Working machine having internal combustion engine

Abstract
A carburetor is supported on a casing by the air-fuel mixture discharging port thereof and by the portion of the adjustment screws thereof. A first vibration isolating member is interposed between the casing and the air-fuel mixture discharging port, and a second vibration isolating member is interposed between the casing and the adjustment screws. These vibration preventing members prevent the direction transmission of the vibration of the casing to the carburetor side. A reasonable and compact carburetor support structure can be provided because the air-fuel mixture discharging port and the adjustment screws are intrinsically provided with the carburetor itself.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a working machine having an internal combustion engine mounted in a casing also known as self powered machines or tools, and more particularly, to a working machine in which a carburetor is supported on a casing in a vibration preventing manner.




2. Description of the Related Art




In working machines such as chain saws on which a small two-cycle internal combustion engine, for example, is mounted, a carburetor is conventionally coupled with and secured to a casing including the internal combustion engine through bolts, or the like.




With this conventional mounting arrangement, the vibration caused on the casing by the operation of the internal combustion engine is directly transmitted to the carburetor, thereby a problem arises in that an air-fuel mixture is unstably supplied to the internal combustion engine by the carburetor and that the carburetor is liable to be broken.




To cope with this problem, it is preferable that the carburetor be supported on the casing in a vibration preventing manner. In this case, however, it is preferable to further satisfy the requirements for reasonably arranging the structure of the carburetor in a compact size.




SUMMARY OF THE INVENTION




Accordingly, it is an object of the present invention, which was made in view of the foregoing circumstances, to provide a working machine having an internal combustion engine in which the carburetor has excellent vibration isolating properties on a casing and has a reasonable and compact structure.




To achieve the above object, in a working machine according to the present invention, a portion of the air-fuel mixture discharging port of a carburetor is supported on a casing through a first vibration preventing member. In addition, the adjustment screws of the carburetor are supported on the casing through a second vibration preventing member.




According to the present invention, the carburetor is supported on the casing by the air-fuel mixture discharging port and the portion of the adjustment screws. Then, the first vibration preventing member is interposed between the casing and the air-fuel mixture discharging port, and the second vibration preventing member is interposed between the casing and the adjustment screws, thereby the direct transmission of the vibration on the casing to the carburetor side can be prevented. Further, a reasonable and compact carburetor support structure can be provided because the air-fuel mixture discharging port and the adjustment screws for supporting the carburetor on the casing are intrinsically provided with the carburetor itself.




In a preferred embodiment of the present invention, the first vibration isolating member may be interposed between the air-fuel mixture discharging port and the casing to cover the outward projections that are formed to the air-fuel mixture discharging port so as to extend outward in the diameter direction of the opening of the air-fuel mixture discharging port. This arrangement is preferable because the supporting stability of the carburetor with respect to the casing side can be improved thereby.




As another embodiment of the present invention, the second vibration isolating member may act also as a seal member for sealing the outside of a carburetor chamber for accommodating the carburetor from the inside thereof in a dustproof manner. This arrangement is more preferable because the dustproof property of the carburetor chamber can be improved thereby.




As still another embodiment of the present invention, the second vibration isolating member may have guides for guiding a screw driver for rotating the adjustment screws to the heads of the adjustment screws. This arrangement is further more preferable because the screw driver securely reaches the heads of the adjustment screws by being guided by the guides and thus the adjustment screws can be smoothly and promptly rotated.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a plan view of a chain saw, from which a carburetor chamber cover and an air cleaner are removed, as an example of a working machine according to an embodiment of the present invention;





FIG. 2

is an enlarged sectional view of the chain saw taken along the line II—II of

FIG. 1

; and





FIG. 3

is an enlarged sectional view of the chain saw taken along the line III—III of FIG.


1


.











DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

shows a chain saw


1


as a working machine according to an embodiment of the present invention. The chain saw


1


has a casing


2


including a carburetor chamber


3


in which a diaphragm type carburetor


4


as an example of a carburetor is accommodated. The carburetor


4


supplies an air-fuel mixture into the crank chamber (not shown) of an air-cooled two-cycle internal combustion engine acting as a power source of the chain saw


1


.




The carburetor


4


includes an air-fuel mixture discharging port


6


and adjustment screws


7


,


8


, and


9


. In this embodiment, the carburetor


4


is supported on a casing


2


in a vibration preventing manner making use of the air-fuel mixture discharging port


6


, to which a heat insulator


12


composed of a heat resistant synthetic resin, or the like is attached integrally therewith, and the portion of the adjustment screws


7


,


8


, and


9


.




