Miller, et al., “Repetitive Zinc-Binding Domains in the Protein Transcription Factor IIIA from Xenopus Oocytes”, EMBO J. 4: 1609-1614 (1985). |
Sadowski, et al., “GAL4-VP16 is an Unusually Potent Transcriptional Activator”, Nature 335: 563-564 (1988). |
Lee, et al., “Three-Dimensional Solution Structure of a Single Zinc Finger DNA-Binding Domain”, Science 245: 635-637 (1989). |
Pavletich, et al., “Zinc Finger-DNA Recognition: Crystal Structure of a Zif268-DNA Complex at 2.1 Å”, Science 252: 809-817 (1991). |
Barbas, et al., “Assembly of Combinatorial Antibody Libraries on Phage Surfaces: The Gene III Site”, Proc. Natl. Acad. Sci. USA 88: 7978-7982 (1991). |
Pavletich, et al., “Crystal Structure of a Five-Finger GLI-DNA Complex: New Perspectives on Zinc Fingers”, Science 261: 1701-1707 (1993). |
Rebar, et al., “Zinc Finger Phage: Affinity Selection of Fingers with New DNA-Binding Specificities”, Science 263: 671-673 (1994). |
Wu, et al., “Building Zinc Fingers by Selection: Toward a Therapeutic Application”, Proc. Natl. Acad. Sci. USA 92: 344-348 (1995). |
Elrod-Erickson, et al., “Zif268 Protein-DNA Complex Refined at 1.6 Å: A Model System for Understanding Zinc Finger-DNA Interactions”, Structure 4: 1171-1180 (1996). |
Kim, et al., “A 2.2 Å Resolution Crystal Structure of a Designed Zinc Finger Protein Bound to DNA”, Nature Structural Biology 3: 940-945 (1996). |
Greisman, et al., “A General Strategy for Selecting High-Affinity Zinc Finger Proteins for Diverse DNA Target Sites”, Science 275: 657-661 (1997). |
Design of TATA Box-Binding Protein/Zinc Finger Fusions for Targeted Regulation of Gene Expression, Proc. Natl. Acad. Sci. USA 94: 3616-3620 (1997). |
Liu, et al., “Design of Polydactyl Zinc-Finger Proteins for Unique Addressing within Complex Genomes”, Proc. Natl. Acad. Sci. USA 94: 5525-5530 (1997). |
Rader, et al., “Phage Display of Combinatorial Antibody Libraries”, Curr. Opin. Biotechnology 8: 503-508 (1997). |
Kim, et al., “Transcriptional Repression by Zinc Finger Peptides”, J. Biol. Chem. 272: 29795-29800 (1997). |
Elrod-Erickson, et al., “High-Resolution Structures of Variant Zif268-DNA Complexes: Implications for Understanding Zinc Finger-DNA Recognition”, Structure 6: 451-464 (1998). |
Beerli, et al., “Toward Controlling Gene Expression at Will: Specific Regulation of the erbB-2/HER-2 Promoter by Using Polydactyl Zinc Finger Proteins Constructed from Modular Building Blocks”, Proc. Natl. Acad. Sci. USA 95: 14628-14633 (1998). |
Segal, et al., “Toward Controlling Gene Expression at Will: Selection and Design of Zinc Finger Domains Recognizing Each of the 5′-GNN-3′ DNA Target Sequences”, Proc. Natl. Acad. Sci. USA 96: 2758-2763 (1999). |
Gebelein, et al., “A Novel Profile of Expressed Sequence Tags for Zinc Finger Encoding Genes from the Poorly Differentiated Exocrine Pancreatic Cell Line AR4IP”, Cancer Letters 105: 225-231 (1996). |
Liu, et al., “Design of Polydactyl Zinc-Finger Proteins for Unique Addressing within Complex Genomes”, Proc. Natl. Acad. Sci. USA 94: 5525-5530 (1997). |
Ogawa, et al., “Enhanced Expression in Seminoma of Human Zinc Finger Genes Located on Chromosome 19”, Cancer Genet. Cytogenet. 100: 36-42 (1998). |
Choo, et al., “Selection of DNA Binding Sites for Zinc Fingers using rationally randomized DNA reveals coded interactions”, Proc. Natl. Acad. Sci. USA 91: 11168-11172 (1994). |
Choo, et al., “Toward a Code for the Interactions of Zinc Fingers with DNA: Selection of Randomized Fingers Displayed on Phage”, Proc. Natl. Acad. Sci. USA 91: 11163-11167 (1994). |