize the sequencing of the intersection's traffic signals by visually identifying approaching vehicles/pedestrians or in conjunction with signal/s transmitted by vehicle/s to the system's transceiver 52. Other functionality the camera 37 can provide include inputs on anomalies such as traffic accidents, road flooding, debris, and/or potholes. The sensors can generally but not always connect directly to a conductors hub receptacle 31, 57 whereas the hub's receptacle 31, 57 has a built in mechanical fastener 56 to secure the device to the suspended mechanical support cable 44. Other output devices operating independently or in conjunction with other devices can include at least one of a lighting device 36, a speaker 40, a transceiver 52, a signage board 93, a signaling device 92, other sensing devices consuming power and also generating outputs.


The Wireport's traffic platform key device is the traffic signal 92. The most common traffic signal device 92 employs a three-light red, yellow and green signal illuminated by LED or OLED light sources 33. The traffic signaling device 92 panel can be made of metal and/or non-metallic material. The traffic signaling device's 92 form factor height and width conform to regulatory standards. Its depth is minimal and so is its weight. The autonomous traffic signaling device 92 is typically configured to employ wired connectivity. The traffic signaling device 92 receives real time input from the signaling controller. A different embodiment (not shown) can employ at the panel's back, an enclosure having at least one of connectivity couplers to the light sources 33, a driver 50, a wireless communication module 52, a micro-processor 51, a program residing on a resident memory board and/or a local power storage device 79.


At the back of the traffic signaling device 92, the LED light source panel 103 is electrically coupled to at least one electrical device housed inside the back strip 102 with heat dissipating fins 100, located at both side of the strip 102, rapidly dissipate heat generated by the light source/s 33. At the front side of the panel, visors 98 positioned over the light source panel 103 shade the light sources 33 from exposure to direct sunlight while protecting the lens from the elements. The frame of the traffic signaling device 92 enables quick mechanical connectivity to the suspension cable system 44. The panel 103 employs aircraft cable with latching devices located at its top and bottom surfaces. To minimize the wind load stresses acting on the traffic signaling device 92, the device surface area can be reduced to only the support frame and the light source panels with the spaces between them voided. Air passing through will help remove the heat generated by the light source 33 and its associated electrical components. The traffic signal device 92 employs a detachable weatherproofed cord & plug 99 with a connector compatible with the conductors cable 23 hub receptacle 31, 57, 112. The traffic signaling device 92 can be mounted horizontally or vertically and can be scaled to meet jurisdiction requirements.


In addition, the cabled suspended system 23, 44 can employ other signaling power devices 93 including a single color or multi-color flashing or non-flashing illuminated device/s that can change color and image/text content. Such signaling devices 93 can be configured to operate in concert with the traffic signaling device 92 or independently. These devices may include vital information messaging boards displaying text and/or images. Other signaling devices may include auditory devices such as speakers 40.


The embodiment's communication devices can receive and transmit inputs to the onboard cable assembly electrical devices 55, a plurality of cable assembly devices within an intersection, a plurality of cable assembly and non-cable mounted devices in the proximity of the intersection, and/or remote stationary and/or mobile devices. The communication can be wired and/or wireless. For example, an approaching emergency vehicle can transmit a signal to the intersection's transceiver/s 52. The transceiver/s 52 relay the signal to the assembly/ies' master processor/controller 74 to anticipate the vehicles' arrival and prioritize the traffic light green signal accordingly. In another example, a cable mounted camera 37 monitors the intersection's vehicular and pedestrian load in real time. The camera 37 transmits the information to the processor 74. The processor 74, in turn, sequences the intersection's traffic light device's 92 green signal by first analyzing the traffic directionality and load, prolonging the green light signal as necessary. In yet another example, the electrified road signage 93 can independently or in conjunction with the traffic signaling device/s become a messaging board, also announcing a detour and/or road hazard/s ahead.


