This invention generally relates to wood treatment facilities and, in particular, to transportation systems utilized in wood treatment facilities.
Because of its wide suitability for a variety of applications, its renewable nature, and its relatively low cost, wood is one of the most widely used materials in existence. However, because wood is a natural product, its physical and structural properties can vary substantially, not only amongst different species, but also amongst different trees, or even different locations within the same piece of wood. Furthermore, wood is hygroscopic, which affects its dimensional stability when exposed to moisture, and its composition makes it susceptible to attack by insects and fungi. As a result, several types of wood treatment processes have been developed to increase the stability of wood through modification of its chemical, physical, and/or structural properties. Examples of treatment processes include impregnation treatments, coating treatments, thermal modification, and chemical modification.
To date, widespread commercialization of facilities to chemically modify and/or thermally modify wood has not been achieved. The need for complex processing schemes and specialized equipment in these types of wood treatment facilities has made industrial-scale implementation both technically challenging and cost prohibitive. Further, rudimentary transportation systems, which typically employ push-carts or conveyor belts, are unable to achieve desirably low cycle times and are typically not suitable for exposure to challenging process environments, such as, for example, sub-atmospheric pressures, exposure to chemicals, and/or exposure to electromagnetic radiation.
Thus, a need exists for a commercial-scale wood treatment facility that includes a robust, yet efficient, wood transportation system. The transportation system should be suitable for use in a variety of challenging process environments and should facilitate minimal cycle times to thereby maximize both throughput and overall profitability of the facility.
One embodiment of the present invention concerns a system for treating wood. The system comprises a chemical modification reactor comprising a reactor door, a wood heater comprising a heater door, and a bundle transport system for transporting at least one bundle of wood into, out of, and between the chemical modification reactor and the wood heater. The bundle transport system comprises a first cart, a second cart, and a defined transport path along which each of the first and the second carts are configured to travel. At least one of the first and the second carts is configured to travel along at least one segment of the defined transport path to introduce the bundle of wood into the chemical modification reactor by passing at least a portion of the first or the second cart through the reactor door. The other of the first and the second carts is configured to travel along at least another segment of the defined transport path to introduce the bundle of wood into the wood heater by passing at least a portion of the other of the first and the second carts through the heater door.
Another embodiment of the present invention concerns a process for chemically-modifying wood, the process comprising the steps of (a) introducing at least one bundle of wood into a chemical modification reactor by passing at least a portion of a reactor cart supporting the bundle of wood through a reactor entrance door of the chemical modification reactor; (b) removing the reactor cart from the chemical modification reactor through the reactor entrance door while the bundle of wood is maintained within the interior of the chemical modification reactor; (c) chemically modifying the bundle of wood in the chemical modification reactor to thereby provide a bundle of chemically-modified wood; (d) transporting the bundle of chemically-modified wood to a wood heater; (e) heating the bundle of chemically-modified wood in the wood heater to thereby provide a dried bundle of chemically-modified wood; (f) introducing a heater cart into the interior of the wood heater by passing at least a portion of the heater cart through a heater exit door; and (g) removing the dried bundle of chemically-modified wood from the wood heater by passing the dried bundle of chemically-modified wood supported on the heater cart through the heater exit door. The transporting of step (d) is accomplished by passing at least a portion of at least one of the reactor cart and the heater cart through a reactor exit door to thereby unload the bundle of chemically-modified wood from the chemical modification reactor and passing the bundle and at least a portion of at least one of the reactor and the heater carts through a heater entrance door of the wood heater to thereby load the bundle of chemically-modified wood into the wood heater.
Yet another embodiment of the present invention concerns a process for chemically-modifying wood, the process comprising the steps of (a) introducing a first bundle of wood into chemical modification reactor by passing at least a portion of a first cart supporting the first bundle of wood through a reactor door of the chemical modification reactor; (b) chemically modifying the first bundle of wood in the chemical modification reactor to thereby provide a first bundle of chemically-modified wood; (c) removing the first bundle of chemically-modified wood from the chemical modification reactor using one of the first cart and a second cart; (d) introducing the first bundle of chemically-modified wood into a wood heater by passing at least a portion of the first cart or the second cart supporting the first bundle of chemically-modified wood through a heater door of the wood heater; (e) heating the bundle of chemically-modified wood in the wood heater to thereby provide a dried bundle of chemically-modified wood; and (f) removing the dried bundle of chemically-modified wood from the wood heater.
Various embodiments of the present invention are described in detail below with reference to the attached drawing figures, wherein:
a is a vertical, transverse cross-section detailing the lower half of a wood treatment vessel according to one embodiment of the present invention, particularly illustrating a bundle support structure and a bundle of wood supported on a movable cart for introducing the bundle and bundle support structure into the interior of the wood treatment vessel;
b is a vertical, transverse cross-section detailing the lower half of the wood treatment vessel shown in
a is a vertical, transverse cross-section detailing the lower half of a wood treatment vessel according to one embodiment of the present invention, particularly illustrating a bundle transport system comprising a lift system physically coupled to a cart for vertically disengaging a bundle within the interior of a wood treatment vessel;
b is a vertical, transverse cross-section detailing the lower half of the wood treatment vessel shown in
In accordance with one or more embodiments of the present invention, a system for treating a load is provided. Load treatment systems configured according to embodiments of the present invention can include one or more treatment vessels and a transportation system operable to transport the load into, out of, and/or amongst various locations within the treatment facility. In one embodiment, the load treatment system of the present invention can comprise a wood treatment system operable to treat one or more bundles of wood. As used herein, the terms “treat” or “treatment” refer to any process, system, or step that alters at least one chemical, physical, and/or mechanical property of the load being treated (e.g., a bundle of wood).
The wood treated in the wood treatment systems described herein may be any species of hardwood or softwood. Examples of suitable wood species can include, but are not limited to, pine, fir, spruce, poplar, oak, maple, and beech. In one embodiment, the wood treatment system can treat at least one of the following species of wood: red oak, red maple, German beech, Pacific albus, or one or more of Radiata pine, Scots pine, Loblolly pine, Longleaf pine, Shortleaf pine, or Slash pine, the latter four of which can collectively be referred to as “Southern Yellow Pine” (SYP). Systems as described herein can also be operable to treat other types of lignocellulosic materials. Lignocellulosic materials can include any material comprising cellulose and lignin and, optionally, other materials, such as hemicelluloses. Examples of lignocellulosic materials can include, but are not limited, to wood, bark, kenaf, hemp, sisal, jute, crop straws, nutshells, coconut husks, grass and grain husks and stalks, corn stover, bagasse, conifer and hardwood barks, corn cobs, and other crop residuals, and any combination thereof.
The wood treatment systems described herein can be configured to treat wood in any physical form, including, for example, shredded wood, wood fibers, wood flour, wood chips, wood particles, wood flakes, wood strands, and wood excelsior. In one embodiment, the wood treated in the wood treatment system can comprise sawn timber, debarked tree trunks or limbs, boards, planks, veneers, beams, profiles, squared timber, or any other cut of lumber. In one embodiment, the wood may be solid wood, engineered solid wood, or a combination thereof. As used herein, the term “solid wood” refers to wood that measures at least about 10 centimeters in at least one dimensions but that is otherwise of any dimension, including those ranges provided below. As used herein, the term “engineered solid wood” refers to a wooden body having the minimum dimensions of solid wood (e.g., at least one dimension of at least about 10 cm), but that is formed of smaller bodies of wood and at least one binder. The smaller bodies of wood in engineered solid wood may or may not have one or more of the dimensions described below with respect to solid wood. Non-limiting examples of engineered solid wood can include wood laminates, fiberboard, oriented strand board, plywood, wafer board, particle board, and laminated veneer lumber.