As shown in

FIG. 2

, a cylindrical rubber tube


10


is connected to the air-fuel mixture discharging port


6


of the carburetor


4


as an example of a flexible and heat insulating coupling member having an air-fuel mixture passage


10




a


defined in the inside thereof. The rubber tube


10


is connected to the carburetor


4


in an airtight manner such that the upstream side flange


11


of the rubber tube


10


, which is formed at the end thereof on the upstream side of air-fuel mixture, is fitted into the annular recessed portion


12




a


defined around the inner peripheral surface of the heat insulator


12


. A multiplicity of projecting stripes


13


are formed around the inner peripheral surface of the rubber tube


10


so as to extend in the peripheral direction thereof to securely create the air-fuel mixture.




In contrast, a downstream side metal flange


14


is attached to the end of the rubber tube


10


on the downstream side of air-fuel mixture integrally therewith. The downstream side flange


14


is joined in an airtight manner to a flange portion


17


formed around the outer periphery of the intake port


16


of a cylinder


15


forming the internal combustion engine


5


.




The heat insulator


12


of the carburetor


4


has an upward projection


18


and a downward projection


19


acting as outward projections that project from the upper and lower portions thereof integrally therewith, respectively. These upward and downward projections


18


and


19


extend outward in the diametric direction of the opening of the air-fuel mixture discharging port


6


. These upward and downward projections


18


and


19


are covered with a first vibration isolating member


20


composed of a material having excellent vibration absorbing property such as rubber, or the like. The first vibration isolating member


20


has engaging recesses


21


and


22


on the upper and power portions thereof that are engaged with the upward and downward projections


18


and


19


, respectively. The first vibration isolating member


20


receives the rubber tube


10


through the tube insertion hole


23


defined at the center thereof and is interposed between the upward and downward projections


18


and


19


and a casing main body


24


on the casing


2


so as to reduce the vibration and heat that are transmitted from the casing


2


to the carburetor


4


side by the operation of the internal combustion engine.




In this embodiment, the air-fuel mixture discharging port


6


is supported on the casing


2


in a vibration isolating manner making use of the upward and downward projections


18


and


19


formed on the air-fuel mixture discharging port


6


, thereby the carburetor


4


is preferably supported with excellent supporting stability.




Next, a vibration isolating support structure on the adjustment screws


7


,


8


, and


9


side will be described below. As shown in

FIGS. 1 and 3

, the carburetor


4


is provided with the idle rotation adjustment screw


7


, the needle valve type high speed rotation adjustment screw


8


, and the similar needle valve type low speed rotation adjustment screw


9


as the adjustment screws


7


,


8


, and


9


. In this embodiment, these adjustment screws


7


,


8


, and


9


extend in a lateral direction that is perpendicular to the axial direction of the air-fuel mixture discharging port


6


.




As shown in

FIG. 3

, these respective adjustment screws


7


,


8


, and


9


are supported by the casing main body


24


, which defines the carburetor chamber


3


, together with a detachable carburetor chamber cover


26


through a second vibration isolating member


25


composed of a material having excellent vibration absorbing property such as rubber, or the like. The second vibration isolating member


25


has the groove


29


formed around the periphery thereof such that the projecting stripes


27


and


28


formed in the casing main body


24


and in the carburetor chamber cover


26


, respectively are engaged with the groove


29


. Thus, the second vibration isolating member


25


is held between the casing main body


24


and the carburetor chamber cover


26


as a seal member in a dustproof manner so as to prevent the invasion of dusts into the carburetor chamber


3


.




In this embodiment, the second vibration isolating member


25


includes an idle rotation adjustment screw receiving hole


31


, a high speed rotation adjustment screw receiving cylindrical portion


32


, and a low speed rotation adjustment screw receiving cylindrical portion


33


. The idle rotation adjustment screw


7


is rotatably inserted into the idle rotation adjustment screw receiving hole


31


, and the knob


34


of the idle rotation adjustment screw


7


at the external end head thereof extends to the outside of the carburetor chamber


3


. A worker can adjust the degree of opening of a throttle valve in idling by manually rotating the knob


34


. The outer peripheral surface of the idle rotation adjustment screw


7


is in light contact with the inner peripheral surface of the idle rotation adjustment screw receiving hole


31


in a dustproof manner such that no dust invades the carburetor chamber


3


from therebetween.