DETAILED DESCRIPTION OF FIGURES


FIG. 11 shows two partial elevations of cabled embodiments suspended between two poles.



FIG. 11a shows the embodiment's structural support system comprised of top and bottom cables 44 suspended from a pole 94 vertically spaced apart. The cable 44 is secured to a fastening device. The fastening device, in turn, is secured to the pole 94. In this figure, the fastening device shown is a strap 95. To maintain cable tension, weights, spring loaded devices or other cable tension devices can be used (not shown). The cable 44 can be made of metallic or non-metallic material sized to withstand the maximum dead loading possible, harshest environmental conditions, and any acceptable safety factor/s. Metallic cables can be treated against corrosion and/or be coated with a protective coating. resistant to UV. Similar to the cable, the fastener can be made of metallic or non-metallic material, including bolts, washers, and any other auxiliary fastening element employed. The pole can be made of one or several modular sections that can be rapidly field assembled. The pole's profile can be square, round, or any other shape sufficiently strong to support the suspected cable assembly loading, its direct axial loading, environmental conditions including soil conditions and safety factors. The pole can be made of metallic or non-metallic material. Metallic poles can be treated by painting to resist the elements and/or by galvanizing. Another means is through anodizing. Non-metallic poles can be coated by UV protective paint layer/s. To eliminate harmonic action a dampening device (not shown) can be placed inside the pole. This figure shows a power management module 64 on the pole 94, with a transceiver 52 on top. Key elements of the assembly's embodiments are housed inside the power management module 64. These key elements include at least one processor/controller 74 and resident memory operated by code that can include AI algorithms, input and output ports 90. The power management module 64 can manage power generated by the suspended cable mounted devices 55, by remote tap in to grid power or generator power, or a combination of the two.


The cable mounted traffic control embodiment is an autonomous power generating system wherein the power generated is consumed by the cable and pole mounted devices. In other configurations, power consuming device/s in proximity to the cable system and pole/s can be energized by the cable system. The embodiment can also connect to an external power source temporarily or permanently. In this figure, the power is generated by photovoltaic panel/s 91 and a wind generated turbine 39. The power generated can flow to the power storage device and/or directly to at least one power consuming device. The power storage device is configured not to overload under extreme wind and/or solar conditions. In such events, sensing devices disengage the flow of power to the storage device and/or the cable mounted device/s. The power generated can energize at least one traffic signal 92, a camera 37, a speaker/microphone 40, a transceiver 52, a processor/controller 74, electrified signage 93, and any other power consuming device including wireless communication devices mounted on the cabled system, on the pole, and in the embodiment's vicinity.



FIG. 11b shows a partial elevation of the assembly with a pole without a power management module housing. The size of the power management module is contingent on the cable system devices' power needs and the environmental conditions. In some embodiments, a power management system is placed on top of each pole (not shown). The present embodiment shows the power management module 64 conductors 23 extending from the module to the midpoint of the cable suspended embodiment. The power or power and data cable 23 employs a plurality of hubs 69. The hubs are factory fabricated, preconfigured on a repeated spacing module. The cable mounted devices are coupled to the hub 69 by weather resistant cord and plug 99 conductors. The cord and plug 99 conductors engage the hub's 69 device platforms' power or power and data receptacle 63. In some embodiments, the hub 69 may include a circuit selector (not shown). The cable mounted devices include a mechanical fastening device 97 that minimizes the device's movement and a plurality of hangars 96 to hang the power or power and data cable 23 from the top and/or bottom cables 44.