When the wood being treated is cut into individual pieces, the lumber can generally be defined using two or more dimensions. The dimensions can be actual (e.g., “measured” dimensions) or can be nominal dimensions. As used herein, the term “nominal dimension” refers to the dimensions calculated using a size designation for the wood. For example, a dried “2×4” can have actual dimensions of 1.5 inches by 3.5 inches, but the nominal dimensions of “2×4” are still used. The nominal size can be smaller than, the same as, or larger than the measured dimensions. It should be understood that any dimensions referred to herein are generally nominal dimensions, unless otherwise noted.
In one embodiment, the wood can have three dimensions: a length, or longest dimension; a width, or second longest dimension; and a thickness, or shortest dimension. Each of the dimensions can be substantially the same, or at least one dimension can be different from one or more of the other dimensions. According to one embodiment, the length of the wood can be at least about 6 inches, at least about 1 foot, at least about 3 feet, at least about 4 feet, at least about 6 feet, or at least about 10 feet. In another embodiment, the width of the wood can be at least about 0.5 inches, at least about 1 inch, at least about 2 inches, at least about 4 inches, at least about 8 inches, at least about 12 inches, or at least about 24 inches and/or no more than about 10 feet, no more than about 8 feet, no more than about 6 feet, no more than about 4 feet, no more than about 3 feet, no more than about 2 feet, no more than about 1 foot, or no more than about 6 inches. In yet another embodiment, the thickness of the wood can be at least about 0.25 inches, at least about 0.5 inches, at least about 0.75 inches, at least about 1 foot, at least about 1.5 feet, or at least about 2 feet and/or no more than about 4 feet, no more than about 3 feet, no more than about 2 feet, no more than about 1 foot, and/or no more than about 6 inches.
Two or more pieces of wood can be arranged in a bundle having any suitable dimensions and/or shape. As used herein, the term “bundle” refers to two or more pieces of wood stacked, placed, or fastened together in any suitable manner. A bundle can comprise a plurality of boards stacked and coupled to one another via a belt, chain, polymeric strap, or other suitable device. In one embodiment, the boards or pieces of wood can be separated by spacers or “stickers,” while, in another embodiment, a majority of the boards can be in direct contact with each other. According to one embodiment, the bundle can have a total length, or longest dimension, of a least about 2 feet, at least about 4 feet, at least about 8 feet, at least about 10 feet, at least about 12 feet, at least about 16 feet, or at least about 20 feet and/or no more than about 60 feet, no more than about 40 feet, or no more than about 25 feet. The bundle can have a height, or second longest dimension, of at least about 1 foot, at least about 2 feet, at least about 4 feet, at least about 6 feet, at least about 8 feet, and/or no more than about 16 feet, no more than about 12 feet, no more than about 10 feet, no more than about 8 feet, no more than about 6 feet, or no more than about 4 feet. In one embodiment, the bundle can have a width, or shortest dimension, of at least about least about 1 foot, at least about 2 feet, at least about 4 feet, at least about 6 feet, and/or no more than about 20 feet, no more than about 16 feet, no more than about 12 feet, no more than about 10 feet, no more than about 8 feet, or no more than about 6 feet. The total volume of the bundle, including the spaces between the boards, if any, can be at least about 50 cubic feet, at least about 100 cubic feet, at least about 250 cubic feet, at least about 375 cubic feet, or at least about 500 cubic feet. The pre-treatment or initial weight of the bundle can be at least about 100 pounds, at least about 500 pounds, at least about 1,000 pounds, at least about 5,000 pounds, or at least about 10,000 pounds and/or the bundle of wood can have a cubical or cuboidal shape.
Various treatment systems configured according to embodiments of the present invention will now be discussed in detail below, with respect to the Figures. Although generally described herein with reference to the treatment of wood, it should also be understood that treatment systems according to embodiments of the present invention can be used to treat other materials, objects, or loads. For example, in one embodiment, treatment systems as described herein can be used to process or treat building or construction equipment materials such as tiles, bricks, concrete, composites, and the like; commercial or industrial processing equipment; transportation components, including aerospace equipment, as well as items such as food stuffs, pharmaceuticals, and glass. The treatment vessels utilized by one or more treatment systems described herein can include ovens, curing vessels, electroplating vessels, autoclaves, pressurizable vessels, vacuum vessels, and/or any vessel utilizing heat and/or other type of energy to alter the temperature of at least a portion of the load therein.
Turning initially to
Wood treatment vessel 120 can be any vessel suitable for receiving and treating at least one bundle of wood. For example, in one embodiment, wood treatment vessel 120 can be a horizontally-elongated vessel having a circular or elliptical cross-section and defining a central axis of elongation, shown in
Wood treatment vessel 120 can define a maximum internal length and a maximum internal diameter. As used herein, the term “maximum internal length” refers to the largest dimension of a vessel, measured within the interior of the vessel, in a direction parallel to its axis of elongation. Examples of maximum internal lengths can include tangent-to-tangent (T/T) lengths, flange-to-flange lengths, and/or end-to-end lengths. In one embodiment, the maximum internal length of wood treatment vessel 120, shown generally as Lv in
In one embodiment, wood treatment vessel 120 can be a pressurizable vessel. As used herein, the term “pressurizable” means able to be operated at pressures other than atmospheric. When wood treatment vessel 120 is pressurizable, wood treatment system 100 can optionally include a pressure adjustment system 160 for adjusting the pressure within the interior of wood treatment vessel 120. In one embodiment, pressure adjustment system 160 can be a vacuum system operable to reduce the pressure within wood treatment vessel 120 to a pressure of no more than about 500 torr, no more than about 350 torr, no more than about 250 torr, no more than about 200 torr, no more than about 100 torr, or no more than about 75 torr, using various equipment including, for example, a vacuum pump or other similar equipment. In another embodiment, pressure adjustment system 160 can be operable to increase the pressure within the interior of wood treatment vessel 120 to a pressure of at least about 1,000 torr, at least about 2,000 torr, at least about 2,500 torr, or at least about 3,000 torr. According to one embodiment, pressure adjustment system 160 can be operable to both increase and reduce the pressure within wood treatment vessel 120 above and below atmospheric pressure during treatment carried out within vessel 120.
When wood treatment vessel 120 comprises a pressurizable vessel, it may also include one or more doors for at least partially sealing the interior of the vessel during treatment to thereby maintain a desired operating pressure. In one embodiment shown in
Wood treatment vessel 120 can be used to carry out any suitable type of wood treatment process. For example, in one embodiment, wood treatment vessel 120 can be used to produce thermally-modified wood and/or chemically-modified wood. In the same or another embodiment, wood treatment vessel can comprise a wood heater and/or wood dryer for heating and/or drying previously treated or untreated wood. In one embodiment, wood treatment vessel 120 can be a thermal modification vessel used to thermally modify wood. As used herein, the term “thermally modify” means to alter the chemical structure of at least a portion of the wood in the absence of an exogenous treating agent. During thermal modification, the wood can be contacted with one or more heat transfer agents, such as, for example, steam, heated inert vapors like nitrogen or air, and even various types of liquid heat transfer media such as heated oil to heat the wood and alter its properties. Radiant or convective heat may be used during thermal modification. As a result of thermal modification, the wood can have a lower moisture content and enhanced physical and/or mechanical properties, including increased flexibility, higher resistance to decay and biological attacks, and/or increased dimensional stability.
