Many semiconductor devices such as processors, chipsets, and so forth often go through extensive testing after manufacture to verify performance levels and prevent devices likely to fail from being shipped. To perform high volume manufacturing (HVM) testing, so-called burn-in boards are used which include a number of burn-in sockets in which completed semiconductor devices can be inserted to perform the burn-in testing. During burn-in testing, oftentimes an external thermal control unit is coupled to the burn-in board to heat the burn-in board and thus the associated semiconductor devices to a high temperature for the burn-in testing process. However, such external thermal control units require complex mechanical engagement systems and critical alignment. Furthermore, the heaters of such a unit have a fixed matrix that causes the burn-in socket density on the burn-in board to be non-configurable.
Furthermore, while such burn-in boards have been developed for testing high power devices, current semiconductor trends are to provide semiconductor devices that operate at lower power levels such as low power microprocessors, ultra mobile personal computer (UMPC) devices, network communication devices and so forth. Burn-in systems developed for high power systems are costly and are used to support burn-in of power devices greater than approximately 200 Watts. In contrast, lower power products typically have power requirements less than 100 Watts and often less than 30 Watts. It is difficult to perform burn-in of low power products on high power systems. For example, to test low power devices on a high power system, a longer burn-in time is needed, as typically a thermal control system may not be available for testing such low power devices.
In various embodiments, one or more heater elements may be embedded within a burn-in board (BIB) such as a printed circuit board (PCB) to provide a thermal solution to a device under test (DUT). Thermal levels may be controlled via active temperature sensing feedback, and individual heating elements may be individually controlled. In some embodiments, the heating elements may take the form of embedded metal heater traces located underneath each burn-in socket (BIS) of the burn-in board. In this way, the heating elements may be directly underneath a DUT to enable conduction through the BIS to the DUT.
Referring now to
As shown in
In various embodiments, the length, thickness, width and quantity of such metal traces may be optimized to achieve a targeted heater power by applying power to the positive and negative ports (i.e., ports A and B) of a trace using one or more power supplies, such as an existing voltage regulation module within burn-in equipment such as a control unit adapted to BIB 3. In various embodiments, by restricting heating elements 2 only to pin arrays of burn-in sockets, so-called hot spots of a heater may be eliminated and reliability may be further increased.
Thus each location of a burn-in board over which a burn-in socket is to be adapted may include a heating element in accordance with an embodiment of the present invention. Because DUTs having different performance characteristics may be adapted to the burn-in sockets during burn-in testing, individual control of the heating elements may be realized, in some embodiments.
Referring now to
Power to heating element 2 may be controlled by applying a selective voltage level to power supply 120. To determine a desired level, feedback information obtained from a temperature sensor 105 may be provided via a feedback line 107 to a temperature processor 111. Note that temperature sensor 105 may be placed in close proximity to the heater trace (and the burn-in socket (and thus a DUT thereon) to measure temperature emanating from the DUT. Furthermore, thermal sensor 105 may provide information regarding its own temperature, which may also closely correspond to that of the associated heating element 2. Based on this information, temperature processor 111 may process the data and send commands to power supply controller 130, which in turn may control the voltage provided by power supply 120 accordingly. Thus power supply controller 130 may provide information to adjust the power supply voltage level to match a desired temperature or may turn off power supply 120 completely if the detected temperature exceeds a threshold value.
Note that while shown with these limited components in the embodiment of
While shown with this particular implementation in the embodiments of
Referring now to
By providing thermal heat through conduction to DUTs, such as low power devices, the time required during a burn-in test for the device to achieve its burn-in junction temperature may be shorter, thus reducing overall burn-in time. Furthermore, the need for an expensive external thermal control array may be avoided. In addition to the costs for such a thermal control array, space may be minimized and furthermore, flexibility of burn-in board device density may also be achieved.
For example, in some implementations between four and seven times burn-in time reduction may be realized depending on DUT power, leading to an equivalent amount of tooling utilization improvements. In various embodiments, a burn-in time calculation may be in accordance with Equation 1:
where BITA and BITB correspond to burn-in times for a burn-in test without heaters and with heaters in accordance with one embodiment of the present invention, respectively, Ea (Thermal activation energy) which is typically 0.6 electron volts (eV), k (Boltzmann's constant) is 8.6×10−5 eV/Kelvin (K), and TA and TB are Burn In Temperatures in absolute temperature (K), achieved during such testing.
Using embodiments of the present invention, it is modeled that a 10 Watt device may achieve a TA of 51 degrees Celsius (C) without an embodiment of the present and a TB of 79 C with an embodiment of the present invention. In this way, an improvement of approximately 5.5 times may be realized.
Embodiments may be implemented in code and may be stored on a storage medium having stored thereon instructions which can be used to program a system to perform the instructions. The storage medium may include, but is not limited to, any type of disk including floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk rewritables (CD-RWs), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access memories (RAMs) such as dynamic random access memories (DRAMs), static random access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash memories, electrically erasable programmable read-only memories (EEPROMs), magnetic or optical cards, or any other type of media suitable for storing electronic instructions.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.