FIG. 12 shows a perspective view of the suspended traffic control wired assembly spanning between two poles. The poles are located at an opposite side of an intersection, having the wired assembly suspended over two bi-directional two-lane roads with an island between. The assembly elements are the same as shown in FIG. 11, with the exception showing the pole 94 embedded in the ground. The key elements shown include the power management module 64 housing located on the pole 94, top and bottom cables 44 secured to the pole 94 with wraparound straps 95, power or power and data primary conductors cable 23 coupled to the power management module 64 housing extending the length of the spanned cable 44 assembly and suspended by hangars 96 from the top cable 44. In another embodiment, a pole 94 can be embedded inside the prefabricated foundation locally obtained or supplied along with all other modular assembly elements. The latter foundation can be made of material inert to the elements and can be ballasted by liquid and/or sand/gravel. A reference for the ballasted method can be found in US Patent Publication No. 2019/0169814 A1 related to a pole foundation (now patent allowed). The device coupled to the primary conductors cable 23 can include at least one of: electrical signage 93, signaling device 92, photovoltaic panel 91, camera 97, radar 111, power generating turbine 108, speaker/microphone 40, light source 36, and transceiver 52. Other electronic or electromechanical devices can be adapted to be coupled to the suspended mechanical and/or electrical cabling system. These devices may include: air quality sensor, wind velocity meter, and barometric sensor (not shown). The devices mounted on the suspended cable, the pole/s, and/or the devices placed in proximity to the cable wired system can be communicatively wired or wireless to the assembly's processor 74 and/or to a device embedded processor coupled to a communication module.



FIGS. 13a, 13b, 13c, 13d, and 13e show views of the traffic signaling device 92. The signaling device shown is configured to operate horizontally. In other embodiments, the traffic signaling device can be configured to operate vertically. The signaling device 92 coupled to the cabled system is configured to generate minimal surface area wind resistance. It is also configured to have minimal weight. The signaling device can be made of heat dissipating, UV and corrosion resistant polymer, and/or lightweight heat dissipating and corrosion resistant metal.



FIG. 13a shows a side elevation of the signaling device 92. Elements shown include top and bottom fastening devices 97 coupling the signaling device to the top and bottom suspended mechanical support cables 44. A cord & plug 99 receptacle is shown coupled to the back strip 102 side. Heat dissipating fins are shown on the signaling device 92 light source back, and a sun shading visor 98 is shown at the light emitting side of the signaling device 92. The signaling device employs a highly efficient planar light source having a slimline profile, thus reducing the wind drag on the signaling device.



FIG. 13b shows a top view of the signaling device 92 and the power or power and data cable 23 suspended from above. The signaling device 92 light source panels 103 are concealed from view by the signaling device frame 101. The frame 101 provides flat rigid surfaces for the fastening devices 97, also providing protection to the electronic assembly from shipping and installation damage. Elements shown include the frame 101, the visor 98, fastening devices 97, and above hubs 69 coupled to the power or power and data cable 23.



FIG. 13c shows a front elevation of the signaling device 92. The signaling device 92 is shown coupled by fastening devices 97 to the top and bottom mechanical support cables 44 and electrically coupled by cord and plug 99 to the power or power and data cable 23, suspended below the top mechanical cable support 44. Elements shown include the frame 101, visor 98, light source panel 103, and portions of the back power strip 102.



FIG. 13d shows the back elevation of the signaling device 92. This view shows the entire power strip 102 panel. The panel can include a microprocessor, resident program with memory, and a transceiver. It can also include a resident backup power unit. Above and below the power strip 102 panel, heat dissipating fins 100 are shown coupled to the back side of the light source panel 103. Both FIGS. 13c and 13d show voided openings between the light source panel 103 and the signaling device frame 101. The voided openings further reduce the wind load on the signaling device 92 assembly.



FIG. 13e shows a frontal perspective of the signaling device 92. The signaling device 92 is shown coupled to the top and bottom suspended mechanical support cables 44 and is electrified by power delivered through the power or power and data cable 23. Elements shown include: visor 98, light source panel 103, frame 101, and cord and plug 99.



FIG. 14 shows a photovoltaic panel 91 embodiment coupled to the suspended top and bottom support cables 44 and the power or power and data cable 23.



FIG. 14a shows an elevation of the photovoltaic panel 91 short side. The panel's form is typically square or rectangular, having photovoltaic cells 105 on its top surface and a power management strip 106 on its bottom surface. In this embodiment, the panel 91 is positioned horizontally in between the top and bottom support cables 44. Cables/chains 110 coupled to the top and bottom support cables and to the top and bottom corners of a panel 91 secure the panel in position. This embodiment shows the photovoltaic panel 91 restrained in position by aircraft cable 110. The profile of the panel is slimline, having in one embodiment rounded surfaces to minimize the area contact with prevailing winds, thus reducing the stress on the suspended cables embodiment. The panel frame is made of lightweight rigid and weather resistant material that can withstand constant vibrations. Power generated by the photovoltaic panel 91 is conveyed by the cord and plug 99 to the power conductors cable 23. From there the power can be directly conveyed to a selected device and/or conveyed to the assembly's power storage device 79.



FIG. 14b shows the top elevation of the photovoltaic panel 91. On the panel 91 an array of 21 each photovoltaic cells 105 are shown, configured in three rows, each having 7 cells 105. At the bottom and top of the panel's frame 101 corners, coupled fastening devices 97 connect to adjustable rigid fasteners 104 and/or cable/chain 110 that when coupled to the top and bottom suspended mechanical support cables 44, restrain the photovoltaic panel 91 in position. Across the longitudinal face of the photovoltaic panel 91 and suspended above, the power or power and data conductors cable 23 is shown with power or power and data hubs 69 coupled to the conductors cable 23.



FIG. 14c shows the bottom face of the photovoltaic panel 91. Coupled to the panel's 91 longitudinal center, a power strip 106 can retain at least one of: a power management device, a power storage device, a processor with or without a microswitch, resident code with memory, and a wireless communication device. The bottom suspended mechanical support cable 44 is also shown below the longitudinal center of the power strip 106. The photovoltaic panel 91 is secured in position by having adjustable, rigid fasteners 104 and/or chains/cables 110 coupled to the panel's 91 top and bottom frame and top and bottom mechanical support cables 44.



FIGS. 15a and 15b show elevational views of the hub 15 with partial sections of the power or power and data primary conductors cable 23 coupled to the suspended mechanical support cable 44.



FIG. 15a shows a longitudinal view of the power or power and data primary conductors cable 23 coupled to a hub 15, cord and plug 99 cable (not shown) having a threaded hub coupler coupled to the hub's 15 threaded receptacle 112. A gasket disposed inside the threaded receptacle coupler prevents moisture entry when the receptacle is coupled to the hub's threaded receptacle 112. In this embodiment, markings shown on the exterior wall of the hub 15 designate one example of a means to select the cord and plug cable 99 circuit. This means involves aligning the selected circuit number on the hub 15 with the corresponding number on the cable's plug, and then securing the assembly using the cord and plug 99 threaded coupler. In another embodiment (not shown), a lever or switching device can be built into the hub 15 to enable circuit selection. The present embodiment of the hub 15 can flow power or power and data to a device through the coupled cord and plug 99 cable. Power or power and data can also flow from the device through the hub to another neighboring device, a power storage device, or a combination thereof. This figure shows the data or data and power primary conductors 23 and the hub 15 positioned parallel to the suspended mechanical support cable 44 with a cable hanging loop 30 coupler connecting the hub 15 to the suspended mechanical support cable 44. In this embodiment, the coupler 30 is shown embracing the mechanical support cable 44 by employing top and bottom “U” shaped elements. The bottom “U” shaped element employs a threaded bolt that engages a threaded bore at the top of the conductor's hub 15 and is secured to the top “U” shaped element by two bolts located opposite to the cable 44 on the “U” shaped elements' flat ends. The hub's coupler 30 can couple devices that are powered or non-powered. Non-powered devices coupled to the hub 15 provide the means to maintain power or power and data conductors cable 23 tension. Such assemblies employ caps to cover a hub's 15 threaded receptacle 112 (not shown).



