This invention relates to the field of oscillating power tools, and more particularly to accessory tools for use with oscillating power tools.
In general, oscillating tools are light-weight, handheld power tools capable of being equipped with a variety of tool accessories and attachments, such as cutting blades, sanding discs, grinding tools, and many others. These types of tools typically include a generally cylindrically-shaped main body that serves as an enclosure for an electric motor as well as a hand grip for the tool. The electric motor oscillates a tool holder to which any one of various accessory tools may be attached. As the tool holder is oscillated, an accessory tool attached to the tool holder is driven to perform a particular function, such as sanding, grinding, or cutting, depending on the configuration of the accessory tool.
Accessory tools for an oscillating power tool typically have one-piece rigid construction that includes a mounting portion that is used to secure the accessory tool to the tool holder and a tool body extending from the mounting portion that supports a working portion of the accessory tool, such as an abrasive surface or sharp edge. The tool holder of most oscillating power tools includes a tool drive structure that facilitates a secure and rigid connection between the tool holder and the mounting portion of one or more accessory tools. The accessory tools for use with a power tool are provided with an accessory drive structure configured to interlock with the tool drive structure of the corresponding tool holder. The interlocked drive structures enable the accessory tool to be moved with the tool holder while preventing slippage and other relative movement of the accessory tool with respect to the tool holder as the tool holder is oscillated.
Due to a number of factors, such as the high frequency oscillating drive motion, rigid one-piece construction, the compact nature of the power tools and accessories, etc., oscillating power tools are limited in their ability to perform intricate cutting and sanding operations on workpieces. These types of cuts typically require the use of a thin, flexible work element, such as a wire, band, or blade that is placed in tension to perform work on a workpiece. Consequently, applications that require intricate cutting, sanding, or shaping are usually performed with a table or stand mounted power scroll saw, hand coping/fret saw, and the like.
What is needed is an accessory tool for a handheld oscillating power tool that enables a thin, longitudinal work element, such as a wire, band, or blade, to cutting and/or sanding element to be secured to and driven by the tool holder of an oscillating tool.
In accordance with one embodiment, an accessory tool is provided that is configured to be coupled to a power tool having a tool drive structure. The accessory tool includes a spring component and has a first arm and a second arm attached to the spring component. The first arm includes (i) a first proximal end portion defining a first accessory drive structure that is configured to mate with a first portion of the tool drive structure, and (ii) a first distal end portion having a first holding structure. The second arm is spaced apart from the first arm and includes (i) a second proximal end portion defining a second accessory drive structure that is configured to mate with a second portion of the tool drive structure, and (ii) a second distal end portion having a second holding structure.
In another embodiment, an accessory tool is provided that is configured to be coupled to a power tool having a tool drive structure. The accessory tool includes a spring component having (i) a first mounting face, (ii) a second mounting face, and (iii) a hinge interconnecting the first mounting face and the second mounting face. The accessory tool also includes a first arm and a second arm. The first arm has (i) a first proximal end portion attached to the first mounting face, and (ii) a first distal end portion having a first holding structure. The second arm has (i) a second proximal end portion attached to the second mounting face, and (ii) a second distal end portion having a second holding structure. At least one of the spring, the first proximal end portion, and the second proximal end portion includes an accessory drive structure that is configured to mate with the tool drive structure.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and described in the following written specification. It is understood that no limitation to the scope of the invention is thereby intended. It is further understood that the present invention includes any alterations and modifications to the illustrated embodiments and includes further applications of the principles of the invention as would normally occur to one of ordinary skill in the art to which this invention pertains.
Referring to
As depicted in
The tool holder 16 includes a tool drive structure 20 that enables the tool holder 16 to drive the accessory tool 24. As depicted in
Referring now to
Any suitable holding structure 56, 58 may be used to releasably attach a workpiece contact element 26 to the bracket arms. As best seen in
The yoke accessory tool 24 is configured such that the bracket arms 38, 40 position the workpiece contact element 26 a predetermined distance D away from the spring component 44 in a direction E. In addition, the bracket arms 38, 40 are configured to space the holding structures apart from each other by a predetermined distance F. The distance D is selected to provide adequate clearance for the workpiece contact element 26 to be driven to perform work on a workpiece without being impeded by the main body 18 of the power tool 10. The distance F is selected to maintain a predetermined tension along the workpiece contact element 26 that enables the workpiece contact element 26 to be used to perform a particular function, such as cutting, sanding, and shaping operations on a workpiece.