In contrast, the high and low speed rotation adjustment screw receiving cylindrical portions


32


and


33


extend into the carburetor chamber


3


toward the high and low speed rotation adjustment screws


8


and


9


, respectively. The head


8




a


of the high speed rotation adjustment screw


8


is rotatably inserted into the inner end


32




a


of the high speed rotation adjustment screw receiving cylindrical portion


32


, and the head


9




a


of the low speed rotation adjustment screw


9


is rotatably inserted into the inner end


33




a


of the low speed rotation adjustment screw receiving cylindrical portion


33


. The outer peripheral surfaces of the heads


8




a


and


9




a


of both the adjustment screws


8


and


9


are in light contact with the inner peripheral surfaces of the inner ends


32




a


and


33




a


of both the screw receiving cylindrical portions


32


and


33


such that no dust invades the carburetor chamber


3


from therebetween.




The inner peripheral surface


35


of the high speed rotation adjustment screw receiving cylindrical portion


32


communicates with the outside of the carburetor chamber


3


through the second vibration isolating member


25


. Accordingly, the worker can rotate the high speed rotation adjustment screw


8


with a screw driver


36


by inserting the distal end


37


thereof into the high speed rotation adjustment screw receiving cylindrical portion


32


along the inner peripheral surface


35


thereof from the outside of the second vibration isolating member


25


. At this time, the inner peripheral surface


35


of the high speed rotation adjustment screw receiving cylindrical portion


32


acts as a guide for guiding the screw driver


36


to the head


8




a


of the high speed rotation adjustment screw


8


. Thus, the screw driver


36


securely reaches the head


8




a


of the high speed rotation adjustment screw


8


, thereby the worker can smoothly and promptly rotate the high speed rotation adjustment screw


8


. Note that the foregoing arrangement can be similarly applied to the low speed rotation adjustment screw receiving cylindrical portion


33


, and the foregoing operation/working-effect can be similarly obtained therefrom.




Further, even if the idle rotation adjustment screw


7


has a short size with its head disposed in the carburetor chamber


3


, similarly to the high and low speed rotation adjustment screws


8


and


9


, the second vibration isolating member


25


can be provided with a screw driver guide function and a function as a dustproof seal member, similarly to the foregoing case, by forming an idle rotation adjustment screw receiving cylindrical portion to the second vibration isolating member


25


.




The carburetor


4


is stably supported at two positions, that is, at the air-fuel mixture discharging port


6


and at the portion of the adjustment screws


7


,


8


, and


9


through the first and second vibration isolating members


20


and


25


. However, as shown in

FIG. 2

, this embodiment intends to further enhance vibration isolating supporting stability by preventing the vibration of the carburetor


4


on the side thereof opposite to the air-fuel mixture discharging port


6


. That is, a ring-shaped portion


40




a


acting as a supported member is formed to an air cleaner mounting elbow pipe


40


integrally therewith that is attached to the carburetor


4


on the side thereof opposite to the air-fuel mixture discharging port


6


. Then, a rod-shaped vibration isolating member


39


, which is composed of rubber, or the like, acts as a third vibration isolating member, and is attached to the casing main body


24


on the casing


2


, is loosely inserted into the ring-shaped portion


40




a


, thereby the overall carburetor


4


is supported in good balance with respect to the casing


2


.



Claims
  • 1. A working machine having an internal combustion engine mounted in a casing, comprising:a first vibration isolating member through which a portion of the air-fuel mixture discharging port of a carburetor is supported on the casing; and a second vibration isolating member through which the adjustment screws of the carburetor are supported on the casing.
  • 2. A working machine according to claim 1, wherein the first vibration isolating member is interposed between the air-fuel mixture discharging port and the casing to cover the outward projections that are formed to the air-fuel mixture discharging port so as to extend outward in the diameter direction of the opening of the air-fuel mixture discharging port.
  • 3. A working machine according to claim 1, wherein the second vibration isolating member acts also as a seal member for sealing the outside of a carburetor chamber for accommodating the carburetor from the inside thereof in a dustproof manner.
  • 4. A working machine according to claim 1, wherein the second vibration isolating member has guides for guiding a screw driver for rotating adjustment screws of the carburetor to the heads of the adjustment screws.
Priority Claims (1)
Number Date Country Kind
2001-106014 Apr 2001 JP
US Referenced Citations (9)
Number Name Date Kind
4428331 Zang et al. Jan 1984 A
4694578 Kemmler Sep 1987 A
4788951 Nagashima Dec 1988 A
4798182 Ebinuma et al. Jan 1989 A
4815430 Ueno et al. Mar 1989 A
4901681 Pozniak et al. Feb 1990 A
4901691 Nagashima Feb 1990 A
4936271 Nagashima et al. Jun 1990 A
6363618 Durr Apr 2002 B1
Foreign Referenced Citations (2)
Number Date Country
59-36690 Oct 1984 JP
2522472 Oct 1996 JP