Three-dimensional (3D) printers build a solid object based on a digital model. One approach to 3D printing is “stereolithography,” in which solid objects are created by successively “printing” thin layers of a curable polymer resin, first onto a substrate and then one atop another. In traditional systems, a layer is pointwise deposited and then hardened by exposure to actinic radiation, following which the next layer of liquid resin is deposited thereover. While the technology has improved in many ways over the years, there exist many hurdles that have not been overcome, specifically in the areas of cost and accessibility. 3D printers remain for the most part expensive to manufacture and sell. They may also be complicated to operate.
The steps involved in a 3D printing operation typically begin with user selection of a 3D model in a .STL or other supported format. The object represented by the selected model may be configured or optimized for a specific 3D printer using, for example, a personal computer. Configuration can involve, e.g., locating and orienting the part in space and creation of support structures needed for the object to be printed successfully. Often multiple parts can be placed in the 3D build volume of the printer. Driver software transfers the print job—i.e., the modified digital model—to the 3D printer itself. Before printing begins, the user inserts or cleans a “build platform” on which the object is printed, and provides material for printing. During printing, user interaction with the printer is usually limited, although s/he may monitor progress by, for example, looking through a window. After the object has been printed, the build platform is removed from the printer, and the printed object is separated from the build platform and from any support structure. The removal process can be delicate, requiring the use of various of tools in order not to damage the printed object. A cleaning process is usually required to obtain a high-quality print. In stereolithography, for example, the printed object may be subjected to a wash solution to remove excess resin and, in some instances, a post-cure exposure step whereby the object is bathed in actinic radiation to promote full cure.
One common source of error in 3D printing is misalignment of the build platform with respect to the resin source, resulting in error in the directional travel vector of the build platform or the resin source; this, in turn, compromises the ability to print objects that are dimensionally accurate and without accumulating error along the x and y axes. Similarly, imperfections in the flatness of the build platform surface compromise the accuracy of deposition and jeopardize adhesion of the resin to the build platform.
The present invention relates to 3D printing systems and methods that avoid build-compromising misalignments. Embodiments of the invention utilize a self-leveling assembly that establishes and maintains a constant and typically fully parallel orientation between a deposition mechanism and the build platform. In some embodiments, the deposition mechanism is an inkjet or other nozzle-terminated ejection system configured for two-dimensional (2D) scanning in a plane parallel to the build platform. In other embodiments, the system is configured for “reverse stereolithography,” in which a liquid resin surrounding the build platform is pointwise hardened thereagainst. In this case, the parallel orientation is maintained between the build platform and an opposed surface, e.g., the bottom of a resin tank. Implementations in accordance herewith compensate for error in the directional travel vector of either or both of the opposed surfaces as well as for errors in the flatness of either surface.
As used herein, the term “substantially” or “approximately” means ±10% (e.g., by weight or by volume), and in some embodiments, ±5%. The term “consists essentially of” means excluding other materials that contribute to function, unless otherwise defined herein. The term “light” refers to any form of electromagnetic radiation and not merely, for example, to visible light. Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, routines, steps, or characteristics may be combined in any suitable manner in one or more examples of the technology. The headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the claimed technology.
The following detailed description together with the accompanying drawings will provide a better understanding of the nature and advantages of the present invention.
Refer first to
Operation of the system 100 may be understood with reference to
Embodiments of the present invention are directed to retaining the tank 115—in particular its bottom surface 215—in parallel relation with the build surface 210 and, as well, with the optical components 217 directing the laser beam. It should be understood, however, that the principles hereof may be applied to other 3D printing architectures, e.g., utilizing a deposition print head that must be maintained in parallel relation with a build surface.
In the representative embodiment shown in
As explained above, when the 3D printer 100 begins printing a new part, the build platform 110 descends until its build surface 210 presses against the floor elastomeric floor 215 of the tank 115, compressing the springs 320 separating the carrier and support trays 220, 230. With the springs 320 fully compressed, further downward force is applied to the build platform to squeeze any resin out from between the contacting surfaces. This provides an even flat surface between the resin tank and the build platform, which is necessary for accurate printing, even if errors in flatness exist between the tank floor 215 and the build surface 210; in such circumstances, the springs 320 will not compress evenly but instead have sufficient stiffness to conform the surfaces 210, 215 to each other so as to compensate for error arising from misalignment or small imperfections in flatness.
When the build platform 110 is raised, its surface eventually loses contact with the floor 215 of the tank 115. The studs 235 and lock nuts 315 are preferably uniformly sized so that the gap G between the trays 220, 230 is constant across the opposed areas; that is, the trays remain precisely parallel even if the springs 320 have slightly different stiffnesses (or if the stiffnesses vary over time with use), since as long as the springs have enough force to urge the trays apart, the identical connectors enforce a uniform distance between them. As a result, the gap G and the spatial orientation of the resin tank 115—which are established by the studs 235 and lock nuts 315—remain fixed as the build platform 110 rises. Any necessary adjustment can be accomplishing by tightening or loosening the lock nuts 315.
A spring-loaded coupling system facilitates easy removal and switching of resin tanks. As illustrated in
As will be appreciated by those having skill in the art, the inventive concepts in the above-described embodiment may be implemented in alternative ways. In one alternate embodiment, the mechanism depicted in
In yet another embodiment, the build platform 110 is mounted on a central ball joint 150 (see
In each of the disclosed embodiments, individual springs and retaining lock nuts may be replaced by alternate mechanical elements to provide compliance within the printing system. Springs, for example, may be functionally replaced with an elastic sheet, flexure bearing or other flexure element adhered or otherwise attached between the support and carrier trays. The use of an adhesive material in connection with an elastic sheet may advantageously reduce or eliminate the need for lock nuts or shanks to limit the range of motion. Alternatively, structural elements such as the carrier 120 or other mounting components may be designed with a flexible material or living hinge such to allow the surface 210 to accommodate to (i.e., align with) the tank floor 215 by virtue of vertical movement of the build platform 110. In such an alternative embodiment, the compressible structural elements function analogously to the springs in the embodiments disclosed above. As yet another embodiment, the mounting systems described above may be left free during an initial levelling and calibration step, but fixed after calibration such that the mounting points are substantially more rigid than during the calibration step. By increasing the rigidity of the mounting points during operation, the initial alignment and calibration can be advantageously preserved during operation.
Thus, although the invention has been described with respect to specific embodiments, it will be appreciated that the invention is intended to cover all modifications and equivalents within the scope of the following claims.
This application claims priority to, and the benefits of, U.S. Provisional Application Ser. Nos. 61/792,053, filed on Mar. 15, 2013, and 61/704,937, filed on Sep. 24, 2012, the entire disclosures of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61704937 | Sep 2012 | US | |
61792053 | Mar 2013 | US |