In another embodiment of the present invention, wood treatment vessel 120 can be a chemical modification vessel (or chemical modification reactor or chemical treatment vessel) used to chemically modify wood. As used herein, the term “chemically modify” means to alter the chemical structure of at least a portion of the wood in the presence of one or more exogenous treating agents. Specific types of chemical modification processes can include, but are not limited to, acetylation and other types of esterification, epoxidation, etherification, furfurlyation, methylation, and/or melamine treatment. Non-limiting examples of suitable treatment agents can include anhydrides (e.g., acetic, phthalic, succinic, maleic, propionic, or butyric); acid chlorides; ketenes; carboxylic acids; isocyanates; aldehydes (e.g., formaldehyde, acetyldehyde, or difunctional aldehydes); chloral; dimethyl sulfate; alkyl chlorides; beta-propiolacetone; acrylonitrile; epoxides (e.g., ethylene oxide, propylene oxide, or butylenes oxides); difunctional epoxides; borates; acrylates; silicates; and combinations thereof. Although not wishing to be bound by theory, it is hypothesized that the chemical modification agent reacts with at least a portion of the surface functional groups (e.g., hydroxyl groups) of the untreated wood to thereby provide chemically-modified wood. As a result of the chemical modification, the treated wood can have a lower moisture content, higher dimensional stability, enhanced biological, pest, and decay resistance, and better mechanical properties than similar untreated wood.
In one embodiment of the present invention, wood treatment vessel 120 can be an acetylation reactor. As used herein, the term “acetylation” refers to a chemical modification process in which at least a portion of the surface hydroxyl groups of the wood are replaced with acetyl groups. The treatment agent employed during acetylation can comprise at least about 50 weight percent, at least about 60 weight percent, at least about 75 weight percent, at least about 90 weight percent, or at least about 98 weight percent acetic acid, with the balance comprising acetic anhydride, one or more diluents, and/or optional catalysts. In one embodiment, the acetylation treatment agent can comprise acetic acid and acetic anhydride in a weight ratio of at least about 80:20, at least about 85:15, at least about 90:10, or at least about 95:5.
Prior to acetylation, the wood can be dried to reduce its moisture (e.g., water) content to no more than about 25 weight percent, no more than about 20 weight percent, or no more than about 15 weight percent using kiln drying, vacuum degassing, or another suitable method. During the acetylation process, the wood can be contacted with the acetylation reagent, as discussed above, via vapor contacting, spraying, liquid immersion, or combinations thereof. In one embodiment, a liquid acetylation reagent can be introduced into the interior of the reactor (e.g. wood treatment vessel 120) via a liquid inlet port, shown generally as inlet 172 in
Once the contacting step is complete, at least a portion of the liquid treatment agent, if present, can be drained or otherwise removed from the acetylation reactor via an outlet (e.g. drain) port, shown as outlet 174 in
After the reaction step, the chemically-modified wood can comprise at least one chemical component capable of being removed by heat and/or vaporization. For example, when wood is acetylated, at least a portion of the residual acetic acid or anhydride can be removed by vaporization. In one embodiment, the acid-wet wood resulting from a chemical modification step carried out in wood treatment vessel 120 can comprise at least about 20 weight percent, at least about 30 weight percent, at least about 40 weight percent, or at least about 45 weight percent acid and/or no more than about 75 weight percent, no more than about 60 weight percent, or no more than about 50 weight percent of one or more vaporizable chemicals, such as, for example, acetic acid and/or anhydride.
After chemical treatment, a flash drying step can be carried out in wood treatment vessel 120 subsequent to the contacting and heating steps described previously in order to vaporize, or flash, at least a portion of one or more vaporizable chemicals from the acid-wet wood. In one embodiment, the flash vaporization step can be accomplished by reducing the pressure in the reactor from a pressure of at least about 1,000 torr, at least about 1,200 torr, or at least about 2,000 torr and/or no more than about 7,700 torr, no more than about 5,000 torr, no more than about 3,500 torr, or no more than about 2,500 torr to atmospheric pressure. In another embodiment, the flash vaporization step can be accomplished by reducing the pressure of the reactor from an elevated pressure, as described above, or atmospheric pressure, to a pressure of no more than about 100 torr, no more than about 75 torr, no more than about 50 torr, or no more than about 35 torr. The amount of one or more vaporizable components (e.g., acetic acid and/or acetic anhydride) remaining in the acetylated or chemically-modified wood after the flash vaporization step can be at least about 6 weight percent, at least about 8 weight percent, at least about 10 weight percent, or at least about 12 percent and/or no more than about 25 weight percent, no more than about 20 weight percent, or no more than about 15 weight percent.
When wood treatment vessel 120 comprises an acetylation reactor, a chemical modification reactor, or any other type of treatment vessel in which wood is contacted with a liquid reagent, wood treatment system 100 can also comprise a stabilization system for securing the bundle of wood or other load within the interior of the wood treatment vessel before, during, and/or after treatment with a liquid reagent. In one embodiment, the bundle stabilization system may be used to overcome the buoyant forces present when the bundle of wood (or other load) is at least partially, or entirely, submerged in a liquid reagent. In another embodiment, the bundle stabilization may be used to secure the bundle of wood in place and/or maintain its shape, even when no liquid reagent is present within the wood treatment vessel.
One embodiment of a bundle stabilization system 260 is illustrated in
According to one embodiment depicted in
Each of bundle hold-down devices 262a,b can comprise a respective securing surface 261a,b operable to contact at least a portion of the upper surface of the bundle of wood when the bundle is disposed within the interior of wood treatment vessel 220. In one embodiment, each securing surface 261a,b can comprise a substantially flat, non-electrode contact surface configured to contact and exert a downward force on at least a portion of the upper surface of the bundle of wood. In one embodiment, securing surfaces 261a,b can be oriented such that at least about 50 percent, at least about 80 percent, or at least about 95 percent of each securing surface 261a,b contacts the upper surface of the bundle. In another embodiment, at least a portion of securing surfaces 261a,b can be contoured such that only a small portion of securing surfaces 261a,b can contact the upper surface of the bundle of wood. For example, each of securing surfaces 261a,b can comprise one or more projections (not shown in
When bundle stabilization system 260 comprises a plurality of bundle hold-down devices, each securing surface 261a,b of each bundle hold-down device 262a,b can be spaced from each other by a suitable distance. For example, in one embodiment, each of surfaces 261a,b can define a respective center point 265a,b, located at the geometric or volumetric center of each surface 261a,b. According to one embodiment wherein bundle stabilization system comprises two or more securing surfaces 261a,b, the distance between the center points 265a,b of adjacent securing surfaces, shown as Ds in
As shown in
When bundle stabilization system 260 comprises two or more bundle hold-down devices, as illustrated in
In operation, a bundle of wood (not shown) can be introduced into the interior of wood treatment vessel 220 using, for example, a first cart (also not shown). Once inside, the bundle of wood may be secured within the interior of vessel 220 by contacting at least a portion of the upper surface of the bundle with one or more securing surfaces 261a,b of bundle hold-down devices 262a,b. Contact may be initiated by moving one or more of securing surfaces 261a,b in a radially inward (downward) direction using movable arms 263a,b driven by drivers 264a,b. In one embodiment, the maximum force exerted between the bundle and securing surfaces 261a,b and/or bundle hold-down devices 262a,b can be no more than about 200 pounds per square inch (psi), no more than about 100 psi, no more than about 50 psi, or no more than about 30 psi, measured at the point of contact between bundle securing surfaces 261a,b and the surface of the bundle of wood. Forces within these ranges may be sufficient to secure the bundle, while minimizing or preventing damage to the wood.
