ACTIVITY-DEPENDENT GENE THERAPY FOR NEUROLOGICAL DISORDERS

Information

  • Patent Application
  • 20230165975
  • Publication Number
    20230165975
  • Date Filed
    March 29, 2021
    3 years ago
  • Date Published
    June 01, 2023
    a year ago
Abstract
The invention provides expression vectors or vector systems comprising a polynucleotide sequence encoding a polypeptide, wherein the gene is operably linked to a neuronal activity-dependent promoter suitable to drive expression of the gene product in a subject’s neural cells. The features of the expression vectors combine to advantageously improve the treatment of a neurological disorder associated with neuronal hyperexcitability in a subject. The invention also provides the expression vectors or vector systems for use in related methods of treatment, as well as viral particles, cells, kits and methods using the expression vectors or vector systems.
Description

This application claims priority from GB2004498.8 filed 27 Mar. 2020, the contents and elements of which are herein incorporated by reference for all purposes.


TECHNICAL FIELD

The present invention relates generally to methods and materials involving gene products that are expressed in an activity-dependent manner, which can be used in treating neurological disorders, such as epilepsy.


BACKGROUND ART

Neurological circuit disorders, characterized by abnormal firing of neurons, account for an enormous burden to society and are inadequately treated with drugs. For instance, epilepsy affects up to 1% of the population. Of these sufferers, 30% are refractory (“pharmacoresistant”) to pharmacological treatment, and surgical resection of the brain area where seizures arise (the epileptogenic zone) remains the best hope to achieve seizure freedom. However, such surgery is unsuitable for many due to risk of damage to eloquent regions of the cortex or white matter pathways involved in functions such as memory, language, vision or motor control (Kwan, P. et al (2011), N. Engl. J. Med. 365, 919-926; Picot, M.C. et al (2008), Epilepsia 49, 1230-1238).


New anti-epileptic drugs have had little impact on refractory epilepsy and people with uncontrolled seizures continue to experience co-morbidities, social exclusion, and a substantial risk of sudden unexpected death in epilepsy (SUDEP). Refractory epilepsy is mostly focal (that is, characterized by seizures arising from the epileptogenic zone) but primary generalized epilepsy can also be resistant to pharmacotherapy.


Although surgical resection of the epileptogenic zone can result in seizure freedom, it is unsuitable for 90% of people with refractory epilepsy. Furthermore, the extent of surgical resection is limited by risk of irreversible neurological deficit, meaning that many patients undergoing surgery continue to have seizures. Minimally invasive ablation procedures using lasers have a role in targeting inaccessible deep structures in the brain but are also limited by risk of damage to neighbouring structures. Deep brain stimulation and other neuromodulatory treatments are of limited effectiveness.


Gene therapy is a promising candidate as a rational replacement for surgical treatment of pharmacoresistant focal epilepsy. Examples include overexpression of neuropeptide Y and Y2 receptors (Woldbye et al, 2010), Kv1.1 overexpression (Wykes et al, 2012; Snowball et al. 2019; WO2018/229254); chemogenetics using designer receptors exclusively activated by designer drugs (DREADDs), e.g. hM4Di (Katzel, et al, 2014), and use of the enhanced glutamate-gated chloride channel eGluCI (Lieb et al, 2018).


However, current experimental gene therapies are based on either the permanent modification of neuronal excitability (neurotransmitter, ion channel or receptor overexpression) or the exogenous delivery of light or chemicals to achieve on-demand modulation of neuronal activity (optogenetics and chemogenetics). These approaches have limitations, due to off-target effects. They do not distinguish between neurons involved in seizures and intermingled ‘bystander’ neurons. By analogy, deep brain stimulation (DBS) is an example of a therapy (e.g., for Parkinson Disease, OCD and depression) targeted to specific brain sites, but it is not cell-type specific and can produce side effects. Furthermore, although optogenetics and chemogenetics can be used on demand, the decision when to activate the therapy by light or drug delivery requires an additional step, such as human intervention or a computer that detects seizures. A gene therapy that avoids some of these limitations is the use of eGluCl, which opens in response to accumulation of extracellular glutamate, as occurs in epilepsy, but the effectiveness of this approach in common forms of epilepsy is unknown, and it relies on permanent expression of a non-mammalian membrane protein, which may represent a risk of immunogenicity.


Thus, there is an urgent need to develop alternative therapies for refractory epilepsy, amongst other neurological disorders, with fewer off-target effects or side effects.


DISCLOSURE OF THE INVENTION

The inventors have found that by using a neuronal activity-dependent promoter to drive or alter expression of genes that affect neuronal properties, they can achieve selective modulation of neurons driving seizures or contributing to propagation of seizures in the brain. In this way, neurological disorders, such as refractory epilepsy, can be treated with fewer off-target effects or side effects.


For instance, in one case, when the potassium channel gene KCNA1 is put under the control of the activity-dependent c-Fos promoter, up-regulation of KCNA1 expression is induced in response to intense neuronal activity (e.g. a seizure), and this leads to a decrease in neuronal excitability and neurotransmitter release, resulting in a decrease in susceptibility to seizure initiation or propagation. If the circuit activity returns to near-normal levels, promoter activity decreases, and expression of the potassium channel returns to baseline. This gene therapy is thus specific both for neurons that are over-active (as opposed to bystander neurons) and for the duration that the hyperactivity persists.


In another case, when a fusion protein, composed of dCas9 (also known as endonuclease deficient cas9) and transcriptional activators, is put under the control of the activity-dependent c-Fos promoter, up-regulation of this protein is induced in response to intense neuronal activity (e.g. a seizure), and, in the presence of an appropriate single guide RNA (sgRNA), this can lead to altered expression of an endogenous gene. Altered expression of the endogenous gene (for example, KCNA1) then leads to a decrease in neuronal excitability and neurotransmitter release, resulting in a decrease in susceptibility to seizure initiation or propagation. If the circuit activity returns to near-normal levels, promoter activity decreases, and expression of the fusion protein (and the endogenous gene) returns to baseline. This gene therapy is thus, again, specific both for neurons that are over-active (as opposed to bystander neurons) and for the duration that the hyperactivity persists.


The activity of the c-Fos promoter has been shown to increase in response to several forms of intense neuronal activation (e.g. Hunt et al., 1987 PMID: 3112583; Singewald et al., 2003 PMID: 12586446), and c-Fos activation has also been reported in astrocytes (Morishita et al., PMID: 21785243), oligodendrocytes (Muir & Compston, 1996 PMID: 8926624) and microglia (Eun et al., 2004 PMID: 15522236). Thus, it could not have been predicted that use of an activity-dependent promoter in the treatment of epilepsy would lead to fewer off-target effects. Further, it could not be predicted that activity-dependent promoters used in this way would provide sufficient expression to have a functional effect, or improved functional effect, in vivo.


Accordingly, in one aspect the invention provides an expression vector or vector system for use in a method of treatment of a neurological disorder associated with neuronal hyperexcitability in a subject, the vector or vector system being as defined in the claims. Where relevant, the term “vector” may refer to “vector system” in the detailed description,


In another aspect, the invention provides an expression vector or expression vector system as defined in the claims.


In another aspect, the invention provides an in vitro method of making viral particles as defined in the claims. In another aspect, the invention provides a viral particle as defined in the claims, and such viral particles for use in methods as defined in the claims.


In another aspect, the invention provides a kit as defined in the claims.


In another aspect the invention provides a method of treatment of a neurological disorder, as defined in the claims. In another aspect, the invention provides a method of confirming the presence of a gene product, the method being as defined in the claims.


In another aspect, the invention provides a cell as defined in the claims.


Some particular aspects of the invention will now be discussed in more detail.


Activity-Dependent Promoters

The term “neuronal activity-dependent promoter” (or “activity-dependent promoter” as used interchangeably herein) refers to a promoter that alters or drives expression of a target gene in response to changes in neuronal activity in neural cells. Such changes in neuronal activity may result from a neural cell that becomes hyperexcited, for example during a seizure.


The neural cell may be a neuron or a glial cell. In particularly preferred embodiments, the neural cell is a neuron. In some embodiments, the neuron is a cortical neuron.


In some preferred embodiments, the neuronal activity-dependent promoter is an immediate early gene (IEG) promoter. As used herein, the term “immediate early gene” (IEG) is a gene whose expression is increased immediately following a stimulus to a cell comprising the IEG. For example, genes expressed by neurons that exhibit a rapid increase in expression immediately following neuronal stimulation are neuronal lEGs. Such neuronal lEGs have been found to encode a wide variety of polypeptides including transcription factors, cytoskeletal polypeptides, growth factors, and metabolic enzymes as well as polypeptides involved in signal transduction. The identification of neuronal lEGs and the polypeptides they encode provides important information about the function of neurons in, for example, learning, memory, synaptic transmission, tolerance, and neuronal plasticity.


A number of suitable IEG promoters can be used in accordance with the invention. In some preferred embodiments, the IEG promoter comprises c-Fos (or “cFos”). c-Fos is a nuclear proto-oncogene which has been implicated in a number of important cellular events, including cell proliferation (Holt et al. (1986) Proc. Natl. Acad. Set USA 831:4794-4798; Riabowol et al. (1988) J. Cell. Biol. 8: 1670-1676), differentiation (Distel et al. (1987) Cell 49: 835-844; Lord et al. (1993) Mol Cell. Biol. 13:841-851), and tumorigenesis (Cantor et al. (1993) Proc. Natl. Acad. Sci. USA90:10932-10936; Miller et al. (1984) Cell 36:51-60; Ruther et al. (1989) Oncogene 4:861-865.


c-Fos encodes a 62 kDa protein which forms heterodimers with c-Jun, forming an AP-1 transcription factor which binds to DNA at an AP-1 element and stimulates transcription. Fos gene products can also repress gene expression. Sassone et al. (1988) Nature 334:314-319 showed c-Fos inhibits its own promoter, and Gius et al. (1990) and Hay et al. (1989) showed c-Fos inhibits early response genes Egr-1 and c-myc. AP-1 factors have also been shown to inhibit expression of the MHC class l and PEPCK genes (see Gurney et al.(1992) J Biol. Chem. 267: 18133-18139).


c-Fos regulatory region activation can occur in multiple cell types. Where the target cell is a neuron, a stimulus sufficient for c-Fos regulatory region activation may include but is not limited to e.g., neuronal activation, including synaptic activation, electrophysiological activation and the like.


In some embodiments, the c-Fos promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence of SEQ ID NO: 3. In some embodiments, the c-Fos promoter has a nucleotide sequence comprising or consisting of a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% identity to the nucleotide sequence of SEQ ID NO: 3.


In some cases, the c-Fos promoter comprises CREB, SRE, AP1 and SIF motifs. In some cases, the c-Fos promoter consists of CREB, SRE, AP1 and SIF motifs.


CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. Serum response factor, also known as SRF, is a transcription factor protein. This protein binds to the serum response element (SRE) in the promoter region of target genes. This protein regulates the activity of many immediate early genes, for example c-fos, and thereby participates in cell cycle regulation, apoptosis, cell growth, and cell differentiation. Activator protein 1 (AP1) is a transcription factor that regulates gene expression in response to a variety of stimuli, including cytokines, growth factors, stress, and bacterial and viral infections. Sis-inducible factor (SIF) binding element confers sis/PDGF inducibility to the c-fos promoter.


In other embodiments, the activity-dependent promoter is Egr1 (also known as Zif268), Arc, Homer1a, Bdnf, Creb, Srf, Mef2, Fosb, and Npas4 or synthetic activity-dependent promoters such as PRAM (Sørensen et al., eLife 2016) and ESARE (Kawashima et al., Nature Methods 2013 PMID: 23852453), or part of them or combinations of the above, can be used instead of c-Fos.


In some embodiments, the Egr1 promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence of SEQ ID NO: 18. In some embodiments, the Egr1 promoter has a nucleotide sequence comprising or consisting of a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% identity to the nucleotide sequence of SEQ ID NO: 18.


In some embodiments, the activity-dependent promoter is Arc or an Arc minimal sequence (mArc). Arc is an activity-regulated cytoskeleton-associated protein mostly expressed in glutamatergic neurons in hippocampus and neocortex, with little or no expression in glial cells. In some embodiments, the Arc or mArc promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence of SEQ ID NO: 15. In some embodiments, the mArc promoter has a nucleotide sequence comprising or consisting of a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% identity to the nucleotide sequence of SEQ ID NO: 15. mArc promoter is a truncated version of the full-length Arc promoter.


In other embodiments, the activity-dependent promoter is PRAM (Promoter Robust Activity Marker) or parts of this synthetic promoter: NRAM (NPAS4 Robust Activity Marker) or FRAM (Fos Robust Activity Marker). PRAM consists of repeats of core NRE/AP-1 DNA motifs inserted into the central midline element (CME) to form a secondary structure favoured by transcriptional activation. They have a longer activation window, potentially able to drive more stable and less transient expression of the operatively linked gene. NRAM comprises the NPAS-4 Responsive Element (the consensus binding motif for NPAS4), with a minimal human c-fos promoter. FRAM consists of AP-1 modules (a consensus binding sequence for FOS/JUN family transcription factors) with a human c-fos minimal promoter (see e.g. Sun et al; Cell Volume 181, Issue 2, 16 Apr. 2020, Pages 410-423.e17). In some embodiments, the PRAM, FRAM and NRAM promoters comprise a nucleotide sequence comprising or consisting of the nucleotide sequence of SEQ ID NO: 17. In some embodiments, the promoter has a nucleotide sequence comprising or consisting of a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% identity to the nucleotide sequence of SEQ ID NO: 17.


In other embodiments, the activity-dependent promoter is E-SARE (Enhanced Synaptic Activity Responsive elements). This synthetic promoter contains five repeats of SARE motifs for CREB, MEF2 and SRF binding for transcription initiation, and a minimal Arc promoter (mArc). SARE is part of the Arc promoter. SARE motifs regulate the induction of the immediate-early gene Arc. Mef2 is a critical regulator in heart development and cardiac gene expression. In some embodiments, the E-SARE promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence of SEQ ID NO: 16. In some embodiments, the E-SARE promoter has a nucleotide sequence comprising or consisting of a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% identity to the nucleotide sequence of SEQ ID NO: 16.


NRAM and E-SARE are both composed of sequences from natural promoters. NRAM comprises part of the Npas4 promoter. E-SARE is based on tandem repeats of sequences from the Arc promoter.


In some embodiments, the activity-dependent promoter suppresses the level of expression of a gene, for instance by driving transcription of a short hairpin RNA (shRNA), or another type of RNA that binds to the messenger RNA of an endogenous sodium channel, or other protein.


Preferred Genes and Gene Products

In some preferred embodiments, the gene that is operably linked to the activity-dependent promoter defined in the claims is KCNA1. KCNA1 (Gene ID 3736, also known as the Potassium Voltage-Gated Channel Subfamily A Member 1, KV1.1, HBK1 and RBK1) is a human gene that encodes the human Kv1.1 potassium channel subunit (also known as Potassium voltage-gated channel subfamily A member 1). By “wild-type KCNA1 gene” it is meant the nucleic acid molecule that is found in human cells and encodes the human Kv1.1 potassium channel subunit. The KCNA1 gene may include regulatory sequences upstream or downstream of the coding sequence. A nucleotide sequence for the wild-type KCNA1 gene, including the non-coding 5′ and 3′ untranslated regions (5′ and 3′ UTRs) is provided in NCBI Reference Sequence NM_000217.2. The coding sequence for the wild-type KCNA1 gene has the nucleotide sequence of SEQ ID NO: 4, which corresponds to positions 1106 to 2593 of NCBI Reference Sequence NM_000217.2.


In some preferred embodiments, the gene product encoded by the gene defined in the claims is the Kv1.1 potassium channel subunit. Kv1 family channels are made up of four subunits. Although four Kv1.1 subunits on their own can make up a functional channel, Kv1.1-containing potassium channels that occur in the mammalian nervous system typically also contain other subunits from the Kv1 family, and so a complete tetrameric channel may contain Kv1.1 together with Kv1.2 or Kv1.4 in various stoichiometries. The term ‘Kv1.1 channel’ is used interchangeably either to indicate a Kv1.1 channel subunit or to indicate a homotetrameric or heterotetrameric channel that contains at least one Kv1.1 subunit.


The Kv1.1 potassium channel is a voltage-gated delayed-rectifier potassium channel that is phylogenetically related to the Drosophila Shaker channel. The amino acid sequence for the wild-type Kv1.1 potassium channel subunit has the amino acid sequence of SEQ ID NO: 5 which is identical to the NCBI Reference Sequence NP_000208.2. Voltage-dependent potassium channels modulate excitability by opening and closing a potassium-selective pore in response to voltage. In many cases, potassium ion flow can be interrupted when an intracellular particle occludes the pore, a process known as fast inactivation. Kv1 potassium channel subunits have six putative transmembrane segments, and the loop between the fifth and sixth segment of each of the four Kv1 subunits that make up a complete channel forms the pore.


During normal production in cells, some of the KCNA1 RNA in the cell is edited by an adenosine deaminase acting on RNA (ADAR) that causes an isoleucine/valine (I/V) recoding event at a single position I400 that lies within the sixth transmembrane domain and lines the inner vestibule of the ion-conducting pore (Hoopengardner et al., Science 301(5634):832-6, 2003). At negative membrane potentials, channels containing unedited 1400 recover from inactivation at a rate around twenty times slower than their edited (V400) counterparts (Bhalla et al., 2004).


In some preferred embodiments, the present invention involves activity-dependent expression of a gene product that is an edited Kv1.1 potassium channel. An “edited Kv1.1 potassium channel” is a functional Kv1.1 potassium channel but contains the isoleucine/valine mutation described above. It is believed that these edited Kv1.1 potassium channels are much quicker at recovering from inactivation than their unedited counterparts.


In some embodiments, an edited Kv1.1 potassium channel has an amino acid sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sequence identity to the amino acid sequence shown in SEQ ID NO: 2 provided it also contains a valine amino acid residue at a position corresponding to amino acid residue 400 shown in SEQ ID NO: 2(the ‘edited position’). In some preferred embodiments, the edited Kv1.1 potassium channel has an amino acid sequence comprising or consisting of the amino acid sequence shown in SEQ ID NO: 2.


An edited Kv1.1 potassium channel that contains a valine amino acid residue at a position corresponding to amino acid residue 400 shown in SEQ ID NO: 2 can be identified by methods known in the art. For example, the edited position can be identified by a sequence alignment between the amino acid sequence of SEQ ID NO: 2 and the amino acid sequence of the edited Kv1.1 potassium channel of interest. Such sequence alignments can then be used to identify the edited position in the edited Kv1.1 potassium channel of interest which, at least in the alignment, is near, or at the same position as, the edited position at amino acid residue 400 in the amino acid sequence shown in SEQ ID NO: 2.


A functional Kv1.1 potassium channel is a protein that retains the normal activity of a potassium channel, e.g. the channels are able to open and close in response to voltage. Methods of testing that the Kv1.1 potassium channels are functional are known in the art and some of which are described herein. Briefly, a suitable method for confirming that the Kv1.1 potassium channel is functional involves transfecting cells with an expression vector encoding a Kv1.1 potassium channel and using electrophysiological techniques such as patch clamping to record currents of the potassium channels.


The wild-type Kv1.1 potassium channel comprises a tyrosine amino acid at position 379 as shown in SEQ ID NO: 5. In some embodiments, an edited Kv1.1 potassium channel comprises a tyrosine amino acid residue at a position corresponding to amino acid residue 379 shown in SEQ ID NO: 2.


In other embodiments, an edited Kv1.1 potassium channel comprises a valine amino acid residue at a position corresponding to amino acid residue 379 shown in SEQ ID NO: 2. An example of an edited Kv1.1 potassium channel with this amino acid sequence is shown in SEQ ID NO: 12. Without wishing to be bound by any particular theory, it is believed that a Y379V mutation reduces the sensitivity of Kv1.1 channels to tetraethyl ammonium (TEA) without altering the functional properties of the potassium channel. For example, this change in sensitivity allows transgenic Kv1.1 channels to be pharmacologically isolated from their wild-type counterparts in patch clamp electrophysiology experiments (Heeroma et al. 2009).


In some embodiments, an “engineered KCNA1 gene” is used. An engineered KCNA1 gene differs from the nucleotide sequence of the wild-type KCNA1 gene as described herein but still encodes for a functional Kv1.1 potassium channel. As used herein, an engineered KCNA1 gene has a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sequence identity to the nucleotide sequence shown in SEQ ID NO: 1. In some preferred embodiments, the engineered KCNA1 gene has a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 7.


As described above, an embodiment of the invention includes an engineered KCNA1 gene encoding an edited potassium channel that comprises a valine amino acid residue at position 379, as shown in SEQ ID NO: 12. An example of an engineered KCNA1 gene that encodes the amino acid sequence shown in SEQ ID NO: 12 is the nucleotide sequence shown in SEQ ID NO: 11. In some embodiments, the engineered KCNA1 gene has a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 11, or has at least 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sequence identity to the nucleotide sequence shown in SEQ ID NO: 11.


In other embodiments, the gene product is another protein that affects neuronal excitability or neurotransmitter release, including other potassium channels such as Kv1.2, or neurotransmitter receptors such as GABAa or GABAb receptors, adenosine A1 receptors, and NPY Y2 or Y5 receptors, or neuropeptides such as galanin, NPY or dynorphin.


In some preferred embodiments, the gene that is operably linked to the activity-dependent promoter is defined in the claims as KCNJ2. KCNJ2 encodes the inward-rectifying potassium chancel Kir2.1, which is normally expressed in skeletal muscle. Kir2.1 contributes to maintaining a negative resting membrane potential, thus reducing intrinsic excitability.


In some preferred embodiments, the gene product encoded by the gene defined in the claims is the inward-rectifying potassium channel Kir2.1, which is described above. The nucleotide sequence of KCNJ2 is provided herein.


In some embodiments, the KCNJ2 gene has a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sequence identity to the nucleotide sequence shown in SEQ ID NO: 13. In some embodiments, the Kir2.1 gene has an amino acid sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sequence identity to the amino acid sequence shown in SEQ ID NO: 14.


In another embodiment, the present invention involves activity-dependent expression of an intermediate gene product that indirectly affects neuronal excitability by altering (increasing or decreasing) the expression of a further gene or gene product, which may be an endogenous gene or gene product. The further/endogenous gene or gene product may be any gene or gene product described herein, such as KCNA1 or KCNJ2. Other further/endogenous genes or gene products include neurotransmitter receptors such as GABAa or GABAb receptors, adenosine A1 receptors, and NPY Y2 or Y5 receptors, or neuropeptides such as galanin, NPY or dynorphin.


Altering expression of the further gene or gene product by activity-dependent expression of the intermediate gene product can, in some cases, be achieved through activity-dependent expression of a fusion protein composed of dCas9 (also known as endonuclease deficient Cas9) and transcriptional activators. The fusion protein may also be composed of any suitable dcas protein, such spCas9 or saCas9. In the presence of an appropriate single guide RNA (sgRNA) this strategy, also known as CRISPR activation (CRISPRa) can lead to increased transcription of a further gene such as KCNA1 that reduces neuronal excitability. In some cases, the sgRNA targets a target sequence with 100% efficiency. The sgRNA may be constitutively expressed and operably linked to a separate promoter, such as RNA polymerase III (e.g. U6). The separate promoter may also be any promoter suitable to express sgRNA, such as an RNA polymerase, for example RNA polymerase II. The sgRNA and separate promoter may also be comprised by, or separate to, the expression vectors and vector systems disclosed herein. In some cases, the sgRNA may also be operably linked to the activity-dependent promoter, or to an intermediate inducible promoter such as Tet-On.


In some embodiments, the sgRNA comprises or consists of a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sequence identity to the nucleotide sequence shown in SEQ ID NO: 37.


Activity-dependent expression of an intermediate gene product to indirectly affect neuronal excitability may be achieved via an intermediate expression system, such as an intermediate inducible expression system. Such intermediate expression systems are, in a general sense, known in the art, and may be appropriately selected by the skilled person in order to optimise expression of the intermediate gene or further gene.


For example, the intermediate expression system may be an inducible expression system such as Tet-On. See e.g. Gaia Colasante et. al (Brain, Volume 143, Issue 3, March 2020, Pages 891-905, https://do|org/10.1093/brain/awaa045), the contents of which is incorporated herein by reference in its entirety. An exemplary embodiment of this aspect of the invention is shown in FIG. 25. In this embodiment, the intermediate gene is rtTA and/or dCas9, and may also encode further transcriptional activators.


Of the currently available inducible gene expression systems, Tet-On is the most widely characterised. In some embodiments, in order to improve brain penetration and reduce side-effects in human subjects, the intermediate inducible gene expression system may be a “GeneSwitch™” system. “GeneSwitch™”, uses a chimeric protein, consisting of a truncated human progesterone receptor that does not respond to endogenous steroids, along with a Gal4 DNA binding domain and a P65 activation domain. The receptor is activated by mifepristone, which frees the complex from co-repressors and allows it to initiate transcription of the desired gene in the nucleus by binding to an upstream activating sequence (UAS).


The intermediate expression system can also comprise expression of a modified ecdysone receptor that regulates an optimized ecdysone responsive promoter. The intermediate expression systems can also be based on cumate-induced binding of the cumate repressor to the cumate operator, rapamycin-induced interaction between FKBP12 and FRAP, FKCsA-induced interaction between FKBP and cyclophilin, ABA induced interaction between PYL1 and ABI1, and the “riboswitch” system. (Kallunki et al PMC6721553).


Constitutive CRISPRa to upregulate mouse Kcna1 expression has been reported to have an anti-epileptic effect (Colasante et al., 2020). However, it could not have been predicted that placing CRISPRa under the control of an activity-dependent promoter such as c-Fos, would lead to activity-dependent anti-epileptic activity with the advantageous properties disclosed herein, for example temporal reversibility and spatial specificity for neurons involved in seizures. The nucleotide sequences of dCas9 and the transcriptional activator VP64 are provided herein, as is the sequence of an sgRNA that recognises a promoter sequence of the mouse Kcna1 gene.


Alignment and calculation of percentage amino acid or nucleotide sequence identity can be achieved in various ways known to a person of skill in the art, for example, using publicly available computer software such as ClustalW 1.82, T-coffee or Megalign (DNASTAR) software. When using such software, the default parameters, e.g. for gap penalty and extension penalty, are preferably used. The default parameters of ClustalW 1.82 are: Protein Gap Open Penalty = 10.0, Protein Gap Extension Penalty = 0.2, Protein matrix = Gonnet, Protein/DNA ENDGAP = -1, Protein/DNA GAPDIST = 4.


The percentage identity can then be calculated from the multiple alignment as (N/T)*100, where N is the number of positions at which the two sequences share an identical residue, and T is the total number of positions compared. Alternatively, percentage identity can be calculated as (N/S)*100 where S is the length of the shorter sequence being compared. The amino acid/polypeptide/nucleic acid sequences may be synthesised de novo, or may be native amino acid/polypeptide/nucleic acid sequence, or a derivative thereof.


Due to the degeneracy of the genetic code, it is clear that any nucleic acid sequence could be varied or changed without substantially affecting the sequence of the protein encoded thereby, to provide a functional variant thereof. Suitable nucleotide variants are those having a sequence altered by the substitution of different codons that encode the same amino acid within the sequence, thus producing a silent change. Other suitable variants are those having homologous nucleotide sequences but comprising all, or portions of, sequence which are altered by the substitution of different codons that encode an amino acid with a side chain of similar biophysical properties to the amino acid it substitutes, to produce a conservative change. For example small non-polar, hydrophobic amino acids include glycine, alanine, leucine, isoleucine, valine, proline, and methionine. Large non-polar, hydrophobic amino acids include phenylalanine, tryptophan and tyrosine. The polar neutral amino acids include serine, threonine, cysteine, asparagine and glutamine. The positively charged (basic) amino acids include lysine, arginine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid.


In some embodiments, the level of expression of the gene product increases when the neuron becomes more excited and decreases when the neuron becomes less excited.


Disorders

One aspect of the invention provides expression vectors for use, as defined in the claims, in a method of treatment of a neurological disorder associated with neuronal hyperexcitability in a subject. Said methods of treatment may be prophylactic.


In certain aspects, the invention also provides the use of expression vectors and viral particles as described herein for the manufacture of a medicament for the treatment of said neurological disorder of a human or animal subject, expression vectors as described herein for use in the treatment of a said neurological disorder of a human or animal subject, and methods of treatment of said neurological disorder which comprises administering the expression vectors and viral particles as described herein to an individual in need thereof. The animal subject may be a mouse or a rat.


In some embodiments, the method of treatment is self-limiting after seizures end (“close loop” or “closed loop” therapy).


The neurological disorders as described herein are associated with neuronal hyperexcitability. As used herein, “hyperexcitability” is a characteristic feature of epilepsy in which the likelihood that neural networks become hypersynchronized, with excessive neuronal firing, is increased. The underlying mechanisms are incompletely understood and may include loss of inhibitory neurons, such as GABAergic interneurons, that would normally balance out the excitability of other neurons, or changes in the intrinsic properties of excitatory neurons that make them more likely to fire abnormally. Among other possible mechanisms are that the levels of GABA and the sensitivity of GABAA receptors to the neurotransmitter may decrease, resulting in less inhibition.


Non-limiting examples of neurological disorders associated with neuronal hyperexcitability include seizure disorders (such as epilepsy), Alzheimer’s disease, multiple sclerosis, Parkinson’s disease, tremor and other movement disorders, chronic pain, migraine, major depression, bipolar disorder, anxiety, and schizophrenia. In particularly preferred embodiments, the treatment is for epilepsy, for example idiopathic, symptomatic, and cryptogenic epilepsy. In particularly preferred embodiments, the epilepsy is neocortical epilepsy, temporal lobe epilepsy, especially if it is resistant to drugs used at therapeutic concentrations (pharmacoresistant or refractory epilepsy).


In some cases, seizures are accompanied by a profound depolarization and bursts of firing of pyramidal neurons in the cortex at frequencies greater than 50 Hz, which rarely if ever occur in physiological circumstances. Although activity-dependent promoters have been used to tag neurons that have been recruited by very strong sensory or other stimuli (peripheral nociceptor stimulation, fear-inducing electric shocks, cocaine), recordings from neurons imply that seizures induce much higher levels of activity than such stimuli. Furthermore, the CNS regions where such sensory stimuli have been shown to induce activity-dependent promoter function are different from those typically involved in seizures.


In some preferred embodiments, the neurological disorder is a disorder characterized by episodes of abnormal cellular activity, such as migraine, cluster headache, trigeminal neuralgia, post-herpetic neuralgia, paroxysmal movement disorders, uni- or bipolar affective disorders, anxiety and phobias. In some such disorders (migraine in particular), the abnormal activity may result in neuronal depolarization and electrical silence known as cortical spreading depolarization or cortical spreading depression, and this phenomenon has been implicated in sudden unexpected death in epilepsy (SUDEP).


The treatments described herein may be used to quench or block epileptic activity. The treatments may be used to reduce the frequency of seizures. The treatments may be used to temporally (for example, over 2, 6, 24, 48 or 72 hours) or permanently reduce abnormal neuronal excitability.


In some embodiments, the vector does not affect spontaneous locomotion or memory in a subject, optionally wherein spontaneous locomotion or memory is measured using an open field test, object localisation test, or T maze test.


In some embodiments, the expression vectors are only locally active in the seizure focus of the brain of a subject. In some cases, the expression vectors are only locally active in neurons capable of driving a seizure and/ generating sustained firing. In some cases, the expression vectors are only locally active in over-depolarised neurons.


In some embodiments, the vector or vector system can cause a reduction in the spike frequency of a neuron of the subject by more than 5%, or by more than 10%, or by more than 20%, or by more than 30%, or by more than 40%, or by more than 50%, or by more than 60%, or by more than 70%, or by more than 80%, or by more than 90%, or by more than 91%, or by more than 92%, or by more than 93%, or by more than 94%, or by more than 95%, or by more than 96%, or by more than 97%, or by more than 98%, or by more than 99%, or by 100%.


In some embodiments, the vector or vector system can cause a reduction in the spike frequency of a neuron of the subject by more than 75%. The reduction in the spike frequency of the neuron can be measured using multi-electrode arrays on or after 21 DIV (days in vitro). The reduction in the spike frequency may also be measured using calcium imaging or extracellular field potential recordings on or after 21 DIV. The reduction in the spike frequency of the neuron is measured relative to a vector comprising SEQ ID NO: 6. In some cases, the neuron is a primary cortical neuron.


In some embodiments, the vector or vector system can cause fewer than 10 action potentials per second, or fewer than 5 action potentials per second, or fewer than 4 action potentials per second, or fewer than 3 action potentials per second, or fewer than 2 action potentials per second, or no action potentials per second, in a neuron. In some embodiments, the vector or vector system can cause a greater than 50%, greater that 55%, greater that 60%, greater that 65%, greater that 70%, greater that 75%, greater that 80%, greater that 85%, greater that 90%, greater that 95%, or 100% reduction in action potentials per second. The number of action potentials may be measured using ex vivo acute hippocampal slice electrophysiology.


In some embodiments, the vector or vector system can cause a resting membrane potential in a neuron of less than -50 mV, or less than -60 mV, or less than -70 mV, or less than -80 mV, or less than -90 mV, or less than -100 mV. In some embodiments, the vector or vector system can increase the threshold for action potentials in a neuron to more than 50 pA, or more than 75 pA, or more than 100 pA, or more than 150 pA, or more than 200 pA, or more than 250 pA, or more than 300 pA, or more than 350 pA, or more than 400 pA, or more than 450 pA, or more than 500 pA, or more than 550 pA, or more than 600 pA, or more than 700 pA, or more than 800 pA, or more than 900 pA, or more than 1000 pA, wherein the threshold is the sum of current threshold and holding cu rre nt.


In some embodiments, the vector or vector system can cause less than 5 spikes/second in a primary neuronal culture grown on multi-electrode arrays (MEAs), as described in the examples. Spike is defined as aggregate neuronal activity. In some embodiments, the vector or vector system can cause less than 10, or less than 5 bursts /minute in a primary neuronal culture grown on MEAs, as described in the examples. In some embodiments, the vector or vector system can cause burst durations of less than 200 msec in a primary neuronal culture grown on MEAs, as described in the examples. In some embodiments, the vector or vector system can cause a mean number of spikes per burst of less than 20, or less than 15 in a primary neuronal culture grown on MEAs, as described in the examples.


In some embodiments, the number of action potentials, resting membrane potential, or threshold for action potentials is measured in an acute hippocampal slice from a subject. In some embodiments, the number of action potentials, resting membrane potential, or threshold for action potentials is measured using acute hippocampal slice electrophysiology and/or patch clamp electrophysiology.


In some embodiments, the vector or vector system can cause a greater anti-epileptic effect in a neuron driving a second seizure in a subject, than the anti-epileptic effect in the neuron driving the first seizure in the subject. In some embodiments, the anti-epileptic effect is measured using any of the appropriate methods described herein.


In some cases, the vector or vector system can prevent a second seizure in a subject, wherein the second seizure is subsequent to a first seizure in the subject.


Administration and Dosage

The viral particles and expression vectors described herein can be delivered to the subject in a variety of ways, such as direct injection of the viral particles into the brain. For example, the treatment may involve direct injection of the viral particles into the cerebral cortex, in particular the neocortex or hippocampal formation. Another site of injection is an area of cortical malformation or hamartoma suspected of generating seizures, as occurs in focal cortical dysplasia or tuberous sclerosis. The treatment may involve direct injection of the viral particles into the location in the brain where it is believed to be functionally associated with the disorder. For example, where the treatment is for myoclonic epilepsy this may involve direct injection of the viral particles into the motor cortex; where the treatment is for chronic or episodic pain, this may involve direct injection of the viral particles into the dorsal root ganglia, trigeminal ganglia or sphenopalatine ganglia; and where the treatment is for Parkinson’s disease, this may involve direct injection of the viral particles into the substantia nigra, subthalamic nucleus, globus pallidus or putamen. The particular method and site of administration would be at the discretion of the physician who would also select administration techniques using his/her common general knowledge and those techniques known to a skilled practitioner.


The invention may also be used to treat multiple epileptic foci simultaneously by injection directly into the multiple identified loci.


The patient may be one who has been diagnosed as having drug-resistant or medically-refractory epilepsy, by which is meant that epileptic seizures continue despite adequate administration of antiepileptic drugs.


The subject may be one who has been diagnosed as having well defined focal epilepsy affecting a single area of the neocortex of the brain. Focal epilepsy can arise, for example, from developmental abnormalities or following strokes, tumours, penetrating brain injuries or infections.


Following administration of the viral particles, the recipient individual may exhibit reduction in symptoms of the disease or disorder being treated. For example, for an individual being treated who has a seizure disorder such as epilepsy, the recipient individual may exhibit a reduction in the frequency or severity of seizures. This may have a beneficial effect on the disease condition in the individual.


The term “treatment,” as used herein in the context of treating a condition, pertains generally to treatment and therapy of a human, in which some desired therapeutic effect is achieved, for example, the inhibition of the progress of the condition, and includes a reduction in the rate of progress, a halt in the rate of progress, regression of the condition, amelioration of the condition, and cure of the condition. Treatment as a prophylactic measure (i.e., prophylaxis, prevention) is also included.


The viral particle can be delivered in a therapeutically-effective amount.


The term “therapeutically-effective amount” as used herein, pertains to that amount of the viral particle which is effective for producing some desired therapeutic effect, commensurate with a reasonable benefit/risk ratio, when administered in accordance with a desired treatment regimen.


Similarly, the term “prophylactically effective amount,” as used herein pertains to that amount of the viral particle which is effective for producing some desired prophylactic effect, commensurate with a reasonable benefit/risk ratio, when administered in accordance with a desired treatment regimen.


“Prophylaxis” in the context of the present specification should not be understood to describe complete success i.e. complete protection or complete prevention. Rather prophylaxis in the present context refers to a measure which is administered in advance of detection of a symptomatic condition with the aim of preserving health by helping to delay, mitigate or avoid that particular condition.


While it is possible for the viral particle to be used (e.g., administered) alone, it is often preferable to present it as a composition or formulation e.g. with a pharmaceutically acceptable carrier or diluent.


The term “pharmaceutically acceptable,” as used herein, pertains to compounds, ingredients, materials, compositions, dosage forms, etc., which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of the subject in question (e.g., human) without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio. Each carrier, diluent, excipient, etc. must also be “acceptable” in the sense of being compatible with the other ingredients of the formulation.


In some embodiments, the composition is a pharmaceutical composition (e.g., formulation, preparation, medicament) comprising, or consisting essentially of, or consisting of as a sole active ingredient, viral particle as described herein, and a pharmaceutically acceptable carrier, diluent, or excipient.


As described in WO2008096268, in gene therapy embodiments employing delivery of the viral particle, the unit dose may be calculated in terms of the dose of viral particles being administered. Viral doses include a particular number of virus particles or plaque forming units (pfu). For embodiments involving adenovirus, particular unit doses include 103, 104, 106, 106, 107, 108, 109, 1010, 1011, 1012, 1013 or 1014 pfu. Particle doses may be somewhat higher (10 to 100 fold) due to the presence of infection-defective particles.


In some embodiments the methods or treatments of the present invention may be combined with other therapies, whether symptomatic or disease modifying.


The term “treatment” includes combination treatments and therapies, in which two or more treatments or therapies are combined, for example, sequentially or simultaneously.


For example it may be beneficial to combine treatment with a compound as described herein with one or more other (e.g., 1, 2, 3, 4) agents or therapies.


Appropriate examples of co-therapeutics will be known to those skilled in the art on the basis of the disclosure herein. Typically the co-therapeutic may be any known in the art which it is believed may give therapeutic effect in treating the diseases described herein, subject to the diagnosis of the individual being treated. For example epilepsy can sometimes be ameliorated by directly treating the underlying etiology, but anticonvulsant drugs, such as phenytoin, gabapentin, lamotrigine, levetiracetam, carbamazepine, clobazam, topiramate, and others, which suppress the abnormal electrical discharges and seizures, are the mainstay of conventional treatment (Rho & Sankar, 1999, Epilepsia 40: 1471-1483).


The particular combination would be at the discretion of the physician who would also select dosages using his/her common general knowledge and dosing regimens known to a skilled practitioner.


The agents (i.e. viral particle, plus one or more other agents) may be administered simultaneously or sequentially, and may be administered in individually varying dose schedules and via different routes. For example, when administered sequentially, the agents can be administered at closely spaced intervals (e.g., over a period of 5-10 minutes) or at longer intervals (e.g., 1, 2, 3, 4 or more hours apart, or even longer periods apart where required), the precise dosage regimen being commensurate with the properties of the therapeutic agent(s).


Expression Vectors

An expression vector as used herein is a DNA molecule used to transfer and express foreign genetic material in a cell. Such vectors include a promoter sequence operably linked to the gene encoding the protein to be expressed. “Promoter” means a minimal DNA sequence sufficient to direct transcription of a DNA sequence to which it is operably linked. “Promoter” is also meant to encompass those promoter elements sufficient for promoter-dependent gene expression controllable for cell type specific expression; such elements may be located in the 5′ or 3′ regions of the native gene. Alternatively, an expression vector may be an RNA molecule that undergoes reverse transcription to DNA as a result of the reverse transcriptase enzyme.


An expression vector may also include a termination codon and expression enhancers. Any suitable vectors, enhancers and termination codons may be used to express the gene product, such as an edited Kv1.1 potassium channel, from an expression vector according to the invention. Suitable vectors include plasmids, binary vectors, phages, phagemids, viral vectors and artificial chromosomes (e.g. yeast artificial chromosomes or bacterial artificial chromosomes). As described in more detail below, preferred expression vectors include viral vectors such as AAV vectors.


An expression vector may additionally include a reporter gene encoding a reporter protein. An example of a reporter protein is a green fluorescent protein (“GFP”). A reporter gene may be operably linked to its own promoter or, more preferably, may be operably linked to the same promoter as the gene product as defined in the invention. As an example, the KCNA1 gene and reporter gene may be located either side of a sequence encoding a 2A peptide, such as a T2A peptide. 2A peptides are short (~20 amino acids) sequences that permit multicistronic gene expression from single promoters by impairing peptide bond formation during ribosome-mediated translation (Szymczak and Vignali, 2005). Having the reporter gene operably linked to the same promoter as the gene product, is thought to act as a reliable indicator of gene product expression. An expression vector including a reporter gene may be particularly useful in preclinical applications, for example for use in animal models where it can be used to help assess the localisation of gene expression. The gene encoding GFP may be GFP, dsGFP or dscGFP.


In other embodiments, the expression vector lacks a sequence encoding a reporter protein. This may be preferred for regulatory reasons, for example. In embodiments of the invention, reporting or detecting the gene product of the disclosure may be achieved in different ways - for example based on its engineered sequence. In some embodiments, the expression vector lacks a sequence encoding GFP and/or a sequence encoding a 2A peptide, such as a T2A peptide.


Generally speaking, those skilled in the art are well able to construct vectors and design protocols for recombinant gene expression. Suitable vectors can be chosen or constructed, containing, in addition to the elements of the invention described above, appropriate regulatory sequences, including promoter sequences, terminator fragments, polyadenylation sequences, marker genes and other sequences as appropriate. Molecular biology techniques suitable for the expression of polypeptides in cells are well known in the art. For further details see, for example, Molecular Cloning: a Laboratory Manual: 2nd edition, Sambrook et al, 1989, Cold Spring Harbor Laboratory Press or Current Protocols in Molecular Biology, Second Edition, Ausubel et al. eds., John Wiley & Sons, (1995, and periodic supplements).


The term “operably linked” used herein includes the situation where a selected gene and promoter are covalently linked in such a way as to place the expression of the gene (i.e. polypeptide coding) under the influence or control of the promoter. Thus, a promoter is operably linked to a gene if the promoter is capable of effecting transcription of the gene into RNA in a cell. Where appropriate, the resulting RNA transcript may then be translated into a desired protein or polypeptide. The promoter is suitable to effect expression of the operably linked gene in a mammalian cell. Preferably, the mammalian cell is a human cell.


The disclosed genes, such as an engineered KCNA1 gene, and gene products, such as an edited Kv1.1 potassium channel, can have the requisite features and sequence identity as described herein in relation to the expression vectors.


In some preferred embodiments, the expression vector comprises or consists of a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sequence identity to one of the following sequences:


mArc-dsGFP-KCNA1 (SEQ ID NO: 19); mArc-dsGFP-KCNJ2 (SEQ ID NO: 21); ESARE-dsGFP-KCNA1 (SEQ ID NO: 23); ESARE-dsGFP-KCNJ2 (SEQ ID NO: 25); NRAM-hCfos-dsGFP-KCNA1 (SEQ ID NO: 27); NRAM-hCfos -dsGFP-KCNJ2 (SEQ ID NO: 29); Egr1-dsGFP-KCNA1 (SEQ ID NO: 31); Egr1-dsGFP-KCNJ2 (SEQ ID NO: 33).


In some embodiments, the expression vector is as shown in any one of FIGS. 1-35.


Viral Vectors

A preferred expression vector for use with the present invention is a viral vector, such as a lentiviral or AAV vector. A particularly preferred expression vector is an adeno associated viral vector (AAV vector).


In some instances, the vector is a recombinant AAV vector. AAV vectors are DNA viruses of relatively small size that can integrate, in a stable and site-specific manner, into the genome of the cells that they infect. They are able to infect a wide spectrum of cells without inducing significant effects on cellular growth, morphology or differentiation. The AAV genome has been cloned, sequenced and characterized. It encompasses approximately 4700 bases and contains an inverted terminal repeat (ITR) region of approximately 145 bases at each end, which serves as an origin of replication for the virus. The remainder of the genome is divided into two essential regions that carry the encapsidation functions: the left-hand part of the genome, that contains the rep gene involved in viral replication and expression of the viral genes; and the right-hand part of the genome, that contains the cap gene encoding the capsid proteins of the virus.


AAV vectors may be prepared using standard methods in the art. Adeno-associated viruses of any serotype are suitable (see, e.g., Blacklow, pp. 165-174 of “Parvoviruses and Human Disease” J. R. Pattison, ed. (1988); Rose, Comprehensive Virology 3:1, 1974; P. Tattersall “The Evolution of Parvovirus Taxonomy” in Parvoviruses (J R Kerr, S F Cotmore. M E Bloom, R M Linden, C R Parrish, Eds.) p5-14, Hudder Arnold, London, UK (2006); and D E Bowles, J E Rabinowitz, R J Samulski “The Genus Dependovirus” (J R Kerr, S F Cotmore. M E Bloom, R M Linden, C R Parrish, Eds.) p15-23, Hudder Arnold, London, UK (2006), the disclosures of which are hereby incorporated by reference herein in their entireties). Methods for purifying for vectors may be found in, for example, U.S. Pat. Nos. 6,566,118, 6,989,264, and 6995006 and International Patent Application Publication No.: W0/1999/011764 titled “Methods for Generating High Titer Helper-free Preparation of Recombinant AAV Vectors”, the disclosures of which are herein incorporated by reference in their entirety.


Preparation of hybrid vectors is described in, for example, PCT Application No. PCT/US2005/027091, the disclosure of which is herein incorporated by reference in its entirety. The use of vectors derived from the AAVs for transferring genes in vitro and in vivo has been described (See e.g., International Patent Application Publication Nos: WO 1/18088 and WO 93/09239; U.S. Pat. Nos. 4,797,368, 6,596,535, and 5,139,941; and European Patent No: 0488528, all of which are herein incorporated by reference in their entirety). These publications describe various AAV-derived constructs in which the rep and/or cap genes are deleted and replaced by a gene of interest, and the use of these constructs for transferring the gene of interest in vitro (into cultured cells) or in viva (directly into an organism). The replication defective recombinant AAVs according to the invention can be prepared by co-transfecting a plasmid containing the nucleic acid sequence of interest flanked by two AAV inverted terminal repeat (ITR) regions, and a plasmid carrying the AAV encapsidation genes (rep and cap genes), into a cell line that is infected with a human helper virus (for example an adenovirus). The AAV recombinants that are produced are then purified by standard techniques.


In some instances, useful AAV vectors for the expression constructs as described herein include those encapsidated into a virus particle (e.g. AAV virus particle including, but not limited to, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAV13, AAV14, AAV15, AAV16 and AAVrh10). Accordingly, the instant disclosure includes a recombinant virus particle (recombinant because it contains a recombinant polynucleotide) comprising any of the vectors described herein.


In some embodiments, the viral vector contains a sequence encoding a reporter protein, such as a fluorescent protein. In other embodiments the viral vector lacks a sequence encoding a reporter protein, such as a fluorescent protein.


In some embodiments, the vector comprises a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% identity to the nucleotide sequence of SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 10. In some embodiments, the viral vector is the nucleotide sequence of SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 10.


In some preferred embodiments, the viral vector comprises or consists of a nucleotide sequence having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sequence identity to one of the following sequences:


AAV- mArc-dsGFP-KCNA1 (SEQ ID NO: 20); AAV- mArc-dsGFP-KCNJ2 (SEQ ID NO: 22); AAV- ESARE-dsGFP-KCNA1 (SEQ ID NO: 24); AAV- ESARE-dsGFP-KCNJ2 (SEQ ID NO: 26); AAV- NRAM-hCfos -dsGFP-KCNA1 (SEQ ID NO: 28); AAV- NRAM-hCfos -dsGFP-KCNJ2 (SEQ ID NO: 30); AAV- Egr1-dsGFP-KCNA1 (SEQ ID NO: 32); Egr1-dsGFP-KCNJ2 (SEQ ID NO: 34).


In some embodiments, the viral vector additionally comprises genes encoding viral packaging and envelope proteins.


In some embodiments, the viral vector is a lentiviral vector. In some embodiments, the lentiviral vector is a non-integrating lentiviral vector (NILV). Vector particles produced from these vectors do not integrate their viral genome into the genome of the cells and therefore are useful in applications where transient expression is required or for sustained episomal expression such as in quiescent cells. NILVs can be developed by mutations in the integrase enzyme or by altering the 5′ LTR and/or the 3′ LTR to prevent integrase from attaching these sequences. These modifications eliminate integrase activity without affecting reverse transcription and transport of the pre-integration complex to the nucleus. Without wishing to be bound by any particular theory, when a NILV enters a cell the lentiviral DNA is expected to remain as remains in the nucleus as an episome, leading to sustained expression in non-dividing cells (post-mitotic cells) such as neurons.


In some embodiments, the vector further comprises an AmpR gene, and/or a hGh poly(A) signal gene, and/or one or more origin of replication genes.


Viral Particles

The invention also includes in vitro methods of making viral particles, such as lentiviral particles or adeno-associated viral particles. In one embodiment, this method involves transducing mammalian cells with a viral vector as described herein and expressing viral packaging and envelope proteins necessary for particle formation in the cells and culturing the transduced cells in a culture medium, such that the cells produce viral particles that are released into the medium. An example of a suitable mammalian cell is a human embryonic kidney (HEK) 293 cell.


It is possible to use a single expression vector that encodes all the viral components required for viral particle formation and function. Most often, however, multiple plasmid expression vectors or individual expression cassettes integrated stably into a host cell are utilised to separate the various genetic components that generate the viral vector particles.


In some embodiments, expression cassettes encoding the one or more viral packaging and envelope proteins have been integrated stably into a mammalian cell. In these embodiments, transducing these cells with a viral vector described herein is sufficient to result in the production of viral particles without the addition of further expression vectors.


In other embodiments, the in vitro methods involve using multiple expression vectors. In some embodiments, the method comprises transducing the mammalian cells with one or more expression vectors encoding the viral packaging and envelope proteins that encode the viral packaging and envelope proteins necessary for particle formation.


Examples of suitable viral packaging and envelope proteins and expression vectors encoding these proteins are commercially available and well known in the art. In general, the viral packaging expression vector or expression cassette expresses the gag, pol, rev, and tat gene regions of HIV-1 which encode proteins required for vector particle formation and vector processing. In general, the viral envelope expression vector or expression cassette expresses an envelope protein such as VSV-G. In some cases, the packaging proteins are provided on two separate vectors - one encoding Rev and one encoding Gag and Pol. Examples of lentiviral vectors along with their associated packaging and envelope vectors include those of Dull, T. et al., “A Third-generation lentivirus vector with a conditional packaging system” J. Virol 72(11):8463-71 (1998), which is herein incorporated by reference.


The ssDNA AAV genome contains two open reading frames, Rep and Cap, flanked by two 145 base inverted terminal repeats (ITRs) fundamental for the synthesis of the complementary DNA strand. Rep and Cap produce multiple proteins (Rep78, Rep68, Rep52, Rep40, which are required for the AAV life cycle; and VP1, VP2, VP3, which are capsid proteins). The transgene will be inserted between the ITRs and Rep and Cap in trans. An AAV2 backbone is commonly used and is described in Srivastava et al., J. Virol., 45: 555-564 (1983). Cis-acting sequences directing viral DNA replication (ori), packaging (pkg) and host cell chromosome integration (int) are contained within the ITRs. AAVs also require a helper plasmid containing genes from adenovirus. These genes (E4, E2a and VA) mediate AAV replication. An example of a pAAV plasmid is available from Addgene (Cambridge, MA, USA) as plasmid number 112865 or 60958.


Following release of viral particles, the culture medium comprising the viral particles may be collected and, optionally the viral particles may be separated from the culture medium. Optionally, the viral particles may be concentrated.


Following production and optional concentration, the viral particles may be stored, for example by freezing at -80° C. ready for use by administering to a cell and/or use in therapy.


The invention also provides viral particles, for example those produced by the methods described herein. As used herein, a viral particle comprises a DNA or RNA genome packaged within the viral envelope that is capable of infecting a cell, e.g. a mammalian cell. A viral particle may be integrase deficient, e.g. it may contain a mutant integrase enzyme or contain alterations in the 5′ and/or 3′ LTRs as described herein.


Cells

The invention also provides a cell comprising the nucleic acid or vector described above. In some embodiments, this cell is a mammalian cell such as a human cell. In some embodiments, the cell is a human embryonic kidney cell (HEK) 293. In some embodiments, the cell is derived from a neuroblastoma cell-line.


Kits

The invention also provides kits that comprise an expression vector as described herein and one or more viral packaging and envelope expression vectors also described herein. In some embodiments the viral packaging expression vector is an integrase-deficient viral packaging expression vector.


Methods of Confirming Presence of Gene Products

The invention also provides a method of confirming the presence of a gene product as described herein, such as engineered KCNA1, in a cell.


A limitation of clinical translation using certain gene sequences is that it is difficult to detect their expression against the background endogenous channels present in the brain.


The sequences of gene product as described herein may differ from endogenous wild-type gene products found in cells, such that when this gene is transcribed into RNA it incorporates a unique RNA sequence (an ‘RNA-fingerprint’). This RNA-fingerprint permits specific tracking of transgene expression with RNA-targeted techniques that would otherwise fail to distinguish between transgenic and endogenous gene products. This is particularly useful where it is important to determine the localisation of gene expression without having to include sequences encoding fluorescent tags or epitopes that could potentially result in immunogenicity.


For example, tissue removed from patients who have been treated with a gene product could be examined to determine where and in which cell types (excitatory neurons as expected, or inhibitory neurons or glial cells) the gene product was present. Such tissue could be obtained, for instance, from epilepsy surgery in the event of epilepsy gene therapy failure, or post-mortem. This data is expected to be useful for preclinical dosage calculation, biodistribution studies, regulatory approval and further clinical development on gene therapy.


Thus, in one embodiment the method comprises transducing a cell with an expression vector as described herein or administering a viral particle as described herein to a cell under conditions that permit expression of a gene product of interest and detecting the presence of the gene product RNA in the cell using a hybridisation assay. This method can be carried out in vitro or ex vivo, for example in cell culture or in cells explanted from a human or animal body. Alternatively, the method can be carried out in vivo, for example where the viral particles are administered to a cell in a human or animal subject before extracting the cells or tissues from the human or animal subject in order to detect the presence of gene product RNA in the cell using a hybridisation assay.


In some embodiments, cells or tissues are extracted from a subject who has been treated with viral particles of the invention in order to examine localisation of the expressed gene product. Such tissue could be obtained, for instance, from epilepsy surgery in the event of epilepsy gene therapy failure, or post-mortem.


The invention also provides an in vitro or ex vivo method of confirming the presence of gene product in a cell that has been obtained from a subject administered with a viral particle described herein, the method comprising detecting the presence of engineered gene product RNA in the cell using a hybridisation assay.


Hybridisation assays are known in the art and generally involve using complementary nucleic acid probes (such as in situ hybridization using labelled probe, Northern blot and related techniques). In some embodiments, the hybridisation assay is an in situ hybridisation assay using a labelled probe, such as a fluorescently labelled probe.


As used herein, the term “probe” refers to a nucleic acid used to detect a complementary nucleic acid. Typically the probe is an RNA probe.


Suitable selective hybridisation conditions for oligonucleotides of 17 to 30 bases include hybridization overnight at 42° C. in 6X SSC and washing in 6X SSC at a series of increasing temperatures from 42 oC to 65 oC. One common formula for calculating the stringency conditions required to achieve hybridization between nucleic acid molecules of a specified sequence homology is (Sambrook et al., 1989): Tm = 81.5 oC + 16.6 Log [Na+] + 0.41 (% G+C) - 0.63 (% formamide) - 600/#bp in duplex.


Any sub-titles herein are included for convenience only, and are not to be construed as limiting the disclosure in any way. The invention will now be further described with reference to the following non-limiting Figures and Examples. Other embodiments of the invention will occur to those skilled in the art in the light of these. The disclosure of all references cited herein, inasmuch as it may be used by those skilled in the art to carry out the invention, is hereby specifically incorporated herein by cross-reference.





FIGURES


FIG. 1 is a schematic representation of certain aspects of the invention. FIG. 1A (upper) represents neurons with normal activity levels. FIG. 1A (lower) represents hyperexcited neurons with high activity (darker shading) driving a seizure. FIG. 1B represents current gene-therapy approaches, wherein all neurons are permanently modified in order to modulate neuron excitability and treat a seizure. FIG. 1C represents certain aspects of the present invention, wherein only hyperexcited neurons are modified in order to modulate neuron excitability and treat a seizure. FIG. 1D shows a hypothesized molecular mechanism of c-Fos-KCNA1 action, and an exemplary vector of the disclosure. Hyperactivity (strong increase in neuronal excitability) / epileptic activity or seizures will induce c-fos or other activity-dependent promoter activation that in turns will activate KCNA1 or other transgenes able to reduce neuronal excitability (Kv1.1 channel HL = 12 d). Activity-dependent promoter activation may lead to KCNA1 overexpression. The activation of the promoter is transient but the protein expressed will be expressed in the neuron for longer time (e.g. days) i.e. sustained anti-epileptic effect. Once the pathological state is corrected the tool is switched off (and will be reactivated if necessary) FIG. 1E shows an overview of activity-dependent genes suitable for use in the invention. FIG. 1F shows an example of c-fos activation induced by hyperactivity in rodents and human. FIG. 1G shows different combinations of activity-dependent promoters and transgenes suitable for use in this invention. Other transgenes as shown may also be suitable for use with the invention. The transgenes have different properties and functional effects on neuronal excitability. The promoters have different properties in terms of timing of activation, cell specificity and deactivation. FIG. 1 is described further in Example 1.



FIG. 2 shows the results of a c-Fos immunostaining experiment (FIG. 2A and FIG. 2B). Seizure-like activity (induced by 4-aminopyridine + Picrotoxin) leads to a rapid but transient increase in endogenous c-Fos expression. FIG. 2 is described further in Example 2.



FIG. 3 shows the results of a Lentivirus c-Fos-dsGFP (FIG. 3A) fluorescence imaging experiments (FIG. 3B and FIG. 3C). FIG. 3D shows the results of AAV9 cfos-dsGFP-KCNJ2 (middle) and mArc-dsGFP-KCNJ2 (right) fluorescence imaging experiments. These show that the promoters follow neuronal activity. FIG. 3 is described further in Example 3.



FIG. 4 shows that AAV c-Fos-dsGFP-KCNA1 reduced neuronal network excitability in cortical neurons, compared to AAV c-Fos-dsGFP, as measured by spikes/second, bursts/min, and mean number of spikes per burst (see lower panel). An example recording from the EEG experiment is shown in the upper panel (vertical scale bar corresponds to 20 µV; horizontal scale bar corresponds to 1 s). FIG. 4 is described further in Example 4.



FIG. 5 shows that AAV c-Fos-dsGFP-KCNA1 reduced neuronal network excitability in vitro over 48 hours, compared to AAV c-Fos-dsGFP, as measured by spikes/second (FIG. 4A), bursts/min (FIG. 4B), burst duration (msec) (FIG. 4C) and mean number of spikes per burst (FIG. 4D). PTX is a proconvulsant agent (picrotoxin). FIG. 5E shows that AAV c-Fos-dsGFP-KCNA1, cfos-dsGFP-KCNJ2, mArc-dsGFP-KCNA1, mArc-dsGFP-KCNJ2, and ESARE-dsGFP-KCNA1 reduced neuronal network excitability in cortical neurons, compared to AAV c-Fos-dsGFP, as measured by firing rate spikes/second. FIG. 5 is described further in Examples 4 and 5.



FIG. 6 shows the results of an in vivo fluorescence experiment demonstrating that, compared with cell-dependent gene-expression (FIG. 6A), activity-dependent gene expression (FIG. 6B) is specific for seizure focus. The scale bar for FIG. 6A is 500 µm; the scale bar for FIG. 6B is 50 µm. A schematic of the experimental procedure is shown in FIG. 6C. FIG. 6 is described further in Example 6.



FIG. 7 shows the results of an activity-dependent gene therapy preclinical trial performed in a rat epilepsy model. FIG. 7 is described further in Example 7. The horizontal scale car corresponds to 500 µm. “CA1” refers to the Cornu ammonis 1 sub-field of the hippocampus, and “DG” refers to dentate gyrus.



FIG. 8 shows a map of vector pX552-c-FosP-dscGFP-T2A-KCNA1co.1400V, which was used in Examples 4-11.



FIG. 9 shows a map of vector pX552-c-FosP-KCNA1co.1400V. FIG. 9 is described further in Example 7. FIG. 9 is also described further in Example 11.



FIG. 10 shows the experimental plan of an ex vivo hippocampal slice electrophysiology experiment to demonstrate the activation of activity-dependent promoters following a seizure and the effect on neuronal excitability when they drive either KCNA1 or KCNJ2. PTZ is an acute chemoconvulsant (pentylenetrazole). FIG. 10 is described further in Example 8.



FIGS. 11 and 12 show the results of an ex vivo electrophysiology experiment in acute hippocampal neurons demonstrating that activity-dependent KCNA1 expression activated by a seizure is enough to decrease neuronal excitability. FIG. 11 shows representative traces for neuronal firing. FIG. 12 is a graph showing number of action potential elicited with different current injections, demonstrating the efficiency of the activity-dependent gene therapy in selectively decreasing neuronal excitability. FIGS. 11 and 12 are described further in Example 8.



FIG. 13 shows the results of an ex vivo electrophysiology experiment demonstrating that either activity-dependent KCNA1or KCNJ2 expression activated by a seizure is enough to decrease neuronal excitability. On the left: KCNJ2 hyperpolarizes neurons (RMP: resting membrane potential). On the right: Activity-dependent promoter-driven KCNA1 or KCNJ2 expression increases the current required to elicit action potentials. FIG. 14 is described further in Example 8.



FIGS. 14 and 15 show the fluorescence of the slices after an ex vivo electrophysiology experiment demonstrating that activity-dependent promoters activated by a seizure selectively activated only some neurons. FIGS. 14 and 15 are described further in Example 8.



FIGS. 16 and 17 show the results of in vivo experiments showing the protective effect against repetitive seizures. Activity-dependent gene therapy is activated by a first seizures and when a second seizure is induced it showed an anti-epileptic effect. This experiment has been performed using c-Fos-dsGFP-KCNJ2 as an example. FIGS. 16 and 17 are described further in Example 9.



FIGS. 18, 19 and 20 show the results of an activity-dependent gene therapy preclinical trial performed in a mouse epilepsy model. These data show that activity-dependent gene therapy rescues the epileptic phenotype in a severe model of chronic intractable epilepsy. FIGS. 18, 19 and 20 are described further in Example 10.



FIG. 21 shows the results of an activity-dependent gene therapy preclinical trial performed in a mouse epilepsy model. These data show that activity-dependent gene therapy protect epileptic animals against a further severe insult that leads to death epileptic animals injected with a control virus. FIG. 21 is described further in Example 10.



FIG. 22 shows the results of an activity-dependent gene therapy preclinical trial performed in a mouse epilepsy model. These data show that activity-dependent gene therapy is self-regulated (closed-loop). Animals treated with the activity-dependent gene therapy do not exhibit seizures and do not show detectable fluorescence, meaning that the activity-dependent approach (and expression) is switched off because the animal was cured. FIG. 22 is described further in Example 10.



FIG. 23 summarizes the tests used to test the effect of activity-dependent gene therapy on behaviour. The data show that activity-dependent gene therapy has no effect on spontaneous locomotion, anxiety and memory. Open field, Object localisation Test and T-Maze were used to screen for effects of the activity-dependent gene therapy in healthy animals. FIG. 23 is described further in Example 11.



FIG. 24 shows further results of an activity-dependent gene therapy preclinical trial performed in a rat epilepsy model. The horizontal scale bar in B corresponds to 500 µm. FIG. 21 is described further in Example 7.



FIG. 25 shows that AAV c-Fos-dCas9-VP64-eGFP-Kcna1 (2 AAVs), reduced neuronal network excitability in cortical neurons exposed to PTX (proconvulsant agent), compared to AAV c-Fos-dCas9-VP64-eGFP (2 AWs), as measured by spikes/second over 48 hours. Doxycycline has been used to activate the inducible promoter driving the dCAS9-VP64. All the tool is controlled by the c-Fos promoter driving the transactivator of the inducible promoter. FIG. 25 is described further in Example 5.



FIG. 26 shows a map of vector pX552-c-FosP-dscGFP-T2A-KCNJ2. FIG. 26 is described further in Examples 4,8,and 9.



FIG. 27 shows a map of vector pX552-miniARC-dscGFP-T2A-KCNA1co.I400V. FIG. 27 is described further in Example 4 and 8.



FIG. 28 shows a map of vector pX552-miniARC-dscGFP-T2A-KCNJ2. FIG. 28 is described further in Example 4 and 8.



FIG. 29 shows a map of vector pX552-ESARE-dscGFP-T2A- KCNA1co.I400V. FIG. 29 is described further in Example 4 and 8.



FIG. 30 shows a map of vector pX552-ESARE-dscGFP-T2A-KCNJ2. FIG. 30 is described further in Example 8.



FIG. 31 shows a map of vector pX552-NRAM-hcfos-dscGFP-T2A- KCNA1co.I400V. FIG. 31 is described further in Example 8.



FIG. 32 shows a map of vector pX552-NRAM-hcfos-dscGFP-T2A-KCNJ2.



FIG. 32 shows a map of vector pX552-Egr1-dscGFP-T2A- KCNA1co.I400V.



FIG. 33 shows a map of vector pX552-Egr1-dscGFP-T2A-KCNJ2.



FIG. 34 shows maps of the CRISPRa vectors pAAV-TetO-dCAS9VP64 and pAAV-U6-sgRNA_Kcna1-cFos-rtTA-T2A-EGFP. FIG. 34 is described further in Example 5.





EXAMPLES
Example 1 - Illustration of Activity-Dependent Therapy and Hypothesized Molecular Mechanism of c-Fos-KCNA1 Action

One aspect of the invention is a method to treat epilepsy using activity-dependent promoters in order to selectively target the neurons driving seizures, or contributing to propagating seizures, (darker shading in FIG. 1A) which in turn will alter the expression of genes that affect neuronal properties, compared to neurons that are not driving seizures (lighter shading in FIG. 1A).


Some current experimental gene therapies rely on permanent modification of neuronal excitability, for example using a Kv1.1 ion channel under the control of a cell-specific promoter, and which may not discriminate between neurons involved in seizure and healthy neurons (FIG. 1B).


Neuronal excitation elicits the rapid induction of a set of genes called immediate early genes (IEGs) such as c-Fos and Arc. c-Fos may discriminate between those neurons involved or not in the seizures, as increased expression of c-Fos in specific neurons after seizures has been observed in mouse models, and in human epileptic brains, where c-Fos has a transient expression.


Using a c-Fos promoter in an adeno-associated viral vector enables up-regulation of expression of the effector gene (KCN1A) encoding the potassium channel Kv1.1, which in turn reduces neuronal firing. The increased expression of KCNA1 is predicted to restore normal neuronal behaviour in the epileptic focus. After the circuit activity returns to near-normal levels, the promoter activity decreases and the expression of the potassium channel returns to baseline (FIG. 1D).


The c-Fos promoter will be activated by a seizure and then switch on immediately, staying on for 6-12 hours. In this lag of time the therapeutic gene will be express and protein transcribed. The protein will stay stable for longer time (KCNA1 is supposed to be stable in the membrane for >96 hrs).


In this case the patients are “protected” from seizures for days, and as many patients experience seizures in clusters, the treatment should reduce the number of seizures experienced within a cluster. Furthermore, a rescue of clustered seizures may lead to a restoration of a physiological state that can result in no more seizures at all.


If other seizures occur later, the system will be switched on again.



FIG. 1E shows an overview of activity-dependent genes suitable for use in the invention. FIG. 1F shows an example of c-fos activation induced by hyperactivity in rodents and human. FIG. 1G shows different combinations of activity-dependent promoters and transgenes suitable for use in this invention. Other transgenes such as other potassium channels (right) may also be suitable for use with the invention. The transgenes have different properties and functional effects on neuronal excitability. The promoters have different properties in terms of timing of activation, cell specificity and deactivation


Example 2 - Seizure-Like Activity Increases IEG Expression
Materials and Methods

Primary mature cortical neurons were stimulated with pro-convulsant drugs and c-fos expression was assessed by immunofluorescence at different time points (2, 6, 24 and 48) after fixation.


Results and Discussion


FIG. 2 shows that seizure-like activity (induced by 4-aminopyridine (“4AP”) + Picrotoxin (“PTX”)) leads to a rapid but transient increase in endogenous c-Fos expression.


Example 3 - c-Fos Promoter Can Drive GFP Expression, and Arc Promoter Can Drive GFP Expression
Materials and Methods

A minimal promoter of c-Fos with a part of the 5′UTR and a chimeric intron to boost the expression of the transgene was used. The promoter was then inserted into an AAV backbone with the dsGFP and KCNA1 codon optimised.


Also, a minimal promoter for Arc was used to boost the expression of the transgene. The promoter was inserted into an AAV backbone with KCNJ2.


Results and Discussion


FIG. 3 shows that c-Fos promoter can drive GFP expression when seizure-like activity is induced in neural cells by 4AP and PTX.


Also, FIG. 3D shows that Arc can drive GFP expression when seizure-like activity is induced in neural cells with 4AP and PTX.


Example 4 - Activity-Dependent Dampening of Excitability
Materials and Methods

Primary cortical neurons were grown on multi-electrode arrays (MEAs) for 21 DIV and transduced at 7 DIV with either AAV c-Fos-dsGFP or AAV c-Fos-dsGFP-KCNA1. Network activity was assessed at 21 DIV. Repeats were n=6 (C-Fos-dsGFP) and n=7 (C-Fos-KCNA1).


Also, primary cortical neurons were grown on multi-electrode arrays (MEAs) for 21 DIV (days in vitro) and transduced at 7 DIV with either AAV c-Fos-dsGFP or AAV c-Fos-dsGFP-KCNA1 or c-Fos-dsGFP-KCNJ2 or mArc-dsGFP-KCNA1 or mArc-dsGFP-KCNJ2 or ESARE-dsGFP-KCNA1. Network activity was assessed at 21 DIV. Repeats were n=6 (C-Fos-dsGFP), n=7 (C-Fos-KCNA1), n=16 (c-Fos-dsGFP-KCNJ2), n=6 (mArc-dsGFP-KCNA1), n=5 (mArc-dsGFP-KCNJ2), and n= 5 (ESARE-dsGFP-KCNA1).


Results and Discussion


FIG. 4 shows that AAV c-Fos-dsGFP-KCNA1 reduced neuronal network excitability in cortical neurons, compared to AAV c-Fos-dsGFP, as measured by spikes/second (FIG. 4A), bursts/min (FIG. 4B), burst duration (msec) (FIG. 4C), and mean number of spikes per burst (FIG. 4C). An example recording from the MEA experiment is shown in in the upper panel.


Also, FIG. 5E shows that AAV c-Fos-dsGFP-KCNA1, c-Fos-dsGFP-KCNJ2, mArc-dsGFP-KCNA1, mArc-dsGFP-KCNJ2 or ESARE-dsGFP-KCNA1 reduced neuronal network excitability in cortical neurons, compared to AAV c-Fos-dsGFP, as measured by spikes/second.


As discussed in example 5, FIG. 5 shows that AAV c-Fos-dsGFP-KCNA1 reduced neuronal network excitability in cortical neurons, compared to AAV c-Fos-dsGFP, as measured by spikes/second, bursts/min, burst duration (msec), and mean number of spikes per burst.


Example 5 - Time-Course for Activity-Dependent Dampening of Excitability
Materials and Methods

Primary cortical neurons were grown on multi-electrode arrays (MEAs) for 21 DIV and transduced at 7 DIV with either AAV c-Fos-dsGFP or AAV c-Fos-dsGFP-KCNA1. Network activity was assessed at 21 DIV, and at different time points (2, 6, 24, 48 hrs) after addition of 30 µM picrotoxin (baseline/ 0 hr). Repeats were n=6 (c-Fos-dsGFP) and n=7 (c-Fos-dsKCNA1).


Also, primary cortical neurons were grown on multi-electrode arrays (MEAs) for 21 DIV and transduced at 7 DIV with either c-Fos-dCAS9-VP64-GFP or c-Fos-dCAS9-VP64-GFP-KCNA1 (2 AAVs). Network activity was assessed at 21 DIV, and at different time points (2, 6, 24,48 hrs) after addition of 30 µM picrotoxin (baseline/ 0 hr). Repeats were n=16 (c-Fos-dCAS9-VP64-GFP) and n=10 (c-Fos-dCAS9-VP64-GFP-KCNA1).


Results and Discussion


FIG. 5 shows that AAV c-Fos-dsGFP-KCNA1 slows down the increase neuronal network excitability induced by PTX, compared to AAV c-Fos-GFP, as clearly shown by burst duration (msec).


Also, FIG. 25 shows that c-Fos-dCAS9-VP64-GFP-KCNA1 slows down the increase neuronal network excitability induced by PTX, compared to c-Fos-dCAS9-VP64-GFP, as clearly shown by burst duration (msec) or spikes/seconds. Gene therapy delivered with two AAVs allows Doxycycline to switch it on using the TeT-On system.


Example 6 - Activity-Dependent Gene Therapy Affects Fewer Neurons Than Conventional Over-Expression
Materials and Methods

Acute pilocarpine injections in the visual cortex were performed after viral injection of either AAV Camk2a-GFP or AAV cfos-GFP. Acute pilocarpine injections lead to focal seizures. The spread of the virus and the number of neurons positive for GFP were evaluated.


Results and Discussion


FIG. 6 shows that In vivo activity-dependent gene expression is specific for seizure focus, compared to constitutive gene expression. In contrast to conventional gene therapy (FIG. 6A), only a small number of neurons are targeted and the GFP reporter only lights up after a seizure (FIG. 6B) using activity-dependent gene expression.


Because the virus serotype used is the same (AAV9), the spread of transduction is comparable and this provides direct evidence that the treatment will not affect bystander neurons that do not participate in the seizure. Thus, the therapeutic effect is specifically targeted to neurons that become over-activated.


A schematic of the experimental procedure is shown in FIG. 6C.


Example 7 - Preclinical Epilepsy Model
Materials and Methods

A chronic rat model of temporal lobe epilepsy (TLE) was created using intraperitoneal (IP) injection of kainic acid (KA). After 12 weeks EEG transmitters and cannulas were implanted and the rats were recorded continuously for 5 weeks (Baseline). Then, AAV-cfos-dsGFP or AAV-cfos-dsGFP-KCNA1 (as shown in FIG. 8) were injected through the cannulas and animals were recorded for a further 8 weeks.


Results and Discussion


FIG. 7 demonstrates in vivo activity-dependent gene therapy in a rat epilepsy model, using the construct of FIG. 8. A decrease in number of seizures was observed in rats injected with AAV-cfos-dsGFP-KCNA1 compared to AAV-cfos-dsGFP (FIG. 7A). In some cases, the construct of FIG. 8 will lack a sequence encoding a reporter protein, as shown in FIG. 9, and in SEQ ID NO: 10. This may be preferred for regulatory reasons, for example.



FIG. 24 provides further data to also demonstrate in vivo activity-dependent gene therapy in a rat epilepsy model, using the construct of FIG. 8. A decrease in number of seizures was observed in rats injected with AAV-cfos-dsGFP-KCNA1 compared to AAV-cfos-dsGFP (FIG. 24 C, D). In some cases, the construct of FIG. 8 will lack a sequence encoding a reporter protein, as shown in FIG. 9, and in SEQ ID NO: 10. This may be preferred for regulatory reasons, for example.


Example 8 - Activity-Dependent Gene Therapy Is Activated by a Single Seizure and Selectively Damps Neuronal Excitability in Hyperactive Neurons
Materials and Methods

Acute intraperitoneal Pentylenetetrazole (PTZ) injections were performed after viral injection of either AAV cfos-GFP or c-Fos-dsGFP-KCNJ2 or mArc-dsGFP-KCNA1, mArc-dsGFP-KCNJ2 or ESARE-dsGFP-KCNA1, or ESARE-dsGFP-KCNA1 or NRAM-dsGFP-KCNA1. Acute PTZ injections lead to a single tonic-clonic generalised seizure. The effect on fluorescent cells (activated by the seizure) after >2 hours was evaluated with single cell patch clamp. The experimental setup is shown in FIG. 10.


Results and Discussion


FIGS. 11 to 15 show that, in vivo, activity-dependent gene expression is specific for seizures, and is able to damp neuronal excitability with different promoters and transgenes. The strength of the promoters differed (FIGS. 12, 14 and 15). Expression was observed in Hippocampal CA3 dentate gyrus (granule cells and mossy cells), subiculum and deep hippocampal CA1 neurons. ESARE appears strongest, especially in CA1.The effect of either KCNA1 or KCNJ2 on neurons also differed (FIG. 13), but all permutations of promoter and transgene lead to a profound decrease in neuronal excitability. KCNA1 decreases the firing frequency while KCNJ2 hyperpolarizes the membrane resting potential to make neurons less excitable (FIGS. 11 to 13).


Because the fluorescence is selective to a small subset of neurons, this provides direct evidence that the treatment will not affect bystander neurons that do not participate in the seizure. Thus, the therapeutic effect is specifically targeted to neurons that become over-activated. The transient expression of either KCNA1 or KCNJ2 is enough to reduce neuronal excitability. This provides direct evidence that the treatment selectively decreases the activity of hyperexcitable neurons participating in the seizure.


Example 9 - Activity-Dependent Gene Therapy Is Activated by a Single Seizure and Is Anti-Epileptic
Materials and Methods

Two consecutive acute intraperitoneal Pentylenetetrazole (PTZ) injections were performed after viral injection of either AAV cfos-GFP or c-Fos-dsGFP-KCNJ2. Each PTZ injection normally leads to a single tonic-clonic generalised seizure allowing the protective effect of the activity-dependent therapy to be evaluated with the second injection. The experimental set up is shown in FIG. 16.


Results and Discussion


FIG. 17 shows a protective effect against the chemoconvulsant injection. Activity-dependent gene therapy is activated by the first seizure, and prevents the second chemoconvulsant injection from eliciting a seizure. This result provides direct evidence that the treatment will protect from repetitive seizures.


Example 10 - Activity-Dependent Gene Therapy Suppresses Seizures in a Preclinical Epilepsy Model
Materials and Methods

A chronic mouse model of temporal lobe epilepsy (TLE) was created using intra-amygdala injection of kainic acid (KA). After 2 weeks EEG transmitters and cannulas were implanted and the mice were recorded continuously for 2 weeks (Baseline). Then, AAV-cfos-dsGFP or AAV-cfos-dsGFP-KCNA1 (as shown in FIGS. 18-20) were injected through the cannulas and, after waiting 2 weeks for virus expression, animals were recorded for a further 2 weeks. After the recordings some animals were used to analyse fluorescence expression (FIG. 22) or to receive an acute PTZ injection (FIG. 21).


Results and Discussion


FIGS. 18-20 demonstrates in vivo activity-dependent gene therapy in a mouse epilepsy model. A strong decrease in number of seizures was observed in mice injected with AAV-cfos-dsGFP-KCNA1 compared to AAV-cfos-dsGFP (FIGS. 19 and 20). Animals injected with AAV-cfos-dsGFP-KCNA1 receiving a further PTZ injection showed a higher survival compared to the animals injected with AAV-cfos-dsGFP (FIG. 21). Furthermore, animals treated with AAV-cfos-dsGFP-KCNA1 in whom seizures were suppressed did not exhibit fluorescence, indicating that the therapy was switched off after successful treatment (FIG. 22). N=6 (AAV-cfos-dsGFP) and n=5 (AAV-cfos-dsGFP-KCNA1).


These data confirm the self-regulated anti-epileptic effect of the activity-dependent gene therapy.


In some cases, the construct of FIG. 8 will lack a sequence encoding a reporter protein, as shown in FIG. 9, and in SEQ ID NO: 10. This may be preferred for regulatory reasons, for example.


Example 11 - Activity-Dependent Gene Therapy Has No Effect on Physiological Behaviour (Spontaneous Locomotion, Anxiety and Memory)
Materials and Methods

Mice were tested for different behaviour using open field, Object Location Test and T-Maze Spontaneous Alternation before and after injection with either AAV-cfos-dsGFP or AAV-cfos-dsGFP-KCNA1.


Results and Discussion


FIG. 23 summarizes the tests used to show that treatment with AAV-cfos-dsGFP-KCNA1 had no deleterious effects on physiological behaviour including spontaneous locomotion, and tests of anxiety and memory. N=5 (AAV-cfos-dsGFP) and n=3 (AAV-cfos-dsGFP-KCNA1).


These data confirm that activity-dependent gene therapy well tolerated.


FURTHER EMBODIMENTS OF THE INVENTION

The following embodiments E1 to E33 also form part of the invention:


E1. An expression vector for use in a method of treatment of a neurological disorder associated with neuronal hyperexcitability in a subject, the vector comprising:

  • (i) a polynucleotide sequence (“gene”) encoding a polypeptide (“gene product”) which ameliorates said disorder when expressed in the subject’s neural cells, wherein the gene is operably linked to
  • (ii) a neuronal activity-dependent promoter suitable to drive expression of the gene product in the subject’s neural cells.


E2. The expression vector for use of E1, wherein the level of expression of the gene product increases when the neuron becomes more excited and decreases when the neuron becomes less excited.


E3. The expression vector for use according to any one of the above embodiments, wherein the promoter is a pyramidal neuronal activity-dependent promoter.


E4. The expression vector for use according to any one of the above embodiments, wherein the promoter is an immediate early gene (IEG) promoter.


E5. The expression vector for use according to any one of the above embodiments, wherein the promoter is c-Fos, Arc, or Egr1.


E6. The expression vector for use according to any one of the above embodiments, wherein the promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 3 or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 3.


E7. The expression vector for use according to any one of the above embodiments, wherein the gene is an ion channel gene, and the gene product is an ion channel.


E8. The expression vector for use according to any one of the above embodiments, wherein the gene is a potassium ion channel gene, and the gene product is a potassium ion channel.


E9. The expression vector for use according to any one of the above embodiments, wherein the gene is a KCNA1 gene, and the gene product is a Kv1.1 potassium channel.


E10. The expression vector for use according to any one of the above embodiments, wherein the gene is an engineered KCNA1 gene, and the gene product is an edited Kv1.1 potassium channel.


E11. The expression vector for use according to any one of the above embodiments, wherein the engineered KCNA1 gene has a nucleotide sequence having at least 90% sequence identity to the nucleotide sequence shown in SEQ ID NO: 1, and


wherein the edited Kv1.1 potassium channel has an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO: 2 and comprises a valine amino acid residue at a position corresponding to amino acid residue 400 shown in SEQ ID NO: 2.


E12. The expression vector for use of any of the above embodiments, wherein the method of treatment is close-loop therapy.


E13. The expression vector for use according to any one of the above embodiments, wherein the neurological disorder is a seizure disorder.


E14. The expression vector for use according to E13, wherein the seizure disorder is epilepsy, optionally neocortical epilepsy, temporal lobe epilepsy or refractory epilepsy.


E15. The expression vector for use according to any one of E1-12, wherein the neurological disorder is Parkinson’s disease, chronic pain, sudden unexpected death in epilepsy (SUDEP), migraine, cluster headache, trigeminal neuralgia, post-herpetic neuralgia, paroxysmal movement disorders, uni- or bipolar affective disorders, anxiety, or phobias.


E16. The expression vector for use according to any one of the above embodiments, wherein the vector is a viral vector.


E17. The expression vector for use according to E16, wherein the viral vector is a recombinant adeno-associated virus (AAV) vector, or a lentiviral vector, optionally wherein the lentiviral vector is a non-integrating lentiviral vector.


E18. The expression vector for use according to E16, wherein the vector comprises a nucleotide sequence having at least 95% identity to the nucleotide sequence of SEQ ID NO: 8, SEQ ID NO: 9 or SEQ ID NO: 10.


E19. An expression vector comprising:

  • (a) an engineered KCNA1 gene having a nucleotide sequence having at least 90% sequence identity to the nucleotide sequence shown in SEQ ID NO: 1, encoding an edited Kv1.1 potassium channel having an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO: 2 and comprises a valine amino acid residue at a position corresponding to amino acid residue 400 shown in SEQ ID NO: 2; and
  • (b) an activity-dependent promoter having a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 3 or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 3,

wherein the gene is operably linked to the promoter.


E20 An in vitro method of making viral particles comprising:

  • transducing mammalian cells with a vector according to any one of E1-19 and expressing viral packaging and envelope proteins necessary for particle formation in the cells; and
  • culturing the transduced cells in a culture medium, such that the cells produce viral particles that are released into the medium.


E21. An in vitro method of E20, wherein the method comprises transducing the mammalian cells with one or more viral packaging and envelope expression vectors that encode the viral packaging and envelope proteins necessary for particle formation.


E22. An in vitro method of E20 or E21, wherein the one or more packaging proteins includes a non-functional integrase enzyme such that the vector is unable to incorporate its viral genome into the genome of the cell.


E23. An in vitro method of any one of E20-22, further comprising separating the viral particles from the culture medium and optionally concentrating the viral particles.


E24. A viral particle produced by the method of any one of E20-23, the viral particle optionally comprising an RNA molecule or DNA molecule transcribed from the expression vector of any of E1-19.


E25. A viral particle comprising a single stranded RNA molecule or DNA molecule encoding a gene as described in any one of E1-19,

  • wherein the gene encodes a gene product as defined in any one of E1-19,
  • wherein the promoter is optionally as defined in any one of E1-19, and
  • wherein the viral particle is optionally an AAV.


E26. A kit comprising an expression vector of any one of E1-19 and one or more viral packaging and envelope expression vectors that encode viral packaging and envelope proteins necessary for particle formation when expressed in a cell.


E27. A kit of E26, wherein the viral packaging expression vector is an integrase-deficient viral packaging expression vector.


E28. A viral particle of E24 or E25 for use in a method of treatment, wherein the method of treatment is defined in any one of E12-15.


E29. A method of treatment of a neurological disorder as defined in any one of E1 and 12-15, comprising administering to an individual with the neurological disorder the expression vector as defined in any one of E1-19, or the viral particle of E24 or E25.


E30. A method of confirming the presence of a gene product as defined in any one of E1-19, the method comprising:

  • transducing a cell with an expression vector of any one of E1-19 or administering a viral particle of E24 or E25 to a cell under conditions that permit expression of the gene product; and
  • detecting the presence of the gene product in the cell using a hybridisation assay.


E31. An in vitro or ex vivo method of confirming the presence of a gene product as defined in any one of E1-19 that has been obtained from a subject administered with a viral particle of E24 or E25, the method comprising:


detecting the presence of the gene product in the cell using a hybridisation assay.


E32. A method of E29 or E30, wherein the hybridisation assay is an in situ hybridisation assay using a labelled RNA probe, optionally wherein the labelled RNA probe is fluorescently labelled.


E33. A cell comprising the expression vector of any one of E1-19.


Sequence Annex











Nucleotide sequence of an exemplary engineered hum


an KCNA1 gene (SEQ ID NO: 1) ATGACCGTGATGAGCGGCGAG


AACGTGGACGAGGCCTCTGCCGCTCCTGGACACCCTCAGGATGGCAGCTA


TCCCAGACAGGCCGACCACGACGATCACGAGTGCTGCGAGCGGGTCGTGA


TCAACATCAGCGGCCTGAGATTCGAGACACAGCTGAAAACCCTGGCCCAG


TTCCCCAACACCCTGCTGGGCAACCCCAAGAAACGGATGCGGTACTTCGA


CCCCCTGCGGAACGAGTACTTCTTCGACCGGAACCGGCCCAGCTTCGACG


CCATCCTGTACTACTACCAGAGCGGCGGCAGACTGCGGAGGCCCGTGAAT


GTGCCCCTGGACATGTTCAGCGAGGAAATCAAGTTCTACGAGCTGGGCGA


GGAAGCCATGGAAAAGTTCAGAGAGGACGAGGGCTTCATCAAAGAGGAAG


AGAGGCCCCTGCCCGAGAAAGAATACCAGAGACAAGTGTGGCTGCTGTTC


GAGTACCCCGAGTCTAGCGGCCCTGCCAGAGTGATCGCCATCGTGTCCGT


GATGGTCATCCTGATCTCTATCGTGATCTTCTGCCTGGAAACCCTGCCTG


AGCTGAAGGACGACAAGGACTTCACCGGCACCGTGCACCGGATCGACAAC


ACCACCGTGATCTACAACAGCAATATCTTCACCGACCCATTCTTCATCGT


GGAAACACTGTGCATCATCTGGTTCAGCTTCGAGCTGGTCGTGCGGTTCT


TCGCCTGCCCCAGCAAGACCGACTTCTTCAAGAACATCATGAACTTCATT


GATATCGTGGCCATCATCCCCTACTTCATCACCCTGGGCACCGAGATCGC


CGAGCAGGAAGGCAATCAGAAGGGCGAGCAGGCCACCAGCCTGGCCATTC


TGAGAGTGATCAGACTCGTGCGGGTGTTCCGGATCTTCAAGCTGAGCCGG


CACAGCAAGGGCCTGCAGATCCTGGGCCAGACACTGAAGGCCAGCATGAG


AGAGCTGGGCCTGCTGATCTTCTTTCTGTTCATCGGCGTGATCCTGTTCA


GCAGCGCCGTGTACTTCGCCGAGGCCGAAGAAGCCGAGAGCCACTTCAGC


TCTATCCCCGACGCCTTTTGGTGGGCCGTGGTGTCCATGACCACAGTGGG


CTACGGCGACATGTAnCCCGTGACAATCGGCGGCAAGATCGTGGGCAGCC


TGTGTGCCATTGCCGGCGTGCTGACAGTCGCCCTGCCTGTGCCTGTGATC


GTGTCCAACTTCAACTACTTCTACCACCGGGAAACCGAGGGGGAGGAACA


GGCTCAGCTGCTGCACGTGTCCAGCCCCAATCTGGCCAGCGACAGCGACC


TGAGCAGACGGTCTAGCAGCACCATGAGCAAGAGCGAGTACATGGAAATC


GAAGAGGACATGAACAACTCTATCGCCCACTACCGCCAAGTGAACATCCG


GACCGCCAACTGCACCACCGCCAACCAGAACTGCGTGAACAAGAGCAAGC


TGCTGACCGATGTCTGA






wherein n is T or C










Amino acid sequence of an edited human Kv1.1 compr



ising a valine at position 400 (underlined) (SEQ I


D NO: 2) MTVMSGENVDEASAAPGHPQDGSYPRQADHDDHECCERWIN


ISGLRFETQLKTLAQFPNTLLGNPKKRMRYFDPLRNEYFFDRNRPSFDAI


LYYYQSGGRLRRPVNVPLDMFSEEIKFYELGEEAMEKFREDEGFIKEEER


PLPEKEYQRQVWLLFEYPESSGPARVIAIVSVMVILISIVIFCLETLPEL


KDDKDFTGTVHRIDNTTVIYNSNIFTDPFFIVETLCIIWFSFELWRFFAC


PSKTDFFKNIMNFIDIVAIIPYFITLGTEIAEQEGNQKGEQATSLAILRV


IRLVRVFRIFKLSRHSKGLQILGQTLKASMRELGLLIFFLFIGVILFSSA


VYFAEAEEAESHFSSIPDAFWWAWSMTTVGYGDMYPVTIGGKIVGSLCAI


AGVLTVALPVPVIVSNFNYFYHRETEGEEQAQLLHVSSPNLASDSDLSRR


SSSTMSKSEYMEIEEDMNNSIAHYRQVNIRTANCTTANQNCVNKSKLLTD


V

















Nucleotide sequence of the cfos promoter (SEQ ID N



O: 3) GCGGCCGCAGCTTTCCTTTAGGAACAGAGGCTTCGAGCCTTTAA


GGCTGCGTACTTGCTTCTCCTAATACCAGAGACTCAAAAAAAAAAAAAAA


GTTCCAGATTGCTGGACAATGACCCGGGTCTCATCCCTTGACCCTGGGAA


CCGGGTCCACATTGAATCAGGTGCGAATGTTCGCTCGCCTTCTCTGCCTT


TCCCGCCTCCCCTCCCCCGGCCGCGGCCCCGGTTCCCCCCCTGCGCTGCA


CCCTCAGAGTTGGCTGCAGCCGGCGAGCTGTTCCCGTCAATCCCTCCCTC


CTTTACACAGGATGTCCATATTAGGACATCTGCGTCAGCAGGTTTCCACG


GCCGGTCCCTGTTGTTCTGGGGGGGGGACCATCTCCGAAATCCTACACGC


GGAAGGTCTAGGAGACCCCCTAAGATCCCAAATGTGAACACTCATAGGTG


AAAGATGTATGCCAAGACGGGGGTTGAAAGCCTGGGGCGTAGAGTTGACG


ACAGAGCGCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCCCTTCCAGTT


CCGCCCAGTGACGTAGGAAGTCCATCCATTCACAGCGCT

















Nucleotide sequence of wild-type KCNA1 coding sequ



ence, comprising an adenine at nucleotide position


1998(underlined) (SEQ ID NO: 4) ATGACGGTGATGTCTGGG


GAGAACGTGGACGAGGCTTCGGCCGCCCCGGGCCACCCCCAGGATGGCAG


CTACCCCCGGCAGGCCGACCACGACGACCACGAGTGCTGCGAGCGCGTGG


TGATCAACATCTCCGGGCTGCGCTTCGAGACGCAGCTCAAGACCCTGGCG


CAGTTCCCCAACACGCTGCTGGGCAACCCTAAGAAACGCATGCGCTACTT


CGACCCCCTGAGGAACGAGTACTTCTTCGACCGCAACCGGCCCAGCTTCG


ACGCCATCCTCTACTACTACCAGTCCGGCGGCCGCCTGCGGAGGCCGGTC


AACGTGCCCCTGGACATGTTCTCCGAGGAGATCAAGTTTTACGAGTTGGG


CGAGGAGGCCATGGAGAAGTTCCGGGAGGACGAGGGCTTCATCAAGGAGG


AGGAGCGCCCTCTGCCCGAGAAGGAGTACCAGCGCCAGGTGTGGCTGCTC


TTCGAGTACCCCGAGAGCTCGGGGCCCGCCAGGGTCATCGCCATCGTCTC


CGTCATGGTCATCCTCATCTCCATCGTCATCTTTTGCCTGGAGACGCTCC


CCGAGCTGAAGGATGACAAGGACTTCACGGGCACCGTCCACCGCATCGAC


AACACCACGGTCATCTACAATTCCAACATCTTCACAGACCCCTTCTTCAT


CGTGGAAACGCTGTGTATCATCTGGTTCTCCTTCGAGCTGGTGGTGCGCT


TCTTCGCCTGCCCCAGCAAGACGGACTTCTTCAAAAACATCATGAACTTC


ATAGACATTGTGGCCATCATTCCTTATTTCATCACGCTGGGCACCGAGAT


AGCTGAGCAGGAAGGAAACCAGAAGGGCGAGCAGGCCACCTCCCTGGCCA


TCCTCAGGGTCATCCGCTTGGTAAGGGTTTTTAGAATCTTCAAGCTCTCC


CGCCACTCTAAGGGCCTCCAGATCCTGGGCCAGACCCTCAAAGCTAGTAT


GAGAGAGCTAGGGCTGCTCATCTTTTTCCTCTTCATCGGGGTCATCCTGT


TTTCTAGTGCAGTGTACTTTGCCGAGGCGGAAGAAGCTGAGTCGCACTTC


TCCAGTATCCCCGATGCTTTCTGGTGGGCGGTGGTGTCCATGACCACTGT


AGGATACGGTGACATGTACCCTGTGACAATTGGAGGCAAGATCGTGGGCT


CCTTGTGTGCCATCGCTGGTGTGCTAACAATTGCCCTGCCCGTACCTGTC


ATTGTGTCCAATTTCAACTATTTCTACCACCGAGAAACTGAGGGGGAAGA


GCAGGCTCAGTTGCTCCACGTCAGTTCCCCTAACTTAGCCTCTGACAGTG


ACCTCAGTCGCCGCAGTTCCTCTACTATGAGCAAGTCTGAGTACATGGAG


ATCGAAGAGGATATGAATAATAGCATAGCCCATTATAGACAGGTCAATAT


CAGAACTGCCAATTGCACCACTGCTAACCAAAACTGCGTTAATAAGAGCA


AGCTACTGACCGATGTTTAA














Amino acid sequence of wild-type human Kv1.1, comp



rising a isoleucine at position 400 (underlined) (


SEQ ID NO: 5) MTVMSGENVDEASAAPGHPQDGSYPRQADHDDHECC


ERWINISGLRFETQLKTLAQFPNTLLGNPKKRMRYFDPLRNEYFFDRNRP


SFDAILYYYQSGGRLRRPVNVPLDMFSEEIKFYELGEEAMEKFREDEGFI


KEEERPLPEKEYQRQVWLLFEYPESSGPARVIAIVSVMVILISIVIFCLE


TLPELKDDKDFTGTVHRIDNTTVIYNSNIFTDPFFIVETLCIIWFSFELW


RFFACPSKTDFFKNIMNFIDIVAIIPYFITLGTEIAEQEGNQKGEQATSL


AILRVIRLVRVFRIFKLSRHSKGLQILGQTLKASMRELGLLIFFLFIGVI


LFSSAVYFAEAEEAESHFSSIPDAFWWAWSMTTVGYGDMYPVTIGGKIVG


SLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQAQLLHVSSPNLASDS


DLSRRSSSTMSKSEYMEIEEDMNNSIAHYRQVNIRTANCTTANQNCVNKS


KLLTDV

















Nucleotide sequence of cfos-GFP construct (SEQ ID 



NO: 6) GCGGCCGCAGCTTTCCTTTAGGAACAGAGGCTTCGAGCCTTTA


AGGCTGCGTACTTGCTTCTCCTAATACCAGAGACTCAAAAAAAAAAAAAA


AGTTCCAGATTGCTGGACAATGACCCGGGTCTCATCCCTTGACCCTGGGA


ACCGGGTCCACATTGAATCAGGTGCGAATGTTCGCTCGCCTTCTCTGCCT


TTCCCGCCTCCCCTCCCCCGGCCGCGGCCCCGGTTCCCCCCCTGCGCTGC


ACCCTCAGAGTTGGCTGCAGCCGGCGAGCTGTTCCCGTCAATCCCTCCCT


CCTTTACACAGGATGTCCATATTAGGACATCTGCGTCAGCAGGTTTCCAC


GGCCGGTCCCTGTTGTTCTGGGGGGGGGACCATCTCCGAAATCCTACACG


CGGAAGGTCTAGGAGACCCCCTAAGATCCCAAATGTGAACACTCATAGGT


GAAAGATGTATGCCAAGACGGGGGTTGAAAGCCTGGGGCGTAGAGTTGAC


GACAGAGCGCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCCCTTCCAGT


TCCGCCCAGTGACGTAGGAAGTCCATCCATTCACAGCGCTTCTATAAAGG


CGCCAGCTGAGGCGCCTACTACTCCAACCGCGACTGCAGCGAGCAACTGA


GAAGACTGGATAGAGCCGGCGGTTCCGCGAACGAGCAGTGACCGCGCTCC


CACCCAGCTCTGCTCTGCAGCTCCCACCAGTGTCTGGCCGCATCGATTCT


AGAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCA


AAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGA


GGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGT


CCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGC


AGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCACTTTGCC


TTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGCCCAAGCGGAG


GATCCGCCACCatgcccgccatgaagatcgagtgccgcatcaccggcacc


ctgaacggcgtggagttcgagctggtgggcggcggagagggcacccccga


GCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGGCGCCCTGACCT


TCAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCTTCTACCACTTC


GGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCACGCCATCAACAA


CGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGACGGCGGCGTGC


TGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGCGAC


TTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTGATCTTCACCGA


CAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCACCCCATGGGCG


ATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTGCGCGACGGC


GGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTCAAGAGCGCCAT


CCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGCCTTCCGCCGCG


TGGAGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGGAGTACCAGCAC


GCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGATATCAGCCATGG


CTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCTGCCCATGTCTT


GTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCTGTGCTTCTGCT


AGGATCAATGTGTGA














Nucleotide sequence of cfos-dsGFP-KCNA1 construct 



(SEQ ID NO: 7) GCGGCCGCAGCTTTCCTTTAGGAACAGAGGCTTCG


AGCCTTTAAGGCTGCGTACTTGCTTCTCCTAATACCAGAGACTCAAAAAA


AAAAAAAAAGTTCCAGATTGCTGGACAATGACCCGGGTCTCATCCCTTGA


CCCTGGGAACCGGGTCCACATTGAATCAGGTGCGAATGTTCGCTCGCCTT


CTCTGCCTTTCCCGCCTCCCCTCCCCCGGCCGCGGCCCCGGTTCCCCCCC


TGCGCTGCACCCTCAGAGTTGGCTGCAGCCGGCGAGCTGTTCCCGTCAAT


CCCTCCCTCCTTTACACAGGATGTCCATATTAGGACATCTGCGTCAGCAG


GTTTCCACGGCCGGTCCCTGTTGTTCTGGGGGGGGGACCATCTCCGAAAT


CCTACACGCGGAAGGTCTAGGAGACCCCCTAAGATCCCAAATGTGAACAC


TCATAGGTGAAAGATGTATGCCAAGACGGGGGTTGAAAGCCTGGGGCGTA


GAGTTGACGACAGAGCGCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCC


CTTCCAGTTCCGCCCAGTGACGTAGGAAGTCCATCCATTCACAGCGCTTC


TATAAAGGCGCCAGCTGAGGCGCCTACTACTCCAACCGCGACTGCAGCGA


GCAACTGAGAAGACTGGATAGAGCCGGCGGTTCCGCGAACGAGCAGTGAC


CGCGCTCCCACCCAGCTCTGCTCTGCAGCTCCCACCAGTGTCTGGCCGCA


TCGATTCTAGAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACT


CCCTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAA


AACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGT


GGCCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGA


GGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCC


ACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGCCC


AAGCGGAGGATCCGCCACCatgcccgccatgaagatcgagtgccgcatca


ccggcaccctgaacggcgtggagttcgagctggtgggcggcggagagggc


acccccgaGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGGCGC


CCTGACCTTCAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCTTCT


ACCACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCACGCC


ATCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGACGG


CGGCGTGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGA


TCGGCGACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTGATC


TTCACCGACAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCACCC


CATGGGCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTGC


GCGACGGCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTCAAG


AGCGCCATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGCCTT


CCGCCGCGTGGAGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGGAGT


ACCAGCACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGATATC


AGCCATGGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCTGCC


CATGTCTTGTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCTGTG


CTTCTGCTAGGATCAATGTGACCGGTGAGGGCAGAGGAAGTCTTCTAACA


TGCGGTGACGTGGAGGAGAATCCCGGCCCTATGACCGTGATGAGCGGCGA


GAACGTGGACGAGGCCTCTGCCGCTCCTGGACACCCTCAGGATGGCAGCT


ATCCCAGACAGGCCGACCACGACGATCACGAGTGCTGCGAGCGGGTCGTG


ATCAACATCAGCGGCCTGAGATTCGAGACACAGCTGAAAACCCTGGCCCA


GTTCCCCAACACCCTGCTGGGCAACCCCAAGAAACGGATGCGGTACTTCG


ACCCCCTGCGGAACGAGTACTTCTTCGACCGGAACCGGCCCAGCTTCGAC


GCCATCCTGTACTACTACCAGAGCGGCGGCAGACTGCGGAGGCCCGTGAA


TGTGCCCCTGGACATGTTCAGCGAGGAAATCAAGTTCTACGAGCTGGGCG


AGGAAGCCATGGAAAAGTTCAGAGAGGACGAGGGCTTCATCAAAGAGGAA


GAGAGGCCCCTGCCCGAGAAAGAATACCAGAGACAAGTGTGGCTGCTGTT


CGAGTACCCCGAGTCTAGCGGCCCTGCCAGAGTGATCGCCATCGTGTCCG


TGATGGTCATCCTGATCTCTATCGTGATCTTCTGCCTGGAAACCCTGCCT


GAGCTGAAGGACGACAAGGACTTCACCGGCACCGTGCACCGGATCGACAA


CACCACCGTGATCTACAACAGCAATATCTTCACCGACCCATTCTTCATCG


TGGAAACACTGTGCATCATCTGGTTCAGCTTCGAGCTGGTCGTGCGGTTC


TTCGCCTGCCCCAGCAAGACCGACTTCTTCAAGAACATCATGAACTTCAT


TGATATCGTGGCCATCATCCCCTACTTCATCACCCTGGGCACCGAGATCG


CCGAGCAGGAAGGCAATCAGAAGGGCGAGCAGGCCACCAGCCTGGCCATT


CTGAGAGTGATCAGACTCGTGCGGGTGTTCCGGATCTTCAAGCTGAGCCG


GCACAGCAAGGGCCTGCAGATCCTGGGCCAGACACTGAAGGCCAGCATGA


GAGAGCTGGGCCTGCTGATCTTCTTTCTGTTCATCGGCGTGATCCTGTTC


AGCAGCGCCGTGTACTTCGCCGAGGCCGAAGAAGCCGAGAGCCACTTCAG


CTCTATCCCCGACGCCTTTTGGTGGGCCGTGGTGTCCATGACCACAGTGG


GCTACGGCGACATGGTGCCCGTGACAATCGGCGGCAAGATCGTGGGCAGC


CTGTGTGCCATTGCCGGCGTGCTGACAGTCGCCCTGCCTGTGCCTGTGAT


CGTGTCCAACTTCAACTACTTCTACCACCGGGAAACCGAGGGGGAGGAAC


AGGCTCAGCTGCTGCACGTGTCCAGCCCCAATCTGGCCAGCGACAGCGAC


CTGAGCAGACGGTCTAGCAGCACCATGAGCAAGAGCGAGTACATGGAAAT


CGAAGAGGACATGAACAACTCTATCGCCCACTACCGCCAAGTGAACATCC


GGACCGCCAACTGCACCACCGCCAACCAGAACTGCGTGAACAAGAGCAAG


CTGCTGACCGATGTCTGA

















Nucleotide sequence of optimised AAV-cfos-dsGFP-KC



NA1 vector (SEQ ID NO: 8) cctgcaggcagctgcgcgctcgct


cgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttggt


cgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaactc


catcactaggggttcctgcggccgcacgcgtTTCGCTATTACGCCAGTTT


TATTGCGGCCGCAGCTTTCCTTTAGGAACAGAGGCTTCGAGCCTTTAAGG


CTGCGTACTTGCTTCTCCTAATACCAGAGACTCAAAAAAAAAAAAAAAGT


TCCAGATTGCTGGACAATGACCCGGGTCTCATCCCTTGACCCTGGGAACC


GGGTCCACATTGAATCAGGTGCGAATGTTCGCTCGCCTTCTCTGCCTTTC


CCGCCTCCCCTCCCCCGGCCGCGGCCCCGGTTCCCCCCCTGCGCTGCACC


CTCAGAGTTGGCTGCAGCCGGCGAGCTGTTCCCGTCAATCCCTCCCTCCT


TTACACAGGATGTCCATATTAGGACATCTGCGTCAGCAGGTTTCCACGGC


CGGTCCCTGTTGTTCTGGGGGGGGGACCATCTCCGAAATCCTACACGCGG


AAGGTCTAGGAGACCCCCTAAGATCCCAAATGTGAACACTCATAGGTGAA


AGATGTATGCCAAGACGGGGGTTGAAAGCCTGGGGCGTAGAGTTGACGAC


AGAGCGCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCCCTTCCAGTTCC


GCCCAGTGACGTAGGAAGTCCATCCATTCACAGCGCTTCTATAAAGGCGC


CAGCTGAGGCGCCTACTACTCCAACCGCGACTGCAGCGAGCAACTGAGAA


GACTGGATAGAGCCGGCGGTTCCGCGAACGAGCAGTGACCGCGCTCCCAC


CCAGCTCTGCTCTGCAGCTCCCACCAGTGTCTGGCCGCATCGATTCTAGA


ATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAA


GCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGA


TTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCA


TCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGG


CTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTT


CTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGCCCAAGCGGAGGAT


CCGCCACCatgcccgccatgaagatcgagtgccgcatcaccggcaccctg


aacggcgtggagttcgagctggtgggcggcggagagggcacccccgaGCA


GGGCCGCATGACCAACAAGATGAAGAGCACCAAAGGCGCCCTGACCTTCA


GCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCTTCTACCACTTCGGC


ACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCACGCCATCAACAACGG


CGGCTACACCAACACCCGCATCGAGAAGTACGAGGACGGCGGCGTGCTGC


ACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTC


AAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTGATCTTCACCGACAA


GATCATCCGCAGCAACGCCACCGTGGAGCACCTGCACCCCATGGGCGATA


ACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTGCGCGACGGCGGC


TACTACAGCTTCGTGGTGGACAGCCACATGCACTTCAAGAGCGCCATCCA


CCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGCCTTCCGCCGCGTGG


AGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGGAGTACCAGCACGCC


TTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGATATCAGCCATGGCTT


CCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCTGCCCATGTCTTGTG


CCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCTGTGCTTCTGCTAGG


ATCAATGTGACCGGTGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGT


GGAGGAGAATCCCGGCCCTATGACCGTGATGAGCGGCGAGAACGTGGACG


AGGCCTCTGCCGCTCCTGGACACCCTCAGGATGGCAGCTATCCCAGACAG


GCCGACCACGACGATCACGAGTGCTGCGAGCGGGTCGTGATCAACATCAG


CGGCCTGAGATTCGAGACACAGCTGAAAACCCTGGCCCAGTTCCCCAACA


CCCTGCTGGGCAACCCCAAGAAACGGATGCGGTACTTCGACCCCCTGCGG


AACGAGTACTTCTTCGACCGGAACCGGCCCAGCTTCGACGCCATCCTGTA


CTACTACCAGAGCGGCGGCAGACTGCGGAGGCCCGTGAATGTGCCCCTGG


ACATGTTCAGCGAGGAAATCAAGTTCTACGAGCTGGGCGAGGAAGCCATG


GAAAAGTTCAGAGAGGACGAGGGCTTCATCAAAGAGGAAGAGAGGCCCCT


GCCCGAGAAAGAATACCAGAGACAAGTGTGGCTGCTGTTCGAGTACCCCG


AGTCTAGCGGCCCTGCCAGAGTGATCGCCATCGTGTCCGTGATGGTCATC


CTGATCTCTATCGTGATCTTCTGCCTGGAAACCCTGCCTGAGCTGAAGGA


CGACAAGGACTTCACCGGCACCGTGCACCGGATCGACAACACCACCGTGA


TCTACAACAGCAATATCTTCACCGACCCATTCTTCATCGTGGAAACACTG


TGCATCATCTGGTTCAGCTTCGAGCTGGTCGTGCGGTTCTTCGCCTGCCC


CAGCAAGACCGACTTCTTCAAGAACATCATGAACTTCATTGATATCGTGG


CCATCATCCCCTACTTCATCACCCTGGGCACCGAGATCGCCGAGCAGGAA


GGCAATCAGAAGGGCGAGCAGGCCACCAGCCTGGCCATTCTGAGAGTGAT


CAGACTCGTGCGGGTGTTCCGGATCTTCAAGCTGAGCCGGCACAGCAAGG


GCCTGCAGATCCTGGGCCAGACACTGAAGGCCAGCATGAGAGAGCTGGGC


CTGCTGATCTTCTTTCTGTTCATCGGCGTGATCCTGTTCAGCAGCGCCGT


GTACTTCGCCGAGGCCGAAGAAGCCGAGAGCCACTTCAGCTCTATCCCCG


ACGCCTTTTGGTGGGCCGTGGTGTCCATGACCACAGTGGGCTACGGCGAC


ATGGTGCCCGTGACAATCGGCGGCAAGATCGTGGGCAGCCTGTGTGCCAT


TGCCGGCGTGCTGACAGTCGCCCTGCCTGTGCCTGTGATCGTGTCCAACT


TCAACTACTTCTACCACCGGGAAACCGAGGGGGAGGAACAGGCTCAGCTG


CTGCACGTGTCCAGCCCCAATCTGGCCAGCGACAGCGACCTGAGCAGACG


GTCTAGCAGCACCATGAGCAAGAGCGAGTACATGGAAATCGAAGAGGACA


TGAACAACTCTATCGCCCACTACCGCCAAGTGAACATCCGGACCGCCAAC


TGCACCACCGCCAACCAGAACTGCGTGAACAAGAGCAAGCTGCTGACCGA


TGTCTGAgTCGACAATCAACCTCATcgataccgagcgctgctcgagagat


ctacgggtggcatccctgtgacccctccccagtgcctctcctggccctgg


aagttgccactccagtgcccaccagccttgtcctaataaaattaagttgc


atcattttgtctgactaggtgtccttctataatattatggggtggagggg


ggtggtatggagcaaggggcaagttgggaagacaacctgtagggcctgcg


gggtctattgggaaccaagctggagtgcagtggcacaatcttggctcact


gcaatctccgcctcctgggttcaagcgattctcctgcctcagcctcccga


gttgttgggattccaggcatgcatgaccaggctcagctaatttttgtttt


tttggtagagacggggtttcaccatattggccaggctggtctccaactcc


taatctcaggtgatctacccaccttggcctcccaaattgctgggattaca


ggcgtgaaccactgctcccttccctgtccttctgattttgtaggtaacca


cgtgcggaccgagcggccgcaggaacccctagtgatggagttggccactc


cctctctgcgcgctcgctcgctcactgaggccgggcgaccaaaggtcgcc


cgacgcccgggctttgcccgggcggcctcagtgagcgagcgagcgcgcag


ctgcctgcaggggcgcctgatgcggtattttctccttacgcatctgtgcg


gtatttcacaccgcatacgtcaaagcaaccatagtacgcgccctgtagcg


gcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctaca


cttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttct


cgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctt


tagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgat


ttgggtgatggttcacgtagtgggccatcgccctgatagacggtttttcg


ccctttgacgttggagtccacgttctttaatagtggactcttgttccaaa


ctggaacaacactcaaccctatctcgggctattcttttgatttataaggg


attttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaa


atttaacgcgaattttaacaaaatattaacgtttacaattttatggtgca


ctctcagtacaatctgctctgatgccgcatagttaagccagccccgacac


ccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatc


cgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggt


tttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgc


ctatttttataggttaatgtcatgataataatggtttcttagacgtcagg


tggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttct


aaatacattcaaatatgtatccgctcatgagacaataaccctgataaatg


cttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgt


cgcccttattcccttttttgcggcattttgccttcctgtttttgctcacc


cagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacga


gtgggttacatcgaactggatctcaacagcggtaagatccttgagagttt


tcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctat


gtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgc


cgcatacactattctcagaatgacttggttgagtactcaccagtcacaga


aaagcatcttacggatggcatgacagtaagagaattatgcagtgctgcca


taaccatgagtgataacactgcggccaacttacttctgacaacgatcgga


ggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaac


tcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacg


agcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaacta


ttaactggcgaactacttactctagcttcccggcaacaattaatagactg


gatggaggcggataaagttgcaggaccacttctgcgctcggcccttccgg


ctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgc


ggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagt


tatctacacgacggggagtcaggcaactatggatgaacgaaatagacaga


tcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaa


gtttactcatatatactttagattgatttaaaacttcatttttaatttaa


aaggatctaggtgaagatcctttttgataatctcatgaccaaaatccctt


aacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaa


ggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaac


aaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctac


caactctttttccgaaggtaactggcttcagcagagcgcagataccaaat


actgtccttctagtgtagccgtagttaggccaccacttcaagaactctgt


agcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctg


ccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagtta


ccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcc


cagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagc


tatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccg


gtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggggg


aaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttg


agcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaac


gccagcaacgcggcctttttacggttcctggccttttgctggccttttgc


tcacatgt














Nucleotide sequence of cfos-KCNA1 construct (SEQ I



D NO: 9) GCGGCCGCAGCTTTCCTTTAGGAACAGAGGCTTCGAGCCTT


TAAGGCTGCGTACTTGCTTCTCCTAATACCAGAGACTCAAAAAAAAAAAA


AAAGTTCCAGATTGCTGGACAATGACCCGGGTCTCATCCCTTGACCCTGG


GAACCGGGTCCACATTGAATCAGGTGCGAATGTTCGCTCGCCTTCTCTGC


CTTTCCCGCCTCCCCTCCCCCGGCCGCGGCCCCGGTTCCCCCCCTGCGCT


GCACCCTCAGAGTTGGCTGCAGCCGGCGAGCTGTTCCCGTCAATCCCTCC


CTCCTTTACACAGGATGTCCATATTAGGACATCTGCGTCAGCAGGTTTCC


ACGGCCGGTCCCTGTTGTTCTGGGGGGGGGACCATCTCCGAAATCCTACA


CGCGGAAGGTCTAGGAGACCCCCTAAGATCCCAAATGTGAACACTCATAG


GTGAAAGATGTATGCCAAGACGGGGGTTGAAAGCCTGGGGCGTAGAGTTG


ACGACAGAGCGCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCCCTTCCA


GTTCCGCCCAGTGACGTAGGAAGTCCATCCATTCACAGCGCTTCTATAAA


GGCGCCAGCTGAGGCGCCTACTACTCCAACCGCGACTGCAGCGAGCAACT


GAGAAGACTGGATAGAGCCGGCGGTTCCGCGAACGAGCAGTGACCGCGCT


CCCACCCAGCTCTGCTCTGCAGCTCCCACCAGTGTCTGGCCGCATCGATT


CTAGAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCT


CAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAG


GAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGC


GTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTG


GCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCACTTTG


AGGATCCGCCACCATGACCGTGATGAGCGGCGAGAACGTGGACGAGGCCT


CTGCCGCTCCTGGACACCCTCAGGATGGCAGCTATCCCAGACAGGCCGAC


CACGACGATCACGAGTGCTGCGAGCGGGTCGTGATCAACATCAGCGGCCT


GAGATTCGAGACACAGCTGAAAACCCTGGCCCAGTTCCCCAACACCCTGC


TGGGCAACCCCAAGAAACGGATGCGGTACTTCGACCCCCTGCGGAACGAG


TACTTCTTCGACCGGAACCGGCCCAGCTTCGACGCCATCCTGTACTACTA


CCAGAGCGGCGGCAGACTGCGGAGGCCCGTGAATGTGCCCCTGGACATGT


TCAGCGAGGAAATCAAGTTCTACGAGCTGGGCGAGGAAGCCATGGAAAAG


TTCAGAGAGGACGAGGGCTTCATCAAAGAGGAAGAGAGGCCCCTGCCCGA


GAAAGAATACCAGAGACAAGTGTGGCTGCTGTTCGAGTACCCCGAGTCTA


GCGGCCCTGCCAGAGTGATCGCCATCGTGTCCGTGATGGTCATCCTGATC


TCTATCGTGATCTTCTGCCTGGAAACCCTGCCTGAGCTGAAGGACGACAA


GGACTTCACCGGCACCGTGCACCGGATCGACAACACCACCGTGATCTACA


ACAGCAATATCTTCACCGACCCATTCTTCATCGTGGAAACACTGTGCATC


ATCTGGTTCAGCTTCGAGCTGGTCGTGCGGTTCTTCGCCTGCCCCAGCAA


GACCGACTTCTTCAAGAACATCATGAACTTCATTGATATCGTGGCCATCA


TCCCCTACTTCATCACCCTGGGCACCGAGATCGCCGAGCAGGAAGGCAAT


CAGAAGGGCGAGCAGGCCACCAGCCTGGCCATTCTGAGAGTGATCAGACT


CGTGCGGGTGTTCCGGATCTTCAAGCTGAGCCGGCACAGCAAGGGCCTGC


AGATCCTGGGCCAGACACTGAAGGCCAGCATGAGAGAGCTGGGCCTGCTG


ATCTTCTTTCTGTTCATCGGCGTGATCCTGTTCAGCAGCGCCGTGTACTT


CGCCGAGGCCGAAGAAGCCGAGAGCCACTTCAGCTCTATCCCCGACGCCT


TTTGGTGGGCCGTGGTGTCCATGACCACAGTGGGCTACGGCGACATGGTG


CCCGTGACAATCGGCGGCAAGATCGTGGGCAGCCTGTGTGCCATTGCCGG


CGTGCTGACAGTCGCCCTGCCTGTGCCTGTGATCGTGTCCAACTTCAACT


ACTTCTACCACCGGGAAACCGAGGGGGAGGAACAGGCTCAGCTGCTGCAC


GTGTCCAGCCCCAATCTGGCCAGCGACAGCGACCTGAGCAGACGGTCTAG


CAGCACCATGAGCAAGAGCGAGTACATGGAAATCGAAGAGGACATGAACA


ACTCTATCGCCCACTACCGCCAAGTGAACATCCGGACCGCCAACTGCACC


ACCGCCAACCAGAACTGCGTGAACAAGAGCAAGCTGCTGACCGATGTCTG


A














Nucleotide sequence of optimised AAV-cfos-KCNA1 ve



ctor (SEQ ID NO: 10) cctgcaggcagctgcgcgctcgctcgctc


actgaggccgcccgggcaaagcccgggcgtcgggcgacctttggtcgccc


ggcctcagtgagcgagcgagcgcgcagagagggagtggccaactccatca


ctaggggttcctgcggccgcacgcgtTTCGCTATTACGCCAGTTTTATTG


CGGCCGCAGCTTTCCTTTAGGAACAGAGGCTTCGAGCCTTTAAGGCTGCG


TACTTGCTTCTCCTAATACCAGAGACTCAAAAAAAAAAAAAAAGTTCCAG


ATTGCTGGACAATGACCCGGGTCTCATCCCTTGACCCTGGGAACCGGGTC


CACATTGAATCAGGTGCGAATGTTCGCTCGCCTTCTCTGCCTTTCCCGCC


TCCCCTCCCCCGGCCGCGGCCCCGGTTCCCCCCCTGCGCTGCACCCTCAG


AGTTGGCTGCAGCCGGCGAGCTGTTCCCGTCAATCCCTCCCTCCTTTACA


CAGGATGTCCATATTAGGACATCTGCGTCAGCAGGTTTCCACGGCCGGTC


CCTGTTGTTCTGGGGGGGGGACCATCTCCGAAATCCTACACGCGGAAGGT


CTAGGAGACCCCCTAAGATCCCAAATGTGAACACTCATAGGTGAAAGATG


TATGCCAAGACGGGGGTTGAAAGCCTGGGGCGTAGAGTTGACGACAGAGC


GCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCCCTTCCAGTTCCGCCCA


GTGACGTAGGAAGTCCATCCATTCACAGCGCTTCTATAAAGGCGCCAGCT


GAGGCGCCTACTACTCCAACCGCGACTGCAGCGAGCAACTGAGAAGACTG


GATAGAGCCGGCGGTTCCGCGAACGAGCAGTGACCGCGCTCCCACCCAGC


TCTGCTCTGCAGCTCCCACCAGTGTCTGGCCGCATCGATTCTAGAATTCG


CTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGG


CATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGA


TATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGG


TCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGA


CACAGGTGTCCACTCCCAGGTCCAACTGCAGCCCAAGCGGAGGATCCGCC


ACCACCGGTATGACCGTGATGAGCGGCGAGAACGTGGACGAGGCCTCTGC


CGCTCCTGGACACCCTCAGGATGGCAGCTATCCCAGACAGGCCGACCACG


ACGATCACGAGTGCTGCGAGCGGGTCGTGATCAACATCAGCGGCCTGAGA


TTCGAGACACAGCTGAAAACCCTGGCCCAGTTCCCCAACACCCTGCTGGG


CAACCCCAAGAAACGGATGCGGTACTTCGACCCCCTGCGGAACGAGTACT


TCTTCGACCGGAACCGGCCCAGCTTCGACGCCATCCTGTACTACTACCAG


AGCGGCGGCAGACTGCGGAGGCCCGTGAATGTGCCCCTGGACATGTTCAG


CGAGGAAATCAAGTTCTACGAGCTGGGCGAGGAAGCCATGGAAAAGTTCA


GAGAGGACGAGGGCTTCATCAAAGAGGAAGAGAGGCCCCTGCCCGAGAAA


GAATACCAGAGACAAGTGTGGCTGCTGTTCGAGTACCCCGAGTCTAGCGG


CCCTGCCAGAGTGATCGCCATCGTGTCCGTGATGGTCATCCTGATCTCTA


TCGTGATCTTCTGCCTGGAAACCCTGCCTGAGCTGAAGGACGACAAGGAC


TTCACCGGCACCGTGCACCGGATCGACAACACCACCGTGATCTACAACAG


CAATATCTTCACCGACCCATTCTTCATCGTGGAAACACTGTGCATCATCT


GGTTCAGCTTCGAGCTGGTCGTGCGGTTCTTCGCCTGCCCCAGCAAGACC


GACTTCTTCAAGAACATCATGAACTTCATTGATATCGTGGCCATCATCCC


CTACTTCATCACCCTGGGCACCGAGATCGCCGAGCAGGAAGGCAATCAGA


AGGGCGAGCAGGCCACCAGCCTGGCCATTCTGAGAGTGATCAGACTCGTG


CGGGTGTTCCGGATCTTCAAGCTGAGCCGGCACAGCAAGGGCCTGCAGAT


CCTGGGCCAGACACTGAAGGCCAGCATGAGAGAGCTGGGCCTGCTGATCT


TCTTTCTGTTCATCGGCGTGATCCTGTTCAGCAGCGCCGTGTACTTCGCC


GAGGCCGAAGAAGCCGAGAGCCACTTCAGCTCTATCCCCGACGCCTTTTG


GTGGGCCGTGGTGTCCATGACCACAGTGGGCTACGGCGACATGGTGCCCG


TGACAATCGGCGGCAAGATCGTGGGCAGCCTGTGTGCCATTGCCGGCGTG


CTGACAGTCGCCCTGCCTGTGCCTGTGATCGTGTCCAACTTCAACTACTT


CTACCACCGGGAAACCGAGGGGGAGGAACAGGCTCAGCTGCTGCACGTGT


CCAGCCCCAATCTGGCCAGCGACAGCGACCTGAGCAGACGGTCTAGCAGC


ACCATGAGCAAGAGCGAGTACATGGAAATCGAAGAGGACATGAACAACTC


TATCGCCCACTACCGCCAAGTGAACATCCGGACCGCCAACTGCACCACCG


CCAACCAGAACTGCGTGAACAAGAGCAAGCTGCTGACCGATGTCTGAgTC


GACAATCAACCTCATcgataccgagcgctgctcgagagatctacgggtgg


catccctgtgacccctccccagtgcctctcctggccctggaagttgccac


tccagtgcccaccagccttgtcctaataaaattaagttgcatcattttgt


ctgactaggtgtccttctataatattatggggtggaggggggtggtatgg


agcaaggggcaagttgggaagacaacctgtagggcctgcggggtctattg


ggaaccaagctggagtgcagtggcacaatcttggctcactgcaatctccg


cctcctgggttcaagcgattctcctgcctcagcctcccgagttgttggga


ttccaggcatgcatgaccaggctcagctaatttttgtttttttggtagag


acggggtttcaccatattggccaggctggtctccaactcctaatctcagg


tgatctacccaccttggcctcccaaattgctgggattacaggcgtgaacc


actgctcccttccctgtccttctgattttgtaggtaaccacgtgcggacc


gagcggccgcaggaacccctagtgatggagttggccactccctctctgcg


cgctcgctcgctcactgaggccgggcgaccaaaggtcgcccgacgcccgg


gctttgcccgggcggcctcagtgagcgagcgagcgcgcagctgcctgcag


gggcgcctgatgcggtattttctccttacgcatctgtgcggtatttcaca


ccgcatacgtcaaagcaaccatagtacgcgccctgtagcggcgcattaag


cgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcg


ccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttc


gccggctttccccgtcaagctctaaatcgggggctccctttagggttccg


atttagtgctttacggcacctcgaccccaaaaaacttgatttgggtgatg


gttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacg


ttggagtccacgttctttaatagtggactcttgttccaaactggaacaac


actcaaccctatctcgggctattcttttgatttataagggattttgccga


tttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcg


aattttaacaaaatattaacgtttacaattttatggtgcactctcagtac


aatctgctctgatgccgcatagttaagccagccccgacacccgccaacac


ccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacaga


caagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtc


atcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttat


aggttaatgtcatgataataatggtttcttagacgtcaggtggcactttt


cggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattc


aaatatgtatccgctcatgagacaataaccctgataaatgcttcaataat


attgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttatt


cccttttttgcggcattttgccttcctgtttttgctcacccagaaacgct


ggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttaca


tcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaa


gaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggt


attatcccgtattgacgccgggcaagagcaactcggtcgccgcatacact


attctcagaatgacttggttgagtactcaccagtcacagaaaagcatctt


acggatggcatgacagtaagagaattatgcagtgctgccataaccatgag


tgataacactgcggccaacttacttctgacaacgatcggaggaccgaagg


agctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgat


cgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacac


cacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcg


aactacttactctagcttcccggcaacaattaatagactggatggaggcg


gataaagttgcaggaccacttctgcgctcggcccttccggctggctggtt


tattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattg


cagcactggggccagatggtaagccctcccgtatcgtagttatctacacg


acggggagtcaggcaactatggatgaacgaaatagacagatcgctgagat


aggtgcctcactgattaagcattggtaactgtcagaccaagtttactcat


atatactttagattgatttaaaacttcatttttaatttaaaaggatctag


gtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagtt


ttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttctt


gagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaacca


ccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttt


tccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttc


tagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcct


acatacctcgctctgctaatcctgttaccagtggctgctgccagtggcga


taagtcgtgtcttaccgggttggactcaagacgatagttaccggataagg


cgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggag


cgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaag


cgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggca


gggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctgg


tatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatt


tttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacg


cggcctttttacggttcctggccttttgctggccttttgctcacatgt














Engineered human KCNA1 gene encoding an edited Kv1



.1 with a Y379V substitution (SEQ ID NO: 11) atgac





cgtgatgagcggcgagaacgtggacgaggcctctgccgctcctggacacc


ctcaggatggcagctatcccagacaggccgaccacgacgatcacgagtgc


tgcgagcgggtcgtgatcaacatcagcggcctgagattcgagacacagct


gaaaaccctggcccagttccccaacaccctgctgggcaaccccaagaaac


ggatgcggtacttcgaccccctgcggaacgagtacttcttcgaccggaac


cggcccagcttcgacgccatcctgtactactaccagagcggcggcagact


gcggaggcccgtgaatgtgcccctggacatgttcagcgaggaaatcaagt


tctacgagctgggcgaggaagccatggaaaagttcagagaggacgagggc


ttcatcaaagaggaagagaggcccctgcccgagaaagaataccagagaca


agtgtggctgctgttcgagtaccccgagtctagcggccctgccagagtga


tcgccatcgtgtccgtgatggtcatcctgatctctatcgtgatcttctgc


ctggaaaccctgcctgagctgaaggacgacaaggacttcaccggcaccgt


gcaccggatcgacaacaccaccgtgatctacaacagcaatatcttcaccg


acccattcttcatcgtggaaacactgtgcatcatctggttcagcttcgag


ctggtcgtgcggttcttcgcctgccccagcaagaccgacttcttcaagaa


catcatgaacttcattgatatcgtggccatcatcccctacttcatcaccc


tgggcaccgagatcgccgagcaggaaggcaatcagaagggcgagcaggcc


accagcctggccattctgagagtgatcagactcgtgcgggtgttccggat


cttcaagctgagccggcacagcaagggcctgcagatcctgggccagacac


tgaaggccagcatgagagagctgggcctgctgatcttctttctgttcatc


ggcgtgatcctgttcagcagcgccgtgtacttcgccgaggccgaagaagc


cgagagccacttcagctctatccccgacgccttttggtgggccgtggtgt


ccatgaccacagtgggctacggcgacatggtgcccgtgacaatcggcggc


aagatcgtgggcagcctgtgtgccattgccggcgtgctgacagtcgccct


gcctgtgcctgtgatcgtgtccaacttcaactacttctaccaccgggaaa


ccgagggggaggaacaggctcagctgctgcacgtgtccagccccaatctg


gccagcgacagcgacctgagcagacggtctagcagcaccatgagcaagag


cgagtacatggaaatcgaagaggacatgaacaactctatcgcccactacc


gccaagtgaacatccggaccgccaactgcaccaccgccaaccagaactgc


gtgaacaagagcaagctgctgaccgatgtctga

















Amino acid sequence of an edited human Kv1.1 compr



ising a valine at position 400 (underlined) and a 


valine at position 379 substitution (bolded) (SEQ 


ID NO: 12)MTVMSGENVDEASAAPGHPQDGSYPRQADHDDHECCERWI


NISGLRFETQLKTLAQFPNTLLGNPKKRMRYFDPLRNEYFFDRNRPSFDA


ILYYYQSGGRLRRPVNVPLDMFSEEIKFYELGEEAMEKFREDEGFIKEEE


RPLPEKEYQRQVWLLFEYPESSGPARVIAIVSVMVILISIVIFCLETLPE


LKDDKDFTGTVHRIDNTTVIYNSNIFTDPFFIVETLCIIWFSFELWRFFA


CPSKTDFFKNIMNFIDIVAIIPYFITLGTEIAEQEGNQKGEQATSLAILR


VIRLVRVFRIFKLSRHSKGLQILGQTLKASMRELGLLIFFLFIGVILFSS


AVYFAEAEEAESHFSSIPDAFWWAWSMTTVGYGDMVPVTIGGKIVGSLCA


IAGVLTVALPVPVIVSNFNYFYHRETEGEEQAQLLHVSSPNLASDSDLSR


RSSSTMSKSEYMEIEEDMNNSIAHYRQVNIRTANCTTANQNCVNKSKLLT


DV

















Nucleotide sequence of an exemplary KCNJ2 gene (SE



Q ID NO: 13) ATGGGCAGTGTGAGAACCAACCGCTACAGCATCGTCT


CTTCAGAAGAAGACGGTATGAAGTTGGCCACCATGGCAGTTGCAAATGGC


TTTGGGAACGGGAAGAGTAAAGTCCACACCCGACAACAGTGCAGGAGCCG


CTTTGTGAAGAAAGATGGCCACTGTAATGTTCACCACGTGTGTGGACATT


CGCTGGCGGTGGATGCTGGTTATCTTCTGCCTGGCTTTCGTCCTGTCATG


GCTGTTTTTTGGCTGTGTGTTTTGGTTGATAGCTCTGCTCCATGGGGACC


TGGATGCATCCAAAGAGGGCAAAGCTTGTGTGTCCGAGGTCAACAGCTTC


ACGGCTGCCTTCCTCTTCTCCATTGAGACCCAGACAACCATAGGCTATGG


TTTCAGATGTGTCACGGATGAATGCCCAATTGCTGTTTTCATGGTGGTGT


TCCAGTCAATCGTGGGCTGCATCATCGATGCTTTCATCATTGGCGCAGTC


ATGGCCAAGATGGCAAAGCCAAAGAAGAGAAACGAGACTCTTGTCTTCAG


TCACAATGCCGTGATTGCCATGAGAGACGGCAAGCTGTGTTTGATGTGGC


GAGTGGGCAATCTTCGGAAAAGCCACTTGGTGGAAGCTCATGTTCGAGCA


CAGCTCCTCAAATCCAGAATTACTTCTGAAGGGGAGTATATCCCTCTGGA


TCAAATAGACATCAATGTTGGGTTTGACAGTGGAATCGATCGTATATTTC


TGGTGTCCCCAATCACTATAGTCCATGAAATAGATGAAGACAGTCCTTTA


TATGATTTGAGTAAACAGGACATTGACAACGCAGACTTTGAAATCGTGGT


CATACTGGAAGGCATGGTGGAAGCCACTGCCATGACGACACAGTGCCGTA


GCTCTTATCTAGCAAATGAAATCCTGTGGGGCCACCGCTATGAGCCTGTG


CTCTTTGAAGAGAAGCACTACTACAAAGTGGACTACTCCAGGTTCCACAA


AACTTACGAAGTCCCCAACACTCCCCTTTGTAGTGCCAGAGACTTAGCAG


AAAAGAAATATATCCTCTCAAATGCAAATTCATTTTGCTATGAAAATGAA


GTTGCCCTCACAAGCAAAGAGGAAGACGACAGTGAAAATGGAGTTCCAGA


AAGCACTAGTACGGACACGCCCCCTGACATAGACCTTCACAACCAGGCAA


GTGTACCTCTAGAGCCCAGGCCCTTACGGCGAGAGTCGGAGATATGA

















Amino acid sequence of Kir2.1 (SEQ ID NO: 14) MGSV



RTNRYSIVSSEEDGMKLATMAVANGFGNGKSKVHTRQQCRSRFVKKDGHC


NVQFINVGEKGQRYLADIFTTCVDIRWRWMLVIFCLAFVLSWLFFGCVFW


LIALLHGDLDASKEGKACVSEVNSFTAAFLFSIETQTTIGYGFRCVTDEC


PIAVFMVVFQSIVGCIIDAFIIGAVMAKMAKPKKRNETLVFSHNAVIAMR


DGKLCLMWRVGNLRKSHLVEAHVRAQLLKSRITSEGEYIPLDQIDINVGF


DSGIDRIFLVSPITIVHEIDEDSPLYDLSKQDIDNADFEIWILEGMVEAT


AMTTQCRSSYLANEILWGHRYEPVLFEEKHYYKVDYSRFHKTYEVPNTPL


CSARDLAEKKYILSNANSFCYENEVALTSKEEDDSENGVPESTSTDTPPD


IDLHNQASVPLEPRPLRRESEI

















Nucleotide sequence of the mArc promoter (SEQ ID NO



: 15) CGCGCAGCAGAGCACATTAGTCACTCGGGGCTGTGAAGGGGCGGG


TCCTTGAGGGCACCCACGGGAGGGGAGCGAGTAGGCGCGGAAGGCGGGGCC


TGCGGCAGGAGAGGGCGCGGGCGGGCTCTGGCGCGGAGCCTGGGCGCCGCC


AATGGGAGCCAGGGCTCCACGAGCTGCCGCCCACGGGCCCCGCGCAGCATA


AATAGCCGCTGGTGGCGGTTTCGGTGCAGAGCTCAAGCGAGTTCTCCCGCA


GCCGCAGTCTCTGGGCCTCTCTAGCTTCAGCGGCGACGAGCCTGCCACACT


CGCTAAGCTCCTCCGGCACCGCACACCTGCCACTGCCGCTGCAGCCGCCGG


CTCTGCTCCCTTCCGGCTTCTGCCTCAGAGGAGTTCTTAGCCTGTTCGGAG


CCGCAGCACCGACGACCAG














Nucleotide sequence of the ESARE promoter (SEQ ID 



NO: 16) AGCGCACAGAGCCTTCCTGCGTGGGGAAGCTCCTTGCTGCGT


CATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGAAGCAGG


CAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTCCTGCGTGGGGAAGCTC


CTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTATGGTGC


CGGAAGCAGGCAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTCCTGCGT


GGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTCTCTCCT


TTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTAGATCCAGCGCACAGAGC


CTTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTATTCTCAG


CCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTAGATCCAG


CGCACAGAGCCTTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATGGCTCAG


CTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGGCTGCTG


CTCGCGCAGCAGAGCACATTAGTCACTCGGGGCTGTGAAGGGGCGGGTCC


TTGAGGGCACCCACGGGAGGGGAGCGAGTAGGCGCGGAAGGCGGGGCCTG


CGGCAGGAGAGGGCGCGGGCGGGCTCTGGCGCGGAGCCTGGGCGCCGCCA


ATGGGAGCCAGGGCTCCACGAGCTGCCGCCCACGGGCCCCGCGCAGCATA


AATAGCCGCTGGTGGCGGTTTCGGTGCAGAGCTCAAGCGAGTTCTCCCGC


AGCCGCAGTCTCTGGGCCTCTCTAGCTTCAGCGGCGACGAGCCTGCCACA


CTCGCTAAGCTCCTCCGGCACCGCACACCTGCCACTGCCGCTGCAGCCGC


CGGCTCTGCTCCCTTCCGGCTTCTGCCTCAGAGGAGTTCTTAGCCTGTTC


GGAGCCGCAGCACCGACGACCAG

















Nucleotide sequence of the NRAM-human cFos promote



r (SEQ ID NO: 17) CTAGAAGTTTGTTCGTGACTGTGACTAGAAGT


TTGTTCGTGACTGTGACTAGAAGTTTGTTCGTGACTGTGACTAGAAGTTT


GTTCGTGACTGTGAACTCATTCATAAAACGCTTGTTATAAAAGCAGTGGC


TGCGGCGCCTCGTACTCCAACCGCATCTGCAGCGAGCAACTGAGAAGCCA


AGACTGAGCCGGCGGCC

















Nucleotide sequence of the Eqr1 promoter (SEQ ID N



O: 18) GCTGGCCCTCCCCACGCGGGCGTCCCCGACTCCCGCGCGCGCT


CAGGCTCCCAGTTGGGAACCAAGGAGGGGGAGGATGGGGGGGGGGGTGTG


CGCCGACCCGGAAACGCCATATAAGGAGCAGGAAGGATCCCCCGCCGGAA


CAGACCTTATTTGGGCAGCGCCTTATATGGAGTGGCCCAATATGGCCCTG


CCGCTTCCGGCTCTGGGAGGAGGGGCGAGCGGGGGTTGGGGCGGGGGCAA


GCTGGGAACTCCAGGCGCCTGGCCCGGGAGGCCACTGCTGCTGTTCCAAT


ACTAGGCTTTCCAGGAGCCTGAGCGCTCGCGATGCCGGAGCGGGTCGCAG


GGTGGAGGTGCCCACCACTCTTGGATGGGAGGGCTTCACGTCACTCCGGG


TCCTCCCGGCCGGTCCTTCCATATTAGGGCTTCCTGCTTCCCATATATGG


CCATGTACGTCACGGCGGAGGCGGGCCCGTGCTGTTCCAGACCCTTGAAA


TAGAGGCCGATTCGGGGAGTCGC

















Nucleotide sequence of mArc-dsGFP-KCNA1 construct 



(SEQ ID NO: 19) CAGAGCACATTAGTCACTCGGGGCTGTGAAGGGG


CGGGTCCTTGAGGGCACCCACGGGAGGGGAGCGAGTAGGCGCGGAAGGCG


GGGCCTGCGGCAGGAGAGGGCGCGGGCGGGCTCTGGCGCGGAGCCTGGGC


GCCGCCAATGGGAGCCAGGGCTCCACGAGCTGCCGCCCACGGGCCCCGCG


CAGCATAAATAGCCGCTGGTGGCGGTTTCGGTGCAGAGCTCAAGCGAGTT


CTCCCGCAGCCGCAGTCTCTGGGCCTCTCTAGCTTCAGCGGCGACGAGCC


TGCCACACTCGCTAAGCTCCTCCGGCACCGCACACCTGCCACTGCCGCTG


CAGCCGCCGGCTCTGCTCCCTTCCGGCTTCTGCCTCAGAGGAGTTCTTAG


CCTGTTCGGAGCCGCAGCACCGACGACCAGGCTAGCAGagaattcGCTGT


CTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATG


ACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATT


CACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAG


AAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGATC


TGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACA


GGTGTCCACTCCCAGGTCCAACTGCAGCCCAAGCGGAGGATCCGCCACCa


tgcccgccatgaagatcgagtgccgcatcaccggcaccctgaacggcgtg


gagttcgagctggtgggcggcggagagggcacccccgaGCAGGGCCGCAT


GACCAACAAGATGAAGAGCACCAAAGGCGCCCTGACCTTCAGCCCCTACC


TGCTGAGCCACGTGATGGGCTACGGCTTCTACCACTTCGGCACCTACCCC


AGCGGCTACGAGAACCCCTTCCTGCACGCCATCAACAACGGCGGCTACAC


CAACACCCGCATCGAGAAGTACGAGGACGGCGGCGTGCTGCACGTGAGCT


TCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAAGGTGGTG


GGCACCGGCTTCCCCGAGGACAGCGTGATCTTCACCGACAAGATCATCCG


CAGCAACGCCACCGTGGAGCACCTGCACCCCATGGGCGATAACGTGCTGG


TGGGCAGCTTCGCCCGCACCTTCAGCCTGCGCGACGGCGGCTACTACAGC


TTCGTGGTGGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCAT


CCTGCAGAACGGGGGCCCCATGTTCGCCTTCCGCCGCGTGGAGGAGCTGC


ACAGCAACACCGAGCTGGGCATCGTGGAGTACCAGCACGCCTTCAAGACC


CCCATCGCCTTCGCCAGATCTCGAGATATCAGCCATGGCTTCCCGCCGGC


GGTGGCGGCGCAGGATGATGGCACGCTGCCCATGTCTTGTGCCCAGGAGA


GCGGGATGGACCGTCACCCTGCAGCCTGTGCTTCTGCTAGGATCAATGTG


ACCGGTGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAA


TCCCGGCCCTATGACCGTGATGAGCGGCGAGAACGTGGACGAGGCCTCTG


CCGCTCCTGGACACCCTCAGGATGGCAGCTATCCCAGACAGGCCGACCAC


GACGATCACGAGTGCTGCGAGCGGGTCGTGATCAACATCAGCGGCCTGAG


ATTCGAGACACAGCTGAAAACCCTGGCCCAGTTCCCCAACACCCTGCTGG


GCAACCCCAAGAAACGGATGCGGTACTTCGACCCCCTGCGGAACGAGTAC


TTCTTCGACCGGAACCGGCCCAGCTTCGACGCCATCCTGTACTACTACCA


GAGCGGCGGCAGACTGCGGAGGCCCGTGAATGTGCCCCTGGACATGTTCA


GCGAGGAAATCAAGTTCTACGAGCTGGGCGAGGAAGCCATGGAAAAGTTC


AGAGAGGACGAGGGCTTCATCAAAGAGGAAGAGAGGCCCCTGCCCGAGAA


AGAATACCAGAGACAAGTGTGGCTGCTGTTCGAGTACCCCGAGTCTAGCG


GCCCTGCCAGAGTGATCGCCATCGTGTCCGTGATGGTCATCCTGATCTCT


ATCGTGATCTTCTGCCTGGAAACCCTGCCTGAGCTGAAGGACGACAAGGA


CTTCACCGGCACCGTGCACCGGATCGACAACACCACCGTGATCTACAACA


GCAATATCTTCACCGACCCATTCTTCATCGTGGAAACACTGTGCATCATC


TGGTTCAGCTTCGAGCTGGTCGTGCGGTTCTTCGCCTGCCCCAGCAAGAC


CGACTTCTTCAAGAACATCATGAACTTCATTGATATCGTGGCCATCATCC


CCTACTTCATCACCCTGGGCACCGAGATCGCCGAGCAGGAAGGCAATCAG


AAGGGCGAGCAGGCCACCAGCCTGGCCATTCTGAGAGTGATCAGACTCGT


GCGGGTGTTCCGGATCTTCAAGCTGAGCCGGCACAGCAAGGGCCTGCAGA


TCCTGGGCCAGACACTGAAGGCCAGCATGAGAGAGCTGGGCCTGCTGATC


TTCTTTCTGTTCATCGGCGTGATCCTGTTCAGCAGCGCCGTGTACTTCGC


CGAGGCCGAAGAAGCCGAGAGCCACTTCAGCTCTATCCCCGACGCCTTTT


GGTGGGCCGTGGTGTCCATGACCACAGTGGGCTACGGCGACATGGTGCCC


GTGACAATCGGCGGCAAGATCGTGGGCAGCCTGTGTGCCATTGCCGGCGT


GCTGACAGTCGCCCTGCCTGTGCCTGTGATCGTGTCCAACTTCAACTACT


TCTACCACCGGGAAACCGAGGGGGAGGAACAGGCTCAGCTGCTGCACGTG


TCCAGCCCCAATCTGGCCAGCGACAGCGACCTGAGCAGACGGTCTAGCAG


CACCATGAGCAAGAGCGAGTACATGGAAATCGAAGAGGACATGAACAACT


CTATCGCCCACTACCGCCAAGTGAACATCCGGACCGCCAACTGCACCACC


GCCAACCAGAACTGCGTGAACAAGAGCAAGCTGCTGACCGATGTC














Nucleotide sequence of optimised AAV- mArc-dsGFP-K



CNA1 vector (SEQ ID NO: 20) gcaggcagctgcgcgctcgctc


gctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttggtc


gcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaactcc


atcactaggggttcctgcggccgcacgcgtCGCGCAGCAGAGCACATTAG


TCACTCGGGGCTGTGAAGGGGCGGGTCCTTGAGGGCACCCACGGGAGGGG


AGCGAGTAGGCGCGGAAGGCGGGGCCTGCGGCAGGAGAGGGCGCGGGCGG


GCTCTGGCGCGGAGCCTGGGCGCCGCCAATGGGAGCCAGGGCTCCACGAG


CTGCCGCCCACGGGCCCCGCGCAGCATAAATAGCCGCTGGTGGCGGTTTC


GGTGCAGAGCTCAAGCGAGTTCTCCCGCAGCCGCAGTCTCTGGGCCTCTC


TAGCTTCAGCGGCGACGAGCCTGCCACACTCGCTAAGCTCCTCCGGCACC


GCACACCTGCCACTGCCGCTGCAGCCGCCGGCTCTGCTCCCTTCCGGCTT


CTGCCTCAGAGGAGTTCTTAGCCTGTTCGGAGCCGCAGCACCGACGACCA


GGCTAGCAGagaattcGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTAC


TCCCTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAA


AAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGG


TGGCCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTG


AGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATC


CACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGCC


CAAGCGGAGGATCCGCCACCatgcccgccatgaagatcgagtgccgcatc


accggcaccctgaacggcgtggagttcgagctggtgggcggcggagaggg


cacccccgaGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGGCG


CCCTGACCTTCAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCTTC


TACCACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCACGC


CATCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGACG


GCGGCGTGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTG


ATCGGCGACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTGAT


CTTCACCGACAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCACC


CCATGGGCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTG


CGCGACGGCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTCAA


GAGCGCCATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGCCT


TCCGCCGCGTGGAGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGGAG


TACCAGCACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGATAT


CAGCCATGGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCTGC


CCATGTCTTGTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCTGT


GCTTCTGCTAGGATCAATGTGACCGGTGAGGGCAGAGGAAGTCTTCTAAC


ATGCGGTGACGTGGAGGAGAATCCCGGCCCTATGACCGTGATGAGCGGCG


AGAACGTGGACGAGGCCTCTGCCGCTCCTGGACACCCTCAGGATGGCAGC


TATCCCAGACAGGCCGACCACGACGATCACGAGTGCTGCGAGCGGGTCGT


GATCAACATCAGCGGCCTGAGATTCGAGACACAGCTGAAAACCCTGGCCC


AGTTCCCCAACACCCTGCTGGGCAACCCCAAGAAACGGATGCGGTACTTC


GACCCCCTGCGGAACGAGTACTTCTTCGACCGGAACCGGCCCAGCTTCGA


CGCCATCCTGTACTACTACCAGAGCGGCGGCAGACTGCGGAGGCCCGTGA


ATGTGCCCCTGGACATGTTCAGCGAGGAAATCAAGTTCTACGAGCTGGGC


GAGGAAGCCATGGAAAAGTTCAGAGAGGACGAGGGCTTCATCAAAGAGGA


AGAGAGGCCCCTGCCCGAGAAAGAATACCAGAGACAAGTGTGGCTGCTGT


TCGAGTACCCCGAGTCTAGCGGCCCTGCCAGAGTGATCGCCATCGTGTCC


GTGATGGTCATCCTGATCTCTATCGTGATCTTCTGCCTGGAAACCCTGCC


TGAGCTGAAGGACGACAAGGACTTCACCGGCACCGTGCACCGGATCGACA


ACACCACCGTGATCTACAACAGCAATATCTTCACCGACCCATTCTTCATC


GTGGAAACACTGTGCATCATCTGGTTCAGCTTCGAGCTGGTCGTGCGGTT


CTTCGCCTGCCCCAGCAAGACCGACTTCTTCAAGAACATCATGAACTTCA


TTGATATCGTGGCCATCATCCCCTACTTCATCACCCTGGGCACCGAGATC


GCCGAGCAGGAAGGCAATCAGAAGGGCGAGCAGGCCACCAGCCTGGCCAT


TCTGAGAGTGATCAGACTCGTGCGGGTGTTCCGGATCTTCAAGCTGAGCC


GGCACAGCAAGGGCCTGCAGATCCTGGGCCAGACACTGAAGGCCAGCATG


AGAGAGCTGGGCCTGCTGATCTTCTTTCTGTTCATCGGCGTGATCCTGTT


CAGCAGCGCCGTGTACTTCGCCGAGGCCGAAGAAGCCGAGAGCCACTTCA


GCTCTATCCCCGACGCCTTTTGGTGGGCCGTGGTGTCCATGACCACAGTG


GGCTACGGCGACATGGTGCCCGTGACAATCGGCGGCAAGATCGTGGGCAG


CCTGTGTGCCATTGCCGGCGTGCTGACAGTCGCCCTGCCTGTGCCTGTGA


TCGTGTCCAACTTCAACTACTTCTACCACCGGGAAACCGAGGGGGAGGAA


CAGGCTCAGCTGCTGCACGTGTCCAGCCCCAATCTGGCCAGCGACAGCGA


CCTGAGCAGACGGTCTAGCAGCACCATGAGCAAGAGCGAGTACATGGAAA


TCGAAGAGGACATGAACAACTCTATCGCCCACTACCGCCAAGTGAACATC


CGGACCGCCAACTGCACCACCGCCAACCAGAACTGCGTGAACAAGAGCAA


GCTGCTGACCGATGTCTGAgTCGACAATCAACCTCATcgataccgagcgc


tgctcgagagatctacgggtggcatccctgtgacccctccccagtgcctc


tcctggccctggaagttgccactccagtgcccaccagccttgtcctaata


aaattaagttgcatcattttgtctgactaggtgtccttctataatattat


ggggtggaggggggtggtatggagcaaggggcaagttgggaagacaacct


gtagggcctgcggggtctattgggaaccaagctggagtgcagtggcacaa


tcttggctcactgcaatctccgcctcctgggttcaagcgattctcctgcc


tcagcctcccgagttgttgggattccaggcatgcatgaccaggctcagct


aatttttgtttttttggtagagacggggtttcaccatattggccaggctg


gtctccaactcctaatctcaggtgatctacccaccttggcctcccaaatt


gctgggattacaggcgtgaaccactgctcccttccctgtccttctgattt


tgtaggtaaccacgtgcggaccgagcggccgcaggaacccctagtgatgg


agttggccactccctctctgcgcgctcgctcgctcactgaggccgggcga


ccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagcga


gcgagcgcgcagctgcctgcaggggcgcctgatgcggtattttctcctta


cgcatctgtgcggtatttcacaccgcatacgtcaaagcaaccatagtacg


cgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagc


gtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttctt


cccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatc


gggggctccctttagggttccgatttagtgctttacggcacctcgacccc


aaaaaacttgatttgggtgatggttcacgtagtgggccatcgccctgata


gacggtttttcgccctttgacgttggagtccacgttctttaatagtggac


tcttgttccaaactggaacaacactcaaccctatctcgggctattctttt


gatttataagggattttgccgatttcggcctattggttaaaaaatgagct


gatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaa


ttttatggtgcactctcagtacaatctgctctgatgccgcatagttaagc


cagccccgacacccgccaacacccgctgacgcgccctgacgggcttgtct


gctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgca


tgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggc


ctcgtgatacgcctatttttataggttaatgtcatgataataatggtttc


ttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctattt


gtttatttttctaaatacattcaaatatgtatccgctcatgagacaataa


ccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattca


acatttccgtgtcgcccttattcccttttttgcggcattttgccttcctg


tttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcag


ttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagat


ccttgagagttttcgccccgaagaacgttttccaatgatgagcactttta


aagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagag


caactcggtcgccgcatacactattctcagaatgacttggttgagtactc


accagtcacagaaaagcatcttacggatggcatgacagtaagagaattat


gcagtgctgccataaccatgagtgataacactgcggccaacttacttctg


acaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatggg


ggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagcca


taccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacg


ttgcgcaaactattaactggcgaactacttactctagcttcccggcaaca


attaatagactggatggaggcggataaagttgcaggaccacttctgcgct


cggcccttccggctggctggtttattgctgataaatctggagccggtgag


cgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctc


ccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaac


gaaatagacagatcgctgagataggtgcctcactgattaagcattggtaa


ctgtcagaccaagtttactcatatatactttagattgatttaaaacttca


tttttaatttaaaaggatctaggtgaagatcctttttgataatctcatga


ccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgta


gaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctg


ctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccgg


atcaagagctaccaactctttttccgaaggtaactggcttcagcagagcg


cagataccaaatactgtccttctagtgtagccgtagttaggccaccactt


caagaactctgtagcaccgcctacatacctcgctctgctaatcctgttac


cagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactca


agacgatagttaccggataaggcgcagcggtcgggctgaacggggggttc


gtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacc


tacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcg


gacaggtatccggtaagcggcagggtcggaacaggagagcgcacgaggga


gcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgcc


acctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagc


ctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttg


ctggccttttgctcac














Nucleotide sequence of mArc-dsGFP-KCNJ2 construct 



(SEQ ID NO: 21) GCAGCAGAGCACATTAGTCACTCGGGGCTGTGAA


GGGGCGGGTCCTTGAGGGCACCCACGGGAGGGGAGCGAGTAGGCGCGGAA


GGCGGGGCCTGCGGCAGGAGAGGGCGCGGGCGGGCTCTGGCGCGGAGCCT


GGGCGCCGCCAATGGGAGCCAGGGCTCCACGAGCTGCCGCCCACGGGCCC


CGCGCAGCATAAATAGCCGCTGGTGGCGGTTTCGGTGCAGAGCTCAAGCG


AGTTCTCCCGCAGCCGCAGTCTCTGGGCCTCTCTAGCTTCAGCGGCGACG


AGCCTGCCACACTCGCTAAGCTCCTCCGGCACCGCACACCTGCCACTGCC


GCTGCAGCCGCCGGCTCTGCTCCCTTCCGGCTTCTGCCTCAGAGGAGTTC


TTAGCCTGTTCGGAGCCGCAGCACCGACGACCAGGCTAGCAGagaattcG


CTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGG


CATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGA


TATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGG


TCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGA


GATCTGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTC


CACAGGTGTCCACTCCCAGGTCCAACTGCAGCCCAAGCGGAGGATCCGCC


ACCatgcccgccatgaagatcgagtgccgcatcaccggcaccctgaacgg


cgtggagttcgagctggtgggcggcggagagggcacccccgaGCAGGGCC


GCATGACCAACAAGATGAAGAGCACCAAAGGCGCCCTGACCTTCAGCCCC


TACCTGCTGAGCCACGTGATGGGCTACGGCTTCTACCACTTCGGCACCTA


CCCCAGCGGCTACGAGAACCCCTTCCTGCACGCCATCAACAACGGCGGCT


ACACCAACACCCGCATCGAGAAGTACGAGGACGGCGGCGTGCTGCACGTG


AGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAAGGT


GGTGGGCACCGGCTTCCCCGAGGACAGCGTGATCTTCACCGACAAGATCA


TCCGCAGCAACGCCACCGTGGAGCACCTGCACCCCATGGGCGATAACGTG


CTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTGCGCGACGGCGGCTACTA


CAGCTTCGTGGTGGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCA


GCATCCTGCAGAACGGGGGCCCCATGTTCGCCTTCCGCCGCGTGGAGGAG


CTGCACAGCAACACCGAGCTGGGCATCGTGGAGTACCAGCACGCCTTCAA


GACCCCCATCGCCTTCGCCAGATCTCGAGATATCAGCCATGGCTTCCCGC


CGGCGGTGGCGGCGCAGGATGATGGCACGCTGCCCATGTCTTGTGCCCAG


GAGAGCGGGATGGACCGTCACCCTGCAGCCTGTGCTTCTGCTAGGATCAA


TGTGACCGGTGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGG


AGAATCCCGGCCCTatgggcagtgtgagaaccaaccgctacagcatcgtc


tcttcagaagaagacggtatgaagttggccaccatggcagttgcaaatgg


ctttgggaacgggaagagtaaagtccacacccgacaacagtgcaggagcc


gctttgtgaagaaagatggccactgtaatgttcagttcatcaatgtgggt


gagaaggggcaacggtacctcgcagacatcttcaccacgtgtgtggacat


tcgctggcggtggatgctggttatcttctgcctggctttcgtcctgtcat


ggctgttttttggctgtgtgttttggttgatagctctgctccatggggac


ctggatgcatccaaagagggcaaagcttgtgtgtccgaggtcaacagctt


cacggctgccttcctcttctccattgagacccagacaaccataggctatg


gtttcagatgtgtcacggatgaatgcccaattgctgttttcatggtggtg


ttccagtcaatcgtgggctgcatcatcgatgctttcatcattggcgcagt


catggccaagatggcaaagccaaagaagagaaacgagactcttgtcttca


gtcacaatgccgtgattgccatgagagacggcaagctgtgtttgatgtgg


cgagtgggcaatcttcggaaaagccacttggtggaagctcatgttcgagc


acagctcctcaaatccagaattacttctgaaggggagtatatccctctgg


atcaaatagacatcaatgttgggtttgacagtggaatcgatcgtatattt


ctggtgtccccaatcactatagtccatgaaatagatgaagacagtccttt


atatgatttgagtaaacaggacattgacaacgcagactttgaaatcgtgg


tcatactggaaggcatggtggaagccactgccatgacgacacagtgccgt


agctcttatctagcaaatgaaatcctgtggggccaccgctatgagcctgt


gctctttgaagagaagcactactacaaagtggactactccaggttccaca


aaacttacgaagtccccaacactcccctttgtagtgccagagacttagca


gaaaagaaatatatcctctcaaatgcaaattcattttgctatgaaaatga


agttgccctcacaagcaaagaggaagacgacagtgaaaatggagttccag


aaagcactagtacggacacgccccctgacatagaccttcacaaccaggca


agtgtacctctagagcccaggcccttacggcgagagtcggaga

















Nucleotide sequence of optimised AAV- mArc-dsGFP-K



CNJ2 vector (SEQ ID NO: 22) ggcagctgcgcgctcgctcgct


cactgaggccgcccgggcaaagcccgggcgtcgggcgacctttggtcgcc


cggcctcagtgagcgagcgagcgcgcagagagggagtggccaactccatc


actaggggttcctgcggccgcacgcgtCGCGCAGCAGAGCACATTAGTCA


CTCGGGGCTGTGAAGGGGCGGGTCCTTGAGGGCACCCACGGGAGGGGAGC


GAGTAGGCGCGGAAGGCGGGGCCTGCGGCAGGAGAGGGCGCGGGCGGGCT


CTGGCGCGGAGCCTGGGCGCCGCCAATGGGAGCCAGGGCTCCACGAGCTG


CCGCCCACGGGCCCCGCGCAGCATAAATAGCCGCTGGTGGCGGTTTCGGT


GCAGAGCTCAAGCGAGTTCTCCCGCAGCCGCAGTCTCTGGGCCTCTCTAG


CTTCAGCGGCGACGAGCCTGCCACACTCGCTAAGCTCCTCCGGCACCGCA


CACCTGCCACTGCCGCTGCAGCCGCCGGCTCTGCTCCCTTCCGGCTTCTG


CCTCAGAGGAGTTCTTAGCCTGTTCGGAGCCGCAGCACCGACGACCAGGC


TAGCAGagaattcGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCC


CTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAA


CGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGG


CCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGG


TGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCAC


TTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGCCCAA


GCGGAGGATCCGCCACCatgcccgccatgaagatcgagtgccgcatcacc


ggcaccctgaacggcgtggagttcgagctggtgggcggcggagagggcac


ccccgaGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGGCGCCC


TGACCTTCAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCTTCTAC


CACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCACGCCAT


CAACAACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGACGGCG


GCGTGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGATC


GGCGACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTGATCTT


CACCGACAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCACCCCA


TGGGCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTGCGC


GACGGCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTCAAGAG


CGCCATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGCCTTCC


GCCGCGTGGAGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGGAGTAC


CAGCACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGATATCAG


CCATGGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCTGCCCA


TGTCTTGTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCTGTGCT


TCTGCTAGGATCAATGTGACCGGTGAGGGCAGAGGAAGTCTTCTAACATG


CGGTGACGTGGAGGAGAATCCCGGCCCTatgggcagtgtgagaaccaacc


gctacagcatcgtctcttcagaagaagacggtatgaagttggccaccatg


gcagttgcaaatggctttgggaacgggaagagtaaagtccacacccgaca


acagtgcaggagccgctttgtgaagaaagatggccactgtaatgttcagt


tcatcaatgtgggtgagaaggggcaacggtacctcgcagacatcttcacc


acgtgtgtggacattcgctggcggtggatgctggttatcttctgcctggc


tttcgtcctgtcatggctgttttttggctgtgtgttttggttgatagctc


tgctccatggggacctggatgcatccaaagagggcaaagcttgtgtgtcc


gaggtcaacagcttcacggctgccttcctcttctccattgagacccagac


aaccataggctatggtttcagatgtgtcacggatgaatgcccaattgctg


ttttcatggtggtgttccagtcaatcgtgggctgcatcatcgatgctttc


atcattggcgcagtcatggccaagatggcaaagccaaagaagagaaacga


gactcttgtcttcagtcacaatgccgtgattgccatgagagacggcaagc


tgtgtttgatgtggcgagtgggcaatcttcggaaaagccacttggtggaa


gctcatgttcgagcacagctcctcaaatccagaattacttctgaagggga


gtatatccctctggatcaaatagacatcaatgttgggtttgacagtggaa


tcgatcgtatatttctggtgtccccaatcactatagtccatgaaatagat


gaagacagtcctttatatgatttgagtaaacaggacattgacaacgcaga


ctttgaaatcgtggtcatactggaaggcatggtggaagccactgccatga


cgacacagtgccgtagctcttatctagcaaatgaaatcctgtggggccac


cgctatgagcctgtgctctttgaagagaagcactactacaaagtggacta


ctccaggttccacaaaacttacgaagtccccaacactcccctttgtagtg


ccagagacttagcagaaaagaaatatatcctctcaaatgcaaattcattt


tgctatgaaaatgaagttgccctcacaagcaaagaggaagacgacagtga


aaatggagttccagaaagcactagtacggacacgccccctgacatagacc


ttcacaaccaggcaagtgtacctctagagcccaggcccttacggcgagag


tcggagatatgagTCGACAATCAACCTCATcgataccgagcgctgctcga


gagatctacgggtggcatccctgtgacccctccccagtgcctctcctggc


cctggaagttgccactccagtgcccaccagccttgtcctaataaaattaa


gttgcatcattttgtctgactaggtgtccttctataatattatggggtgg


aggggggtggtatggagcaaggggcaagttgggaagacaacctgtagggc


ctgcggggtctattgggaaccaagctggagtgcagtggcacaatcttggc


tcactgcaatctccgcctcctgggttcaagcgattctcctgcctcagcct


cccgagttgttgggattccaggcatgcatgaccaggctcagctaattttt


gtttttttggtagagacggggtttcaccatattggccaggctggtctcca


actcctaatctcaggtgatctacccaccttggcctcccaaattgctggga


ttacaggcgtgaaccactgctcccttccctgtccttctgattttgtaggt


aaccacgtgcggaccgagcggccgcaggaacccctagtgatggagttggc


cactccctctctgcgcgctcgctcgctcactgaggccgggcgaccaaagg


tcgcccgacgcccgggctttgcccgggcggcctcagtgagcgagcgagcg


cgcagctgcctgcaggggcgcctgatgcggtattttctccttacgcatct


gtgcggtatttcacaccgcatacgtcaaagcaaccatagtacgcgccctg


tagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccg


ctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcc


tttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggct


ccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaac


ttgatttgggtgatggttcacgtagtgggccatcgccctgatagacggtt


tttcgccctttgacgttggagtccacgttctttaatagtggactcttgtt


ccaaactggaacaacactcaaccctatctcgggctattcttttgatttat


aagggattttgccgatttcggcctattggttaaaaaatgagctgatttaa


caaaaatttaacgcgaattttaacaaaatattaacgtttacaattttatg


gtgcactctcagtacaatctgctctgatgccgcatagttaagccagcccc


gacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccg


gcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtca


gaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtga


tacgcctatttttataggttaatgtcatgataataatggtttcttagacg


tcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatt


tttctaaatacattcaaatatgtatccgctcatgagacaataaccctgat


aaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttc


cgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgc


tcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtg


cacgagtgggttacatcgaactggatctcaacagcggtaagatccttgag


agttttcgccccgaagaacgttttccaatgatgagcacttttaaagttct


gctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcg


gtcgccgcatacactattctcagaatgacttggttgagtactcaccagtc


acagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgc


tgccataaccatgagtgataacactgcggccaacttacttctgacaacga


tcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcat


gtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaa


cgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgca


aactattaactggcgaactacttactctagcttcccggcaacaattaata


gactggatggaggcggataaagttgcaggaccacttctgcgctcggccct


tccggctggctggtttattgctgataaatctggagccggtgagcgtgggt


ctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatc


gtagttatctacacgacggggagtcaggcaactatggatgaacgaaatag


acagatcgctgagataggtgcctcactgattaagcattggtaactgtcag


accaagtttactcatatatactttagattgatttaaaacttcatttttaa


tttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaat


cccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaaga


tcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttg


caaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaaga


gctaccaactctttttccgaaggtaactggcttcagcagagcgcagatac


caaatactgtccttctagtgtagccgtagttaggccaccacttcaagaac


tctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggc


tgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgat


agttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcaca


cagcccagcttggagcgaacgacctacaccgaactgagatacctacagcg


tgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggt


atccggtaagcggcagggtcggaacaggagagcgcacgagggagcttcca


gggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctg


acttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatgga


aaaacgccagcaacgcggcctttttacggttcctggccttttgctggcct


tttgctcaca














Nucleotide sequence of ESARE-dsGFP-KCNA1 construct



 (SEQ ID NO: 23) TTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATG


GCTCAGCTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGG


CTGCTGCTAGATCCAGCGCACAGAGCCTTCCTGCGTGGGGAAGCTCCTTG


CTGCGTCATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGA


AGCAGGCAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTCCTGCGTGGGG


AAGCTCCTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTA


TGGTGCCGGAAGCAGGCAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTC


CTGCGTGGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTC


TCTCCTTTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTAGATCCAGCGCA


CAGAGCCTTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTAT


TCTCAGCCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTCG


CGCAGCAGAGCACATTAGTCACTCGGGGCTGTGAAGGGGCGGGTCCTTGA


AGGAGAGGGCGCGGGCGGGCTCTGGCGCGGAGCCTGGGCGCCGCCAATGG


GAGCCAGGGCTCCACGAGCTGCCGCCCACGGGCCCCGCGCAGCATAAATA


GCCGCTGGTGGCGGTTTCGGTGCAGAGCTCAAGCGAGTTCTCCCGCAGCC


GCAGTCTCTGGGCCTCTCTAGCTTCAGCGGCGACGAGCCTGCCACACTCG


CTAAGCTCCTCCGGCACCGCACACCTGCCACTGCCGCTGCAGCCGCCGGC


TCTGCTCCCTTCCGGCTTCTGCCTCAGAGGAGTTCTTAGCCTGTTCGGAG


CCGCAGCACCGACGACCAGGCTAGCAGagaattcGCTGTCTGCGAGGGCC


AGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACTTCTGCGCT


AAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCG


CGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAAGACAATC


TTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGATCTGGCCATACAC


TTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTC


CCAGGTCCAACTGCAGCCCAAGCGGAGGATCCGCCACCatgcccgccatg


aagatcgagtgccgcatcaccggcaccctgaacggcgtggagttcgagct


ggtgggcggcggagagggcacccccgaGCAGGGCCGCATGACCAACAAGA


TGAAGAGCACCAAAGGCGCCCTGACCTTCAGCCCCTACCTGCTGAGCCAC


GTGATGGGCTACGGCTTCTACCACTTCGGCACCTACCCCAGCGGCTACGA


GAACCCCTTCCTGCACGCCATCAACAACGGCGGCTACACCAACACCCGCA


TCGAGAAGTACGAGGACGGCGGCGTGCTGCACGTGAGCTTCAGCTACCGC


TACGAGGCCGGCCGCGTGATCGGCGACTTCAAGGTGGTGGGCACCGGCTT


CCCCGAGGACAGCGTGATCTTCACCGACAAGATCATCCGCAGCAACGCCA


CCGTGGAGCACCTGCACCCCATGGGCGATAACGTGCTGGTGGGCAGCTTC


GCCCGCACCTTCAGCCTGCGCGACGGCGGCTACTACAGCTTCGTGGTGGA


CAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCATCCTGCAGAACG


GGGGCCCCATGTTCGCCTTCCGCCGCGTGGAGGAGCTGCACAGCAACACC


GAGCTGGGCATCGTGGAGTACCAGCACGCCTTCAAGACCCCCATCGCCTT


AGGATGATGGCACGCTGCCCATGTCTTGTGCCCAGGAGAGCGGGATGGAC


CGTCACCCTGCAGCCTGTGCTTCTGCTAGGATCAATGTGACCGGTGAGGG


CAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTA


TGACCGTGATGAGCGGCGAGAACGTGGACGAGGCCTCTGCCGCTCCTGGA


CACCCTCAGGATGGCAGCTATCCCAGACAGGCCGACCACGACGATCACGA


GTGCTGCGAGCGGGTCGTGATCAACATCAGCGGCCTGAGATTCGAGACAC


AGCTGAAAACCCTGGCCCAGTTCCCCAACACCCTGCTGGGCAACCCCAAG


AAACGGATGCGGTACTTCGACCCCCTGCGGAACGAGTACTTCTTCGACCG


GAACCGGCCCAGCTTCGACGCCATCCTGTACTACTACCAGAGCGGCGGCA


GACTGCGGAGGCCCGTGAATGTGCCCCTGGACATGTTCAGCGAGGAAATC


AAGTTCTACGAGCTGGGCGAGGAAGCCATGGAAAAGTTCAGAGAGGACGA


GGGCTTCATCAAAGAGGAAGAGAGGCCCCTGCCCGAGAAAGAATACCAGA


GACAAGTGTGGCTGCTGTTCGAGTACCCCGAGTCTAGCGGCCCTGCCAGA


GTGATCGCCATCGTGTCCGTGATGGTCATCCTGATCTCTATCGTGATCTT


CTGCCTGGAAACCCTGCCTGAGCTGAAGGACGACAAGGACTTCACCGGCA


CCGTGCACCGGATCGACAACACCACCGTGATCTACAACAGCAATATCTTC


ACCGACCCATTCTTCATCGTGGAAACACTGTGCATCATCTGGTTCAGCTT


CGAGCTGGTCGTGCGGTTCTTCGCCTGCCCCAGCAAGACCGACTTCTTCA


AGAACATCATGAACTTCATTGATATCGTGGCCATCATCCCCTACTTCATC


ACCCTGGGCACCGAGATCGCCGAGCAGGAAGGCAATCAGAAGGGCGAGCA


GGCCACCAGCCTGGCCATTCTGAGAGTGATCAGACTCGTGCGGGTGTTCC


GGATCTTCAAGCTGAGCCGGCACAGCAAGGGCCTGCAGATCCTGGGCCAG


ACACTGAAGGCCAGCATGAGAGAGCTGGGCCTGCTGATCTTCTTTCTGTT


CATCGGCGTGATCCTGTTCAGCAGCGCCGTGTACTTCGCCGAGGCCGAAG


AAGCCGAGAGCCACTTCAGCTCTATCCCCGACGCCTTTTGGTGGGCCGTG


GTGTCCATGACCACAGTGGGCTACGGCGACATGGTGCCCGTGACAATCGG


CGGCAAGATCGTGGGCAGCCTGTGTGCCATTGCCGGCGTGCTGACAGTCG


CCCTGCCTGTGCCTGTGATCGTGTCCAACTTCAACTACTTCTACCACCGG


GAAACCGAGGGGGAGGAACAGGCTCAGCTGCTGCACGTGTCCAGCCCCAA


TCTGGCCAGCGACAGCGACCTGAGCAGACGGTCTAGCAGCACCATGAGCA


AGