| Solimena, “Vesicular Autoantigens of Type 1 Diabetes”,Diabetes , Metab. Rev. 14:227-240 (1998). |
| Ferro-Novick et al., “Vesicle fusion from yeast to man”, Nature 370:191-193 (1994). |
| Martin, T. F., “The Molecular Machinery for Fast and Slow Neurosecretion”, Curr. Opin., Neurobiol. 4:626-632 (1994). |
| Calakos, N. et al., “Synaptic Vesicle Biogenesis, Docking, and Fusion: A Molecular Description”, Physiol. Rev, 76:1-29 (1996). |
| Greengard, F. et al., “Synaptic Vesicle Phosphoproteins and Regulation of Synaptic Function”, Science 259:780-785 (1993). |
| Sorenson, R. L. et al., “Effect of Tyrosine Kinase Inhibitors on Islets of Langerhans: Evidence for Tyrosine Kinases in the Regulation of Insulin Secretion”, Endocrinal.. 134:1975-1978 (1994). |
| Hay, J. C. et al., “Resolution of Regulated Secretion into Sequential MgATP-dependent Calcium-dependent Stages Mediated by Distinct Cytosolic Proteins”, J. Cell. Biol. 119:139-151 (1992). |
| Austin, C. D. et al., “Formation of Nascent Secretory Vesicles from the trans-Golgi Network of Endocrine Cells is Inhibited by Tyrosine Kinase and Phosphatase Inhibitors,”, J. Cell. Biol. 135:1471-1483 (1996). |
| Cataldi, M. et al., “Protein-tyrosine Kinases Activate While Protien-tyrosine Phosphatses Inhibit L-type Calcium Channel Activity in Pituitary GH2 Cells”, Biol. Chem. 271:9441-9446 (1996). |
| Pang, D. T. et al., “Protein tyrosine phosphorylation in synaptic vesicles”, Proc. Natl. Acad. Sci. USA 85:762-766 (1988). |
| Stenius, K. et al., “Structure of Synaptogyrin (p29) Defines Novel Synaptic Vesicle Protein”, J. Cell. Biol. 131:1801-1809 (1995. |
| Parsons, S. J. et al., “p60c-src Activity Detected in the Chromaffin Granule Membrane”, Biochem. Biophys. Res. Comm. 134:736-742 (1986). |
| Grandiori, C. et al., “p60c-src Is Complexed with a Cellular Protein in Subcellular Compartments Involved in Exocytosis”, J. Cell. Biol. 107:2125-2135 (1988). |
| Burgoyne, R. D. et al., “Exocytosis in adrenal chromaffin cells”, J. Anat. 183:309-314 (1993). |
| Sarafian, T. et al., “The Participation of Annexin II (Calpactin I) in Calcium-evoked Exocytosis Requires Protein Kinase C”, J. Cell Biol. 114:1135-1147 (1991). |
| Hubaishy, I. et al., “Modulation of Annexin II Tetramer by Tyrosine Phosphorylation”, Biochemistry 34:14527-14534 (1995). |
| Ferrer-Montiel, A. V. et al., “Tyrosine Phosphorylation Modulates the Activity of Clostridial Neurotoxins”, J. Biol. Chem. 271:18322-18325 (1996). |
| Solimena, M. et al., “ICA 512, an autoantigen of type 1 diabetes, is an intrinsic membrane protein of neurosecretory granules”, EMBO J. 15:2102-2114 (1996). |
| Rabin, D. U. et al., “Cloning and Expression of IDDM-Specific Human Autoantigens”, Diabetes 41:183-186 (1992). |
| Rabin, D. U. et al., “Islet Cell Antigen 512 Is a Diabetes-Specific Islet Autoantigen Related to Protein Tyrosine Phosphatases”, J. Immunol. 152:3183-3188 (1994). |
| Lan, M. S. et al.., “Molecular Cloning and Identification of a Receptor-Type Protein Tyrosine Phosphatase, 1A-2, from Human Insulinoma”, DNA Cell Biol. 13:505-514 (1994). |
| Strueli, M. et al., “Expression of the receptor-linked protein tyrosine phosphatase LAR: proteolytic cleavage and shedding of the Cam-like extracellular region”, EMBO J, 11:897-907 (1992). |
| Serra-Pages, C. et al., “Mutational Analysis of Proprotein Processing, Subunit Association, and Shedding of the LAR Transmembrane Protein Tyrosine Phosphatase”, J. Biol. Chem. 269:23632-23641 (1994). |
| Brady-Kalnay, S. M. et al., “Identification of the Homophilic Binding Site of the Receptor Protein Tyrosine Phosphatase PTPμ”, J. Biol. Chem. 269:284722-28477 (1994). |
| Pulido, R. et al., “The LAR/PTPδ/PTPσ subfamily of transmembrane protien-tyrosine-phosphatases: Multiple human LAR, PTPδ, and PTP σ isoforms are expressed in a tissue-specific manner and associate with LAR-interacting protein LIP.1”, Proc. Natl. Acad. Sci. USA 92:11686-11690 (1995). |
| Hermel et al., “Post-translational modifications of ICA512, a receptor tyrosine phosphatase-like protein of secretory granules”, Eur. J. Neurosci. 11:20690 (1999). |
| Brady-Kulnay, S. M. et al., “Protein tyrosine phosphates as adhesion receptors”, Curr. Opin. Cell Biol. 7:650-657 (1995). |
| Streuli, M. “Protein tyrosine phosphatases in signaling”, Curr. Opin. Cell Biol. 8:182-188 (1996). |
| Passini, N. et al., “The 37/40-kilodalton autoantigen in insulin-dependent diabetes mellitus is the putative tyrosine phosphatase IA-2”, Proc. Natl. Acad. Sci. USA 92:9412-9416 (1995). |
| Lu, J. et al., “Isolation, Sequence and Expression of A Novel Mouse Brain cDNA, mIA-2, And Its Relatedness To Members of the Protein Tyrosine Phosphatase Family”, Biochem. Biophys. Res. Comm. 204:930-936 (1994). |
| Bult, A. et al., “STEP61: A Member of a Family of Brain-Enriched PTP's Is Localized to the Endoplasmic Reticulum”, Neuroscience 16:7821-7831 (1996). |
| Wasmeier, C. et al., “Molecular Clonong of Phogrin, a Protein-tyrosine Phosphatase Homologue Localized to Insulin Secretory Granule Membranes”, J. Biol. Chem. 271:18161-18170 (1996). |
| Pietropaolo, M. et al., “Protein Tyrosine Phosphatase-Like Proteins: Link with IDDM”, Diabetes Care 20:208-214 (1997). |
| Hatfield, E. C. , “Cross reactivity between IA-2 and phogrin/IA-2β in binding of autoantibodies in IDDM”, Diabetologia 40:1327-1333 (1997). |
| Magistrelli, G. et al., “Expression of PTP35, The Murine Homologue Of The Protein Tyrosine Phosphatase-Related Sequence IA-2, Is Regulated During Cell Growth And Stimulated by Mitogens in 3T3 Fibroblasts”, Biochem. Biophys. Res. Chem. 217:581-588 (1996). |
| Debant, Q. et al., “The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains”, Proc. Natl. Acad. Sci. USA 93:5466-5471 (1996). |
| Haneji, N. et al., “Identification of α-Fodrin as a Candidate Autoantigen in Primary Sjogren's Syndrome”, Science 276:604-607 (1997). |
| Yanagi, et al., “Anti-120-kDA α-fodrin immune response with Th1-cytokine profile in the NOD mouse model of Sjogren's syndrome”, Eur. J. Immunol. 28:3336-3345 (1998). |
| Fields, D. et al., “A novel genetic system to detect protein-protein interactions”, Nature 340:245-246(1989). |
| Vojtec et al., “Mammalian Ras Interacts Directly with the Serine/Threonine Kinase Raf”, Cell, 74:205-214 (1993). |
| Gluzman, “SV40-Transformed Simian Cells Support the Replication of Early SV40 Mutants”, Cell, 23:175-182 (1981). |
| Chen et al., “High-Efficiency Transformation of Mammilian Cells by Plasmid DNA”, Molecular and Cellular Biology, 7:2745-2752 (1987). |
| Hanson et al., “Expression of a Multifunctionsl Ca2+/Calmodulin-Dependent Protein Kinase and Mutational Analysis of Its Autoregulation”, Nueron, 3:59-70 (1989). |
| Altschul et al., “Protein database searches for multiple alignments”, Proc. Natl. Acad. Sci. USA 87:5509-5513 (1990). |
| Pawson, T., “Protein modules and signalling networks”, Nature 373:573-580 (1995). |
| Huse et al., “Generation of a Large Combinational Library of the Immunglobulin Repertoire in Phage Lambada”, Science 246:1275-1281 (1989). |
| Bradley-Mullen, “Activation of Distinct Subsets of T Suppressor Cells with Type III Pneumococcal Polysaccharide Coupled to Syngeneic Spleen Cells”, in Immunological Tolerance to Self and Non-Self, Buttisto et al., eds. Annals, N.Y. Acad. Sci., vol. 392, pp. 156-166 (1982). |
| Hu et al. Characterization of Human Brain cDNA Encoding the General Isoform of B-Spectrin. JBC 267, 26:18715-18722, Sep. 15, 1992. |
| Paulsen et al. Characterization of Sin, A Potential Recombinase-Encoding Gene From Satph. A. Gene 141:109-114, 1994. |
| Berghs et al. Identification of Graspin 204.10 Society for Neuroscience Abstracts., Nov. 7, 1998. |
| Asakawa et al. Human Brain BAC Library: Construction & Screening. Gene 191: 69-79, May 1997. |