In one embodiment, after the bundle has been secured, a liquid reagent (if used) can be introduced into the interior of vessel 220 via one or more liquid inlets (not shown) to thereby at least partially, or entirely, submerge the bundle of wood in the liquid reagent. As the liquid contacts the wood, it can be at least partially absorbed into the bundle, thereby causing the bundle to change dimension (e.g., expand). Additionally, as the liquid surrounds the bundle within the interior of wood treatment vessel 220, the buoyant forces exerted on the bundle may also cause it to start to shift position within vessel 220. Depending, in part, on the size of the bundle, the buoyant forces exerted on the bundle within wood treatment vessel 220 may be at least about 10,000 pounds, at least about 15,000 pounds, at least about 20,000 pounds, or at least about 30,000 pounds. Even when no liquid reagent is present in wood treatment vessel 220, bundle stabilization system can be used to adjust the position of at least one bundle hold-down device 262a,b to secure the bundle in place during treatment.
In operation, the process of adjusting bundle stabilization system 260 to accommodate changes in the bundle dimensions and/or position can be carried out by first measuring a value for one or more parameters of the system, such as, for example, the force exerted between the bundle hold-down devices 262a,b and/or securing surfaces 261a,b and the bundle. Thereafter, based at least in part on the measured value obtained, the position of one or more of bundle hold-down devices 262a,b may be altered via drivers 264a,b and/or control system 266. As the positions of the bundle hold-down devices change, the value for the measured parameter may also change and bundle hold-down devices 262a,b can continued to be repositioned until the measured value falls within a pre-determined target range for that parameter.
For example, in one embodiment, the measured parameter may be the force exerted between the bundle hold-down devices 262a,b and/or securing surfaces 261a,b and the surface of the bundle. If, upon measurement of a value for this parameter, it is determined that the force between the bundle hold-down devices 262a,b and the bundle is lower than a pre-determined minimum lower threshold value, bundle stabilization system 260 can be configured to automatically extend (e.g., move in a radially-inward direction) at least one of bundle hold-down devices 262a,b via control system 266. If it is determined that the force between the bundle hold-down devices 262a,b and the bundle is higher than a pre-determined maximum upper threshold value, bundle stabilization system 260 can be configured to automatically retract (e.g., move in a radially-outward direction) at least one of bundle hold-down devices 262a,b using automatic control system 266. Such a process of measuring a parameter and adjusting the position of one or more bundle hold-down devices 262a,b can be continued until a value within the target limits (e.g., below the maximum upper threshold value and/or above a minimum lower threshold value) is achieved. In one embodiment, the above-described process of measuring a bundle parameter and adjusting the position of at least a portion of bundle stabilization system 260 may be carried out at any time before, during, and/or after the introduction of a liquid reagent into wood treatment vessel 220 and/or in a treatment process in which no liquid reagent is utilized.
Turning back to
Wood treatment system 100 depicted in
Bundle transport system 140 can also comprise at least one bundle support structure 146 for at least partially supporting bundle of wood 104. In one embodiment, bundle support structure 146 can include a continuous, flat plate-like surface supported on two or more longitudinal supports (not shown in
Although shown in
In order to support the weight of one or more typically large bundles of wood, bundle support structure 146 can be substantially rigid and have enhanced strength, especially in comparison to traditional wooden pallets. For example, in one embodiment, bundle support structure 146 can have a distributed weight capacity of at least about 500 pounds, at least about 1,000 pounds, at least about 2,000 pounds, at least about 5,000 pounds, or at least about 10,000 pounds. As used herein, the term “distributed weight capacity” of a structure refers to the maximum amount of evenly distributed weight able to be supported by the structure without significant bending, breaking, or other deformation, measured when the structure is supported only at its corners or edges.
Bundle support structure 146 can also be substantially robust, such that it can be exposed to a variety of process conditions without being damaged or without causing significant operational problems. For example, in one embodiment, bundle support structure 146 can be corrosion-resistant, such that it can be exposed to process conditions including high temperatures (e.g., above 100° C.) and/or low pHs (e.g., a pH of 5 or below at room temperature) without experiencing accelerated corrosion rates (e.g., rates greater than 10 mils per year, mpy). In another embodiment, bundle support structure 146 can be microwave compatible, such that it can be exposed to microwave energy without substantial arcing. As used herein, the term “arcing” refers to undesired, uncontrolled electrical discharge, at least partially caused by ionization of a surrounding fluid.
Bundle support structure can be formed of any suitable material and can have a size and/or shape as required to support the required quantity of wood. Examples of suitable materials of construction for bundle support structure 146 include, but are not limited to, one or more metals or metal alloys including, for example, selected carbon steels, stainless steels, nickel alloys, aluminum alloys, and/or copper alloys. In one embodiment, bundle support structure 146 can have a length of at least about 2 feet, at least about 4 feet, at least about 8 feet, at least about 12 feet, or at least about 16 feet and/or no more than about 150 feet, no more than about 100 feet, no more than about 75 feet, or no more than about 50 feet and/or can have a width of at least about 1 foot, at least about 2 feet, at least about 3 feet, or at least about 4 feet and/or no more than about 40 feet, no more than about 20 feet, no more than about 16 feet, or no more than about 10 feet. According to one embodiment, the ratio of the length of bundle support structure 146 to the length of cart 142 is at least about 0.35:1, at least about 0.45:1, or at least about 0.55:1 and/or no more than about 0.99:1, no more than about 0.90:1, or no more than about 0.85:1. According to one embodiment, bundle support structure 146 may be an adjustable structure, configured to be lengthened or shortened based on the number and/or length of bundles being supported.
According to one embodiment, bundle support structure 146 may not be independently movable and, consequently, may be at least partially supported on cart 142 during transportation of bundle 104 into and/or out of wood treatment vessel 120. In one embodiment, bundle support structure 146 and cart 142 may be configured such that at least about 50 percent, at least about 60 percent, at least about 75 percent, at least about 80 percent, at least about 90 percent, at least about 95 percent, or substantially all of the total weight of bundle 104 and/or bundle support structure 146 are supported on an upper surface of cart 142. In one embodiment, bundle support structure 146 can be detachably or removably coupled to cart 142, such that the removal of bundle support structure 146 does not cause substantial damage to bundle 104, bundle support structure 146, and/or cart 142 when bundle 104 and bundle support structure 146 are removed from cart 142. When bundle support structure 146 comprises a detachable bundle support structure, in one embodiment, the bundle of wood may be coupled, via a polymeric strap or other suitable fastening device, to bundle support structure 146, and may be supported on, but not coupled to, cart 142. In another embodiment, bundle 104 may be fastened together with a suitable fastener, but may not be coupled to either bundle support structure 146 or cart 142.
Bundle support structure 146 and cart 142 can be shiftable between a transport configuration, wherein bundle support structure 146 is supported on cart 142 as described above, and a treatment configuration, wherein bundle support structure 146 is not supported on cart 142. Transitions between the transport and treatment configurations can be carried out within the interior of wood treatment vessel 120, for example, to load and/or unload bundle 104 and bundle support structure 146 onto and/or off of cart 142. In one embodiment, bundle of wood 104 can be loaded onto bundle support structure 146 when bundle support structure 146 and cart 142 are configured in a transport configuration, as generally depicted in the assembly view of
Referring now to
According to one embodiment, at least a portion of lift system 370 can be positioned in the lower portion of wood treatment vessel 320, such that lift system 370 is at least partially, or entirely, located in the lower one-half, lower one-third, or lower-one fourth of the interior volume of wood treatment vessel 320, as depicted in one embodiment shown in
Referring again to
As generally shown in
Lift system 370 can also be used to load or transfer a treated bundle onto cart 342 after treatment in order to remove or unload the treated bundle. For example, in one embodiment, once the treatment of bundle 304 has been completed, an empty cart 342 (or another cart, not shown) may be introduced into the interior of wood treatment vessel 320. Once in the vessel, lift system 370 may be used to transfer the treated bundle onto cart 342 by lifting the treated bundle of wood 304 and bundle support structure 346 in a substantially vertical direction toward the central axis of elongation 335 of wood treatment vessel 320. This can be carried out by, for example, extending one or more extensible support arms 372a,b of lift system 370 in an upward direction toward axis of elongation 335. In the same or another embodiment, the transferring may also include lowering the treated bundle 304 in a substantially vertical direction away from the central axis of elongation 335 of wood treatment vessel 320 by, for example, lowering one or more of extensible support arms 372a,b, to thereby contact (or re-couple) bundle 304 and/or bundle support structure 346 with cart 324. Thereafter, treated bundle 304 and bundle support structure 346 may be withdrawn from wood treatment vessel 320 with cart 342.
In one embodiment, lift system 370 can further include a weight-sensing mechanism, such that the weight of bundle 304 can be measured, either directly or indirectly, at any time during loading, unloading, and/or treatment of the bundle. Bundle weights obtained before, during, and/or after treatment can be used for a variety of objectives. For example, bundle weight measurements can be used to determine the end of an impregnation cycle (when treatment vessel 320 comprises a chemical treatment vessel) or the end of a drying cycle (when treatment vessel 320 comprises a chemical treatment vessel and/or a wood heater). In one embodiment, bundle weights measured with a weight-sensing mechanism associated with lift system 370 can be used to adjust one or more other operating parameters including, for example, vessel temperature, vessel pressure, and/or cycle end point.
In one embodiment, at least a portion of the weight sensing mechanism can be incorporated into or associated with one or more support arms 372a,b and/or one or more of drivers 374a,b. After the treatment has been completed, cart 342 can be reintroduced into the interior of vessel 320 and the treated bundle 304 and bundle support structure 346 can be lowered back onto cart 342 using lift system 370, in a reverse manner as described in detail above. Lift system 370 may be used to lift bundle 304 prior to reintroducing cart 342 into the interior of vessel 320, depending on the location of the stationary support structure (if used) and/or the position of extensible support arms 372a,b during treatment. Once cart 342 has been loaded with treated bundle 304 and bundle support structure 346, extensible arms 372a,b can be fully retracted and cart 342, along with bundle 304 and bundle support structure 346, can be removed from the interior of vessel 320. Another embodiment of a lift system will be discussed in detail shortly with respect to
Turning again to
Cart 142 can be of any suitable size and, in one embodiment, can have a length substantially similar to the length of wood treatment vessel 120 such that at least about 50 percent, at least about 75 percent, at least about 90 percent, or substantially all of cart 142 can enter vessel 120 when introducing bundle of wood 104 into the interior of wood treatment vessel 120. In one embodiment, cart 142 can have an overall length, designated as Lc in
Bundle transport system 140 can employ a include suitable cart drive system for enabling the movement of cart 142 within wood treatment facility 100. In one embodiment, the cart drive system of wood treatment facility can include at least one active drive component and at least one passive drive component. As used herein, the term “active” refers to an object or component of a system that acts upon other objects or components of within the system to thereby cause motion. An active component can be an energy provider and, in particular, a provider of kinetic energy to drive, for example, a passive component. As used herein, the term “passive” refers to an object or component of a system that is acted upon by other objects or components within the system and, consequently, can be put into motion. A passive component can be an energy receiver and, in particular, a receiver of kinetic energy provided by one or more active components within the system.
Turning now to
Active and passive components 452, 454 of cart drive system 450 can be any suitable types of active or passive drive components operable to work together to move cart 442. In one embodiment, cart drive system 450 can comprise a rack and pinion drive system, wherein at least one of active and passive components 452, 454 comprises a rack and the other of active and passive components 452, 454 comprises a pinion. In one embodiment depicted in
According to one embodiment of the present invention, the wood treatment systems described herein can also employ one or more movable transport segments, operable to be shifted between a first position and a second position to thereby accommodate the transport and/or treatment of a bundle of wood. In one embodiment, the bundle transport system can include one or more movable transport segments (e.g., door shuttles) shiftable to accommodate the opening and/or closing of at least one of the doors of a wood treatment vessel. In another embodiment, the wood treatment systems described herein may also include one or more shiftable transport segments which do not move in a direction parallel to the axes of elongation of the wood treatment vessel or vessels, but can be shifted between vessels in a direction substantially perpendicular to the axes of elongation of one or more vessels in the facility. When the wood treatment vessel includes two oppositely disposed doors or the wood treatment facility includes more than one treatment vessel, the bundle transport system can include as many movable transport segments as needed to optimize operation of the facility. Several embodiments of wood treatment facilities including movable and/or shiftable transport segments are discussed in further detail below.
Turning now to
According to one embodiment, movable transport segment 563 can be shiftable between an engaged (e.g., aligned) position (or configuration) wherein fixed and internal transport segments 561, 565 are aligned, as shown in
In operation, a bundle of wood 504 can be loaded onto a cart 542 (and, optionally, a bundle support structure 546) while the entrance door 524 of wood treatment vessel 520 is closed and movable transport segment 563 is in a retracted position wherein internal transport segment 565 and fixed transport segment 561 are not aligned, as described above. To load wood treatment vessel 520, first entrance door 524 can be opened and, subsequently, movable transport segment 563 can be laterally shifted from its retracted position to an aligned position, wherein internal transport segment 565 and fixed transport segment 561 are aligned to thereby allow bundle 504, optional bundle support structure 546, and cart 542 to pass over at least a portion of movable transport segment 563 and into the interior of treatment vessel 520. In one embodiment, at least a portion or substantially all of the weight of bundle 504 and cart 542 can be supported by movable transport segment 563 as bundle 504 is loaded into wood treatment vessel 520.
