The present invention relates to filtering out acoustic noise transmitted within fluid conducted through a piping system.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefore.
Acoustic filters are presently utilized in a variety of fluid filled systems, including those aboard U.S. Navy ships, to block, limit or reduce transmission of noise producing acoustic energy within a range of acoustic frequencies. Such filters are however not tunable for use with respect to specific acoustic frequencies. Currently absorptive types of filters are utilized to absorb acoustic energy, while reactive types of filters are utilized to reflect acoustic energy within a certain frequency range back toward its source in order to quiet the piping system downstream of the filter.
A rubber cylinder type of filter is also currently utilized, wherein liquid in a pipe is exposed to a single gas filled cavity. The rubber cylinder component of such a filter breaks up under acoustic frequencies higher than its breathing mode frequency to thereby reduce optimal performance. Such a filter cannot be tuned to a wide range of frequencies so as to adjust it to a specific desired frequency within the range. Such rubber cylinder filters furthermore require tube reinforcement to prevent the rubber cylinder from being sucked into the liquid under high flow conditions within the pipe, and require maintenance cleansing for removal of obstructive particles or silt involving removal of the filter from the pipe. Operational interference also occurs as a result of creepage of the rubber cylinder over time under the weight of the liquid in the pipe.
Another type of available filter involves use of an extension pipe section extending some distance from a main pipe to which it is connected. Such filters are only slightly effective in filtering and are often unsatisfactory in certain installations.
It is therefore an important object of the present invention to provide an acoustic filter which will avoid the aforementioned problems and disadvantages associated with the currently available acoustic filters.
In accordance with the present invention, a liquid flow chamber is enclosed within a radially inner cylindrical support drum on which a cylindrical rubber layer is positioned for exposure through slanted holes of different size in the support drum to the liquid in the flow chamber. A plurality of volumetrically small annular gas cavities of different axial lengths are formed over the rubber layer enclosed within an outer casing for exposure of the rubber layer to gas in opposition to its exposure to the liquid in the flow chamber through a plurality of slanted holes of different size in dimensionally different axial sections of a second cylindrical drum radially spaced by the rubber layer from the inner drum. The difference in size of the slanted holes and the differently sized gas cavities are such as to establish a range of selected acoustic frequencies covering reactive response to acoustic noise producing energy by deformation of the rubber layer within the filter. The arrangement of the inner and outer drums, the dimensionally sectioned outer drum with correspondingly different sized slanted holes therein not only accommodates high performance in filtering of acoustic energy at different frequencies, but also minimizes collection of particles or silt within the holes as well as to facilitate cleansing thereof.
A more complete appreciation of the invention and many of its attendant advantages will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing wherein:
Referring now to the drawing in detail,
The filter 10 as shown in
As shown in
As hereinbefore described, the rubber layer 26 on the cylindrical drum 22 backed by the gas cavities 30 establishes effective acoustic compliance to filter out selected acoustic frequencies dependent on the corresponding dimensions of the different sections of the drum 28, the holes 34 therein and that of the rubber layer 26 excited by acoustic waves traveling with the liquid through the flow chamber 21 of the filter 10. As a result, acoustic energy is reflected back toward its source as in the case of a Helmholtz resonator. By selection of the sizes of the holes 24 in the drum 22 and the holes 34 in the drum 28, the thicknesses of the drums 22 and 28 and the rubber layer 26, as well as the number of the holes 24 and 34, a desired set of acoustic frequencies may be filtered out. Performance is also improved by use of a plurality of the volumetrically small separated gas cavities 30 so that resonant frequency is related to wavelength and size of the gas cavities 30.
In the event the rubber layer 26 is ruptured, the screen 23 is provided so as to prevent rubber pieces of the ruptured layer 26 from being ingested downstream of the filter 10 and avoid valve clogging. A wide range of different frequencies may be filtered to accommodate a variety of installations with or without use of the screen and with all components packaged within the single filter 10. Without the screen 23, maintenance of the filter 10 is simplified by slanting of the holes 24 in the drum 22 and the holes 34 in the drum 28 away from flow direction in the chamber 21 as shown in
Obviously, other modifications and variations of the present invention may be possible in light of the foregoing teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
2495693 | Wilbert et al. | Jan 1950 | A |
2841181 | Hewitt et al. | Jul 1958 | A |
2875787 | Evans | Mar 1959 | A |
2943695 | Jeffords | Jul 1960 | A |
3063470 | Forster | Nov 1962 | A |
3473565 | Blendermann | Oct 1969 | A |
3966015 | Bychinsky | Jun 1976 | A |
4186775 | Muroi | Feb 1980 | A |
4314621 | Hansen | Feb 1982 | A |
4540064 | Fujimura | Sep 1985 | A |
4732176 | Sugimura | Mar 1988 | A |
4768616 | Richard et al. | Sep 1988 | A |
5183974 | Wilhelm et al. | Feb 1993 | A |
5398407 | Stuer | Mar 1995 | A |
5732741 | Shiery | Mar 1998 | A |
5860452 | Ellis | Jan 1999 | A |
6029708 | Spell et al. | Feb 2000 | A |
6446454 | Lee et al. | Sep 2002 | B1 |
20010009207 | Faulhaber et al. | Jul 2001 | A1 |
Number | Date | Country |
---|---|---|
63186907 | Aug 1988 | JP |
04001409 | Jan 1992 | JP |