FIG. 15b shows a transverse view of the power or power and data primary conductors cable 23 coupled to a hub 15, cord and plug 99 cable (not shown) having a threaded hub coupler coupled to the hub's 15 threaded receptacle 112. A gasket disposed inside the threaded receptacle coupler prevents moisture entry when the receptacle is coupled to the hub's threaded receptacle 112. In this embodiment, markings shown on the exterior wall of the hub 15 designate one example of a means to select the cord and plug cable 99 circuit. This means involves aligning the selected circuit number on the hub 15 with the corresponding number on the cable's plug, and then securing the assembly using the cord and plug 99 threaded coupler. In another embodiment (not shown), a lever or switching device can be built into the hub 15 to enable circuit selection. The present embodiment of the hub 15 can flow power or power and data to a device through the coupled cord and plug 99 cable. Power or power and data can also flow from the device through the hub to another neighboring device, a power storage device, or a combination thereof. This figure shows the data or data and power primary conductors 23 and the hub 15 positioned parallel to the suspended mechanical support cable 44 with a cable hanging loop 30 coupler connecting the hub 15 to the suspended mechanical support cable 44. In this embodiment, the coupler 30 is shown embracing the mechanical support cable 44 by employing top and bottom “U” shaped elements. The bottom “U” shaped element employs a threaded bolt that engages a threaded bore at the top of the conductor's hub 15 and is secured to the top “U” shaped element by two bolts located opposite to the cable 44 on the “U” shaped elements' flat ends. The hub's coupler 30 can couple devices that are powered or non-powered. Non-powered devices coupled to the hub 15 provide the means to maintain power or power and data conductors cable 23 tension. Such assemblies employ caps to cover a hub's 15 threaded receptacle 112 (not shown).


The embodiments and examples set forth herein were presented in order to best explain the present invention and its practical application and to thereby enable those of ordinary skill in the art to make and use the invention. However, those of ordinary skill in the art will recognize that the foregoing description and examples have been presented for the purposes of illustration and example only. The description as set forth is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the teachings above without departing from the spirit and scope of the forthcoming claims.

Claims
  • 1. A self-powered cable suspended traffic signaling system comprising: vertical support structures; and at least one of a conductors cable having a plurality of power or power and data hub receptacles, mechanical support cable/s, a power generating device/devices, a power storage device/devices, a processor with resident memory and code, a sensing power generating and a signaling device/devices, wherein:the conductors cable is mechanically coupled to the mechanical support cable;the conductors cable employs a plurality of power or power and data hub receptacles spaced apart along its length;power consuming and/or generating electrical device/s is/are detachably coupled to the plurality of the conductors cable hub receptacle/s;the power or power and data devices are mechanically coupled to the mechanical support cable/s; andpower or power and data to a suspended cable signaling device flows from at least one of: the system power generating device, the power storage device, or a combination thereof.
  • 2. The system of claim 1, wherein power can be connected to the signaling from an external source.
  • 3. The system of claim 1, wherein at least one of the sensing devices' input is processed by a processor and the output prioritizes the operation of a signaling device.
  • 4. The system of claim 1, wherein a wireless communication device is coupled to at least one of: the master processor, a cable mounted device, and/or a detached device in the proximity of said system.
  • 5. The system of claim 1, wherein a detachable device cord & plug connector connects at least one of a plurality of hub receptacles.
  • 6. The system of claim 1, wherein a provision made in the detachable cord & plug connector, the hub receptacles, or both, enables selecting a power, a data, or power and data circuit/s.
  • 7. The system of claim 1, further comprising at least one of wind driven, photovoltaic, and/or fuel cell power generating device/devices powering at least one system device.
  • 8. The system of claim 1, wherein at least one cable coupled device employs at least one of: a processor with memory and code, a controller, and/or a power storage device.
  • 9. The system of claim 1, further comprising a camera supported by AI code and coupled to at least one mechanical support cable employs image correction algorithms and/or a gyroscopic device to maintain image clarity.
  • 10. The system of claim 1, further comprising a camera coupled to at least one mechanical support cable employing a protective hood.
  • 11. The system of claim 1, wherein the primary conductors cable can employ a plurality of detachable hub connectors types to provide power or power and data to the cable system devices.
  • 12. A detachable enclosure mounted on a vertical structure comprising: a master processor with memory and code, a transceiver, a power storage device, a power management module, and input or input and output power or power and data receptacle/s, wherein; a power or power or data conductors cable having a plurality of hub receptacles is coupled to at least one of the enclosure's receptacle/s;power or power or data flow to or to and from a detachable enclosure and at least one electronic device coupled to the conductors cable hub receptacle; andthe detachable electronic device/devices electrically coupled to the conductors cable hub receptacle is/are mechanically coupled to at least one suspended mechanical support cable secured to said vertical structure/s.
  • 13. The detachable enclosure of claim 12, wherein a pole structure employs a harmonics action cancelling device.
  • 14. The detachable enclosure of claim 12, wherein the detachable enclosure is communicatively coupled to other like systems within an intersection, remote intersections, and coupled mobile and non-mobile device/devices.
  • 15. The detachable enclosure of claim 12, wherein input received from at least one of: a cable, a vertical structure, and/or sensing device mounted in the proximity of the enclosure prompts activation, deactivation, and/or operational mode change to at least one power device coupled to the conductors cable hub receptacle.
  • 16. The detachable enclosure of claim 12, wherein data received from at least one of: a cable, a vertical structure, an input device in the proximity of and/or remote location, is processed by the master processor AI code, prompting anticipatory output action in operationally sequencing at least one signaling device.
  • 17. The detachable enclosure of claim 12, wherein data received from at least one cable, a vertical structure, and/or an input sensory device in the proximity of the enclosure is processed by the master processor AI code, prompting communication to a remote device.
  • 18. The detachable enclosure of claim 12, wherein data received from at least one of: a cable, a vertical structure, and/or an input sensory device processed along with at least one master processor programmatic parameter, and/or remote input prompts at least one output to a cable mounted, a structure mounted, and/or a remote device.
  • 19. The detachable enclosure of claim 12, wherein the transceiver of the enclosure communicates with at least one cable mounted device by wire and/or wirelessly.
  • 20. A method of rapidly deploying self-powered autonomous electrically powered devices in the vicinity of a roadway intersection, the method comprising: mounting a detachable power management module on at least one vertical support structure;suspending structural cabling between at least two vertical support structures; andcoupling to the suspended structural cabling power or power and data conductors cable/s having a plurality of hub receptacles spaced apart the length of the suspended structural cabling and at least one power generating and/or consuming electrical device electrically coupled to the power or power and data conductors cable hub receptacle and mechanically coupled to the suspended structural cable, wherein power or power and data flow between said device/s and the detachable power and data management module.
CROSS REFERENCE TO RELATED APPLICATION[S]

This application is a continuation-in-part of the earlier U.S. Utility patent application Ser. No. 16/191,937, filed Nov. 15, 2018, now pending, which is a divisional of the earlier U.S. Utility patent application Ser. No. 15/694,560, filed Sep. 1, 2017, now U.S. Pat. No. 10,292,289, issued May 14, 2019; and this application claims priority to U.S. Provisional Patent Application Ser. No. 62/963,779, filed Jan. 21, 2020, now pending, the disclosures of which are hereby incorporated entirely herein by reference.

Provisional Applications (1)
Number Date Country
62963779 Jan 2020 US
Divisions (1)
Number Date Country
Parent 15694560 Sep 2017 US
Child 16191937 US
Continuation in Parts (1)
Number Date Country
Parent 16191937 Nov 2018 US
Child 16900406 US