After bundle 504 has been loaded into the interior of wood treatment vessel 520, movable transport segment 563 can be shifted back into a retracted (e.g., disengaged) position, and entrance door 524 can be closed and sealed prior to initiating treatment in vessel 520. Once the treatment of bundle 504 has been completed, the basic operation described herein with respect to movable transport segment 563 can subsequently be repeated when removing a treated bundle 504 from vessel 520. Similarly, when wood treatment facility 500 includes two or more wood treatment vessels, a similar procedure can be followed with one or more other movable transport segments when loading and/or unloading a treated or untreated bundle into and/or out of one or more other treatment vessels, such as, for example another chemical modification reactor or a heater (not shown in
Turning now to
Each of wood treatment vessels 620, 630 can be utilized for one or more of the types of treatment as described in detail previously. For example, in one embodiment, first wood treatment vessel 620 can be a chemical modification reactor, while second wood treatment vessel 630 can be a wood heater. In another embodiment, first wood treatment vessel 620 can be an acetylation reactor and second wood treatment vessel 630 can be a microwave heater or dryer. Although shown in
Turning back to the embodiment of wood treatment facility 600 shown in
According to one embodiment, a first (or reactor) cart 642 can be operable to load first vessel 620 through entrance door 624 and/or a second (or heater) cart 644 can be operable to unload second vessel 630 via exit door 635. At least one of carts 642 and 644 can be operable to unload the bundle of wood, after treatment, from first wood treatment vessel 620 via exit door 625 and/or load the bundle of wood removed from first wood treatment vessel 620 into second wood treatment vessel 630 via entrance door 634. In one embodiment, at least one of carts 642, 644 passes through the interior of first and/or second wood treatment vessels 620, 630 in order to move the treated bundle between exit door 625 of treatment vessel 620 and entrance door 634 of treatment vessel 630. For example, in one embodiment wherein cart 442 is used to unload first wood treatment vessel 620, reactor cart 642 can pass entirely through the interior of treatment vessel 620 to transport the treated bundle to vessel 630, along a path indicated by arrow 680 in
The operation of wood treatment facility 600 will now be described in detail with respect to
Turning first to loading zone 610, in one embodiment of the present invention, a bundle of wood 604, as described previously, can be loaded onto a bundle support structure (not shown in
Cart 642 can comprise an externally driven cart and can be moved using a cart drive system that includes a plurality of active pinions 652a-d and at least about two passive racks (not shown in
Once inside the interior of wood treatment vessel 620, an internal lift system (not shown in
After bundle 604 has undergone treatment in first wood treatment vessel 620, entrance door 634 of second wood treatment vessel (e.g., wood heater) 630 and exit door 625 of chemical modification reactor 620 can be opened in series, after shifting movable transport segment 663b from an aligned position to a retracted position. In one embodiment of the present invention, wood treatment facility 600 can comprise a containment room (not shown in
Next, entrance door 624 can be opened after shifting movable transport segment 663a into a retracted position and, after realigning movable segment 663 into an engaged position, empty reactor cart 642 can be reintroduced into the interior of first wood treatment vessel 620. Thereafter, the internal lift system (not shown) can be used to load the treated bundle of wood 604 and the bundle support structure back onto reactor cart 642. According to one embodiment, the active drive component (e.g., active pinion 652b) located proximate first reactor exit door 625 can then engage the passive rack coupled to cart 642, and rotate to pull treated bundle 604 and the bundle support structure out of the interior of first wood treatment vessel 620 via cart 642. In cooperation with another active drive component 652c coupled to movable segment 663b, reactor cart 642 can be moved into the interior of second wood treatment vessel 630 via entrance door 634. Another lift system (not shown), located within the interior of wood treatment vessel 630, can then be used to load the treated bundle 604 and bundle support structure off of cart 642 into the interior of second wood treatment vessel 630 for further treatment.
Once bundle 604 and the bundle support structure are removed from reactor cart 642, active drive components 652a-c can cooperatively remove cart 642 from the interior of second wood treatment vessel via entrance door 634 and return cart 642 to loading zone 610 via passage through exit door 625, the interior of first wood treatment vessel 620, and entrance door 624. In loading zone 610, another bundle (not shown) can then be loaded onto reactor cart 642 and introduced into first wood treatment vessel 620, as previously described. Each of doors 625, 624, and 634 can be sequentially shut, after appropriate movements of movable segments 663a,b have been retracted and treatment can be initiated in both first and second wood treatment vessels 620, 630 at approximately the same time.
Upon the completion of treatment in second wood treatment vessel 630, movable transport segment 663c can be retracted and exit door 635 can be opened. After repositioning movable transport segment 653c into an aligned position, active drive component 652d, which can be physically coupled to movable transport segment 653c, can engage the passive rack physically coupled to second heater cart 644, thereby moving cart 644 into the interior of second wood treatment vessel 630. Once inside the vessel, the lift system (not shown) can be used to lower the further treated (e.g., heated) bundle of wood and the bundle support structure down onto the empty cart 644. Active component 652d can then reengage the passive component coupled to cart 644 and, operating in an opposite direction, can withdraw cart 644, the bundle support structure, and treated bundle 604 from the interior of second wood treatment vessel and into an unloading zone 690, as shown in
Referring now to
First and second wood treatment vessels 720, 730 can be arranged such that the central axes of elongation 725 and 735 of treatment vessels 720, 730 are substantially parallel to one another. Specifically, in one embodiment, first and second wood treatment vessels 720, 730 can be oriented in a side-by-side configuration, as generally shown in
Bundle transport system 740 shown in
Containment room 780 may be configured in any suitable way to prevent leakage of one or more undesirable chemical components to the environment. In one embodiment, containment room 780 may be coupled to one or more ventilation and chemical disposal devices (not shown) and may draw air (or other inert gas) in through one or more vents or slats in order to cyclically purge the vapor volume of the enclosed space. Containment room 780 may be operable to remove undesirable vapors from its interior and/or from the interior of chemical modification reactor 720 and/or wood heater 730. One embodiment of a containment room suitable for use in a wood treatment facility as described herein is described in co-pending U.S. application Ser. No. 13/323,184, the entirety of which is incorporated herein by reference to the extent not inconsistent with the present disclosure.
As shown in
According to one embodiment, each of first and second carts 742, 744 are movably coupled to a bundle transport shuttle 770 for transporting first and second carts 742, 744 back and forth between chemical modification reactor 720 and wood heater 730, as generally indicated by arrow 795 in
Turning now to
Bundle support devices 746a,b can be configured according to one or more embodiments described in detail previously. In another embodiment, as generally depicted in
Bundle transport system 740 of wood treatment facility 700 further comprises a cart drive system 750 comprising at least one active component 752a,b for providing energy to move at least one of first and second carts 742, 744 and at least one passive component 754a,b for receiving at least a portion of the energy produced by active component or components 752a,b and moving at least one of carts 742 and 744. Active and/or passive components 752a,b and/or 754a,b of cart drive system 750 can comprise one or more features of cart drive systems described previously. In one embodiment, for example, one or more active components 752a,b can be physically separate from carts 742 and 744 and/or one or more passive components can be physically coupled to and configured to move with carts 742 and/or 744. In one embodiment, one or more active components 752a,b can be stationary components and may not move in a direction generally parallel to the axes of elongation of reactor 720 and/or wood heater 730. In another embodiment, however, one or more passive components 754a,b can be configured to move with at least one of carts 742 and/or 744 along a path substantially parallel to the path of travel of each cart.
