This application is related to and claims the benefit of Italian Patent Application No. 102018000005840, filed on May 30, 2018, the contents of which are herein incorporated by reference in their entirety.
The present disclosure relates to a yarn feeder with motorized yarn-winding spool, provided with a system for rewinding the previously fed yarn.
Yarn feeders of the so-called “positive” type are known in which the yarn that originates from a supply spool is wound repeatedly between a motorized spool and a spacing pin having a slightly oblique axis with respect to the axis of the spool. By making the spool rotate in the unwinding direction, the yarn is fed to a downstream textile machine, for example a knitting machine.
The spacing pin has the purpose of keeping the yarn turns wound on the spool mutually axially spaced.
The tension of the yarn is monitored continuously by a load cell connected to a control unit. The control unit, on the basis of the signal received from the load cell, modulates the speed of the spool so as to keep substantially constant on a desired level the tension of the yarn fed to the downstream machine, to the benefit of the quality of the knitting produced.
As is known, in knitting processes the feeder often has to recover a portion of the yarn previously fed to the downstream machine.
In these cases, a return device may be provided upstream of the feeder. During recovery, the yarn-winding spool is rotated to the opposite direction with respect to the feeding direction, and simultaneously the return device is activated in order to keep under tension the yarn upstream the spool.
A solution of this type is shown, for example, in EP 1501970 B1, in which the return device is based on a Venturi tube.
The introduction of a return device upstream of the spool entails a significant increase in cost, also because it has to be controlled so as to be activated synchronously with the spool.
In seeking a simpler and cheaper solution, EP3257984 by the same Applicant describes a yarn feeder with motorized yarn-winding spool, in which the spacing pin is supported rotatably about the axis of the spool by a bearing, so as to be biased to rotate in the two directions by the yarn. The rotation of the spacing pin is limited by stop means in the yarn unwinding direction and, optionally, also in the recovery direction.
The solution described above is very effective, allowing to keep the yarn under tension also in the recovery steps without having to install a dedicated return device upstream.
However, it has been found in practice that during the rewinding steps, especially in the initial moments, small slippages can occur between the yarn and the spacing pin, such as to compromise the operating precision and regularity of the device.
Therefore, the aim of the present disclosure is to improve the device described in EP 3257984 so as to increase its operating precision and regularity, while keeping the solution structurally simple and cheap to provide.
This aim and these and other advantages which will become better apparent from the continuation of the description are achieved by providing a yarn feeder having the characteristics described in the independent claim, while the dependent claims define other advantageous, albeit secondary, characteristics of the disclosure.
The disclosure will be now described in greater detail, with reference to some of its preferred but not exclusive embodiments, illustrated by way of non-limiting example in the accompanying drawings, wherein:
With reference to
The yarn Y that arrives from a supply spool (not shown), after passing through a yarn-guide inlet eyelet 24 integral with the support 18, is wound repeatedly (for example, four or five turns) between the spool 14 and the spacing pin 20. The spacing pin 20, in a per se conventional manner, has the purpose of keeping mutually axially spaced the turns of yarn wound on the yarn-winding assembly 12.
The yarn Y being unwound from the yarn-winding assembly 12 engages functionally a load cell 26 incorporated in the feeder and then is fed to the downstream machine by a yarn-guide outlet eyelet 28 which is integral with the support 18.
In a per se known manner, the motor 16 is driven by a control unit CU, also incorporated in the feeder, which can be programmed by means of a display 30 and buttons 32. The control unit CU modulates the speed of the spool 14 based on the signal received from the load cell 26, so as to keep the tension of the yarn Y substantially constant at a desired level; said tension depending on the difference between the speed with which the yarn is fed by the feeder and the speed with which it is collected by the downstream machine.
The programming of the control unit CU falls within the common knowledge of the person skilled in the art and therefore will not be discussed in depth herein.
The spacing pin 20 is integral with a flywheel 34 which, according to the disclosure, is supported rotatably about the axis of the spool 14 by a free wheel 36 also mounted on the hub 22 (
In the constructive example described herein, the abutment 38 is positioned so as to block the flywheel 34 in such a position that, by inserting the yarn between the spacing pin 20 and the spool 14 before winding it, the yarn passes through the yarn-guide inlet eyelet 24 in a substantially radial direction with respect to the axis of the spool.
According to an advantageous characteristic of the disclosure, the flywheel 34 is biased to rotate in the yarn unwinding direction, i.e, toward the abutment 38, not only by the friction with the yarn but also by elastic means functionally interposed between the flywheel 34 and the support 18.
In the embodiment described herein, with particular reference to
The operation of the feeder according to the disclosure will be now described.
During feeding, the feeder 10 behaves in a traditional manner. The spool 14 rotates in the unwinding direction (clockwise in
During rewinding, the spool 14 is rotated in the opposite direction (counterclockwise in
In the following feeding cycle, as a result of the friction between the yarn Y and the spacing pin 20 and of the action of the spiral spring 40, the flywheel 34 will be again pushed in abutment against the abutment 38 and the feeder will resume to operate in a conventional manner (
As the person skilled in the art will appreciate, the feeder 10 fully achieves the intended aim to increase the precision with which the yarn is kept under tension during the rewinding steps, without introducing constructive complications and increases in cost with respect to the solution described in EP 3257984.
A preferred embodiment of the disclosure has been described herein, but of course the person skilled in the art may be able to make various modifications and variations within the scope of the claims.
For example, in the example described herein the free wheel is of the ball bearing type, but it is also possible to use free wheels with roller bearings.
Nevertheless, the free wheel may be replaced by other unidirectional rotary support means, i.e, means capable of allowing free rotation in one rotational direction and transmit the rotatory motion in the opposite direction, such as ratchet mechanisms and the like.
Moreover, although in the described embodiment the spacing pin is mounted on a flywheel for an efficient balancing of the centrifugal loads, alternatively it might be mounted on other rotating supporting means, for example, a rotating arm optionally counterweighted on the opposite side.
Furthermore, the spacing pin might also be pivoted eccentrically, or about an inclined axis, with respect to the spool, e.g., in order to vary the tension curve during recovery.
Furthermore, as already specified, the stop position of the spacing pin might be varied according to the requirements.
Not least, the abutment might be replaced with different stop means, so long as they are capable of blocking the rotation of the pin in a desired point, including electrically actuated pins, as well as mechanical brakes, magnetic brakes or brakes of any other type.
Number | Date | Country | Kind |
---|---|---|---|
102018000005840 | May 2018 | IT | national |
Number | Date | Country |
---|---|---|
102004051520 | May 2006 | DE |
3257984 | Dec 2017 | EP |
03093550 | Nov 2003 | WO |
Entry |
---|
IT Search Report dated Feb. 13, 2019 re: Application No. 2018000005840, pp. 1-7. |
Number | Date | Country | |
---|---|---|---|
20190368086 A1 | Dec 2019 | US |