To enable the end segments 60, 62 to be inserted into the slots 56, 58 of the bracket arms, the mounting portion 44 comprises a spring component 44 that enables each of the bracket arms 38, 40 to be manually pivoted or flexed between a tensioned position as depicted in
As depicted in
The mounting portions 64, 66 and the hinge structure 72 cooperate to define a respective pivot axis P, Q for each mounting portion about which the corresponding mounting portion 64, 66 pivots or flexes. Referring to
To facilitate the movement of the mounting portions 64, 66 with respect to the hinge structure 72 about the respective pivot axis P, Q between the tensioned position (
The first hinge portion 74 includes a section 86 that extends substantially perpendicularly from the first end region 78 of the first mounting portion 64 and a section 88 that extends substantially perpendicularly from the first end region 80 of the second mounting portion 66. Similarly, the second hinge portion 76 includes a section 90 that extends substantially perpendicularly from the second end region 82 of the first mounting portion 64 and a section 92 that extends substantially perpendicularly from the second end region 84 of the second mounting portion 66. The perpendicular sections 86, 88 of the hinge portions extend in opposite directions from the respective end regions 78, 80 of mounting portion 64, 66, and the perpendicular sections 90, 92 of the hinge portions 74, 76 extend in opposite directions from the respective end regions 82, 84 of the mounting portions 64, 66. The perpendicular sections 86, 88 and the first mounting portion 64 cooperate to define the pivot axis P, and the perpendicular sections 90, 92 and the second mounting portion 66 cooperate to define the pivot axis Q.
Due to the configuration of the hinge portions 74, 76, pivoting or flexing the bracket arms about the respective pivot axes P, Q causes a contraction in the area of the spring component 44 facing in the direction of extension E and an expansion in the area of the spring component 44 facing opposite the direction E. As depicted in
Referring now to
The spring component 44 positions the proximal end portions 48, 50 of the bracket arms with respect to each other so that the central opening 98 and the drive openings 96 are aligned with the central bore 37 and projections 22 of the tool drive structure 20. With the central opening 98 aligned with the central bore 37 and the drive openings 96 aligned with the projections of the tool drive structure 20, the clamping screw may be threaded into the bore 30. As the clamping screw 34 is tightened, the proximal end portions 48, 50 of the bracket arms are pressed into engagement with the tool holder thereby securing an interlocked relationship between the tool drive structure 20 and the accessory drive structure 28, and securing the bracket arms 28, 30 in the tensioned position with respect to each other.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same should be considered as illustrative and not restrictive in character. It is understood that only the preferred embodiments have been presented and that all changes, modifications and further applications that come within the spirit of the invention are desired to be protected.
Number | Name | Date | Kind |
---|---|---|---|
1968021 | Bettendorf | Jul 1934 | A |
2720228 | Josef | Oct 1955 | A |
2747631 | Behlefeldt | May 1956 | A |
3872561 | Pomernacki | Mar 1975 | A |
3895438 | Burkepile et al. | Jul 1975 | A |
3921489 | Johansson | Nov 1975 | A |
4821357 | Millette | Apr 1989 | A |
5056268 | Wolff | Oct 1991 | A |
5099538 | Gaconnet | Mar 1992 | A |
5694825 | Chang | Dec 1997 | A |
5992283 | Chen | Nov 1999 | A |
6393957 | Wang | May 2002 | B1 |
6474211 | Lin | Nov 2002 | B1 |
6725757 | Chiang | Apr 2004 | B1 |
20020073822 | Abel | Jun 2002 | A1 |
20080115367 | Glynn | May 2008 | A1 |
20120066919 | Holba et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
102008027671 | Dec 2009 | DE |
2382929 | Nov 2011 | EP |
2008024717 | Feb 2008 | WO |
Entry |
---|
International Search Report and Written Opinion in corresponding PCT Application (i.e., PCT/US2011/061882), completed Aug. 24, 2012 (12 pages). |
Number | Date | Country | |
---|---|---|---|
20120066919 A1 | Mar 2012 | US |