Referring specifically to
Similarly to previously-described embodiments of the present invention, wood treatment facility 700 can also comprise at least one lift system for vertically disengaging bundle 704 and a bundle support structure supporting bundle 746 within the interior of at least one of chemical modification reactor 720 and wood heater 730. The lift system utilized by wood treatment facility 700 can be similar to the one described previously with respect to
Referring now to
Lift system 770 can include one or more components capable of contacting and lifting bundle 704 and/or bundle support structure 742 in a substantially vertical direction to thereby vertically decouple or disengage bundle 704 and bundle support structure 746 from cart 742. In one embodiment, lift system 770 can include a plurality of extensible support arms, as described in detail previously, or, in another embodiment, it can include one or more pneumatically-driven lift surfaces (shown as air bag lifts 772a, b) operable to change the vertical position of bundle 704 and/or bundle support device 746 within the interior of wood treatment vessel 720. When multiple pneumatically-driven lift surfaces are utilized, the devices may be coupled to a common frame (not shown) to ensure synchronous movement. In one embodiment, lift system 770 can include at least 4, at least 6, at least 8 and/or not more than 24, not more than 18, or not more than 16 bundle lift devices spaced out along the length of cart 742.
According to one embodiment, as bundle 704 and bundle support structure 746 are transported by cart 742 into the interior of wood treatment vessel 720, lift system 770 may be configured to be in an extended position, such that bundle 704 and/or bundle support structure 746 are slightly elevated over the transport segment (not shown) along which cart 742 is being moved. Lift system 770 may be utilized, for example, when bundle support structure 746 includes a pair of support arms 745 and a stationary support structure (not shown in
Upon completion of the treatment within wood treatment vessel 720, one of cart 742 and another cart (not shown) having a lift system 770 integrated therewith can be introduced into vessel 720 in a retracted position (as shown in
As shown in
The force applied by bundle adjustment system 710 can be applied continuously, while, in another embodiment, the force can be applied incrementally, in either time- or length-based intervals. In one embodiment, bundle adjustment system 710 can apply a force to bundle 704 at least about every least about every 2 feet, at least about every 4 feet, at least about every 6 feet and/or not more than about every 12 feet, not more than about every 10 feet, or not more than about every 8 feet as bundle 704 passes through bundle adjustment system 710 and into and/or out of reactor 720. As the process or processes carried out in chemical reactor 720 may substantially alter the size, shape, and/or alignment of bundle 704, it may be particularly desirable to utilize bundle adjustment system 710 during the unloading of the treated bundle 704 from chemical modification reactor 720. However, it is also contemplated that bundle adjustment system 710 may be used during the loading of reactor 720 and/or during the loading and/or unloading of heater 730, if desired.
Bundle adjustment system 710 can be an automated bundle adjustment system including one or more bundle adjusting devices, shown as contact surfaces 712a,b, and a control system (not shown in
The operation of wood treatment facility 700 will now be described in detail below with particular reference to
After bundle 704 has been loaded and centered on bundle support structure 746 in loading zone 726, one of carts 744 and 742 can pass through loading door 743a and into loading zone 726, wherein bundle 704 and bundle support structure 746 can be loaded onto an upper surface of the cart. At least a portion of the loading can be carried out using a lift system (not shown) configured to vertically reposition (e.g., lift and/or lower) bundle 704 and bundle support structure 746 onto cart 744 or cart 742. In one embodiment (not shown in
Once loaded onto the cart, bundle 704 and bundle support structure 746 can then be transported through loading door 743a and into the interior of containment room 780, wherein cart 744 or 742 can transport bundle 704 and bundle support structure 746 along a respective transport segment 762b or 762a and into chemical modification reactor 720. Each of transport segments 762b,a can be a fixed transport segment coupled to bundle transport shuttle 770. Although transport segments 762b,a are configured to move with bundle transport shuttle 770 in a direction generally perpendicular to the axes of elongation 725, 735 of chemical modification reactor 720 and wood heater 730, transport segments 762b,a do not move in a direction parallel to the axes of elongation 725, 735 and do not move relative to carts 742, 744.
In order to introduce bundle 704 and bundle support structure 746 into the interior of chemical modification reactor 720, reactor movable transport shuttle 763a must be configured in an aligned or engaged position, as shown in
Once introduced into the interior of reactor 720, bundle 704 and bundle support structure 746 can be vertically disengaged from cart 744 or 742 via a lift system (not shown) in any manner described previously. Thereafter, cart 744 or 742 may be withdrawn from the interior of chemical modification reactor 720 using a respective cart pusher 754b or 754a, coupled to cart 744 or 742 and operable to move the cart in a generally back-and-forth direction into and out of chemical modification reactor 720 and/or wood heater 730. The motive energy for moving cart pushers 754b,a can be provided by respective active drive motors 752b,a physically separate from carts 744 and 742, but physically coupled to bundle transport shuttle 770. Drive motors 752b,a can be operable to move pushers 754b,a using one or more drive chains (not shown).
After cart 744 or 742 has been withdrawn from the interior of chemical modification reactor 720, movable transport shuttle 763a can be shifted from an aligned position, as shown in
Once bundle 704 has been removed from loading zone 726, a second bundle of wood (not shown) may be assembled and loaded onto a second bundle support structure on loading conveyor 741. After bundle 704 is introduced into reactor 720 via one of carts 744 and 742, bundle adjustment shuttle 770 may be shifted slightly in a lateral direction, such that the other of carts 742 and 744 is aligned with loading door 743a. Cart 742 or 744 may then pass through loading door 743a of containment room 780 to retrieve the second bundle of untreated wood from loading zone 726. When the second bundle of wood has been loaded and centered onto the second bundle support structure in loading zone 726, cart 742 or 744 can then pass through loading door 743a and into containment room 780. Cart 742 or 744 can then pass onto fixed transport segment 762a or 762b of bundle transport shuttle 770.
Thereafter, bundle transport shuttle 770 may be shifted slightly in a lateral direction such that the other of empty carts 744 and 742 can be aligned with reactor door 724. Upon completion of the treatment of bundle 704 within reactor 720, reactor door 724 may be opened and movable transport segment 763a and bundle adjustment system 710 may be transitioned from a retracted position away from reactor door 724 to an aligned position as described previously. In one embodiment, the movement of movable transport segment 763a may be carried out at the same time as, or at a slightly different time as, the shifting of bundle transport shuttle 770 and/or bundle adjustment system 710. In one embodiment, bundle adjustment system 710 and movable transport segment 763a may be physically interlocked such that the movement of the movement of one is dependent on the movement of the other, while, in another embodiment, movable transport segment 763a and bundle adjustment system 710 may be independently shiftable with respect to each other.
Thereafter, empty cart 744 or 742 may be introduced into the interior of reactor 720, using cart pusher 754b or 754a driven by motor 752b or 752a. Treated bundle 704 and bundle support structure 746 can then be vertically repositioned and loaded onto cart 744 or 742 within the interior of chemical modification reactor 720. Once loaded, cart 744 or 742, treated bundle 704, and bundle support structure 746 may be withdrawn from chemical modification reactor 720 in a direction substantially parallel to the axis of elongation of reactor 720, over movable transport segment 763a and onto transport segment 762b or 762a of bundle transport shuttle 770.
After cart 744 or 742 is completely removed from the interior of reactor 720 and treated bundle 704 is positioned thereon, bundle transport shuttle 770 may then be shifted slightly in a lateral direction to thereby align the other of carts 742 and 744 with the entrance door 724 of reactor 720. In one embodiment, this may be carried out without shifting the position of movable transport segment 763a and/or bundle adjustment system 710. Once aligned, untreated second bundle of wood on cart 742 or 744 can then be transported into the interior of chemical modification reactor 720 in a similar manner as previously described with respect to bundle 704. The second bundle of wood may then be vertically disengaged from cart 742 or 744 via the same or a different lift system than was employed to vertically disengage bundle 704 from cart 744 or 742 before or after treatment. Empty cart 742 or 744 can then be fully removed from chemical modification reactor 720 before movable transport segment 763a and bundle adjustment system 710 are shifted back to a retracted position away from chemical modification reactor door 724. Thereafter, door 724 can be closed and treatment of the second bundle of wood can be initiated within reactor 720.
As treated bundle 704 and bundle support structure 746 remain at least partially supported on cart 744 or 742, bundle transport shuttle 770 can move along tracks 772 in a lateral direction generally perpendicular to axes of elongation 725, 735 of reactor 720 and heater 730 until loaded cart 744 or 742 is aligned with heater door 734. If heater door 734 is closed, it may be opened and a second movable transport segment 763b may be shifted from a retracted position, as shown in
Once movable segment 763b is in an aligned position, cart 744 or 742 may be moved into heater 730 via cart pusher 754b or 754a driven by respective drive motor 752b,a. Once cart 744 or 742 is entirely or almost entirely within heater 730, treated bundle 704 and bundle support structure 746 may be vertically disengaged from cart 744 or 742 using the same or a different lift system than was used to vertically disengage bundle 704 within the interior of chemical modification reactor 720. Once treated bundle 704 has been unloaded into heater 730, empty cart 744 or 742 can be fully withdrawn from heater 730 and movable transport segment 743b can be shifted back into a retracted position so that door 734 can be closed. Thereafter, the heating and/or drying of treated bundle 704 can commence.
After loading treated bundle 704 into heater 730 and removing cart 744 or 742, bundle transport shuttle 770 can again be laterally shifted along tracks 772 so that the other cart 742 or 744, which is empty, is aligned with loading door 763a of containment room 780. A third untreated bundle (not shown) may then be loaded onto cart 742 or 744 in a similar manner as described previously. Thereafter, bundle transport shuttle 770 may shift slightly such that the other of carts 744 and 742, which is empty, is aligned with reactor door 724 of chemical modification reactor 720. After door 724 is opened, movable transport segment 763a and bundle adjustment system 710 can be cooperatively or separately shifted to aligned positions proximate reactor door 724. Thereafter, empty cart 744 or 742 can be introduced into the interior of chemical modification reactor 720, wherein the second treated bundle can be vertically positioned onto cart 744 or 742 using the same or different lift system than was previously employed. Once loaded, cart 744 or 742 can then remove the second treated bundle and bundle support structure from chemical modification reactor 720 and can position loaded cart 744 or 742 onto bundle transport shuttle 770.
Bundle transport shuttle 770 can then be slightly shifted in a lateral direction such that the other of carts 742 and 744, which is supporting a third, untreated bundle, is aligned with the open door 724 of reactor 720. Cart 742 or 744 can then load the untreated bundle into chemical modification reactor 720 as previously described and empty cart 742 or 744 can be withdrawn before door 724 is closed and treatment is initiated. Prior to closing door 724, bundle adjustment system 710 and movable transport segment 763a can be shifted from an aligned position to a retracted position away from door 724, as described previously.
Bundle transport shuttle 770 is then shifted laterally along tracks 772 so that the empty cart 742 or 744 is aligned with entrance door 734 of wood heater 730. Heater door 734 is opened and movable transport segment 763b can be shifted to an aligned position before empty cart 742 or 744 is introduced into the interior of wood heater 730. Once inside, the heated and/or dried bundle of treated wood can be vertically positioned onto cart 742 or 744 using the same or a different lift system than was used to unload treated bundle 704 into heater 730. The loaded cart 742 or 744 can then be fully removed from heater 730, passed along transport segment 762b, and through unloading door 743b and into unloading zone 736. Thereafter, treated and dried bundle 704 and bundle support structure may be removed from cart 742 or 744 onto unloading conveyor 745. Thereafter, the bundle, which may still have an elevated temperature, may be allowed to cool before being transported to another portion of wood treatment facility 700 for subsequent processing, storage, and/or use.
Empty cart 742 or 744 can then be passed back through unloading door 743b and onto transport segment 763b of bundle transport shuttle 770. Thereafter, bundle transport shuttle 770 may be shifted laterally such that the other of carts 744 and 742 is aligned with door 734 of heater 730. Cart 744 or 742, which is carrying the second treated bundle of wood, can then be introduced into wood heater 730 by passing over transport segments 762b and 763b before entering the interior of heater 730. Once inside, the second treated bundle can be vertically disengaged from cart 744 or 742 using the same or a different lift system as used previously and the empty cart 744 or 742 can be withdrawn using, for example, cart pusher 754b and active drive motor 752b. After returning movable transport segment 763b to a retracted position away from door 734 of heater 730, door 734 may be closed and the second treated bundle may be heated and/or dried.
Thereafter, bundle transport shuttle 770 and empty carts 742 and 744 are again shifted laterally along tracks 772 until cart 742 or 744 is aligned with loading door 743a. A fourth treated bundle (not shown) can then be loaded onto cart 742 or 744 in loading zone 726 as described previously and the above-described process be repeated as required in order to treat multiple bundles of wood within facility 700.
According to one embodiment of the present invention, the wood treatment facilities as described herein can comprise commercial-scale facilities for treating wood. In one embodiment, the wood treatment facilities of the present invention can have an annual production capacity of at least about 500,000 board feet, at least about 1 million board feet, at least about 2.5 million board feet, or at least about 5 million board feet. As used herein, the term “board feet” refers to a volume of wood expressed in units measuring 144 cubic inches. For example, a board having dimensions of 2 inches by 4 inches by 36 inches has a total volume of 288 cubic inches, or 2 board feet. In one embodiment, the internal volume of a single chemical modification reactor (e.g., the internal reactor volume) and/or the internal volume of a single heater (e.g., the internal heater volume) can be 100 cubic feet, at least about 500 cubic feet, at least about 1,000 cubic feet, at least about 2,500 cubic feet, or at least about 5,000 cubic feet in order to accommodate commercial-scale operation.
Even when carried out on a commercial scale, chemical and/or thermal modification processes as described herein can be carried out with relatively short overall cycle times. For example, according to one embodiment, the total cycle time of the chemical and/or thermal modification processes carried out using one or more systems of the present invention, measured from the time the modification step is initiated to the time the heating step is completed, can be no more than about 48 hours, no more than about 36 hours, no more than about 24 hours, or no more than about 12 hours, no more than about 10 hours, no more than about 8 hours, or no more than about 6 hours. This is in contrast to many conventional wood treatment processes, which can have overall cycle times that last several days or even weeks.
The preferred forms of the invention described above are to be used as illustration only, and should not be used in a limiting sense to interpret the scope of the present invention. Obvious modifications to the exemplary embodiments, set forth above, could be readily made by those skilled in the art without departing from the spirit of the present invention.
The inventors hereby state their intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of the present invention as pertains to any apparatus not materially departing from but outside the literal scope of the invention as set forth in the following claims.
This application claims priority to U.S. Provisional Patent Application Nos. 61/581,268; 61/581,273; 61/581,271; 61/581,269; 61/581,266; 61/581,264, filed Dec. 29, 2011, the entireties of which are incorporated herein by reference to the extent not inconsistent with the present disclosure.
Number | Date | Country | |
---|---|---|---|
61581268 | Dec 2011 | US | |
61581273 | Dec 2011 | US | |
61581271 | Dec 2011 | US | |
61581269 | Dec 2011 | US | |
61581266 | Dec 2011 | US | |
61581264 | Dec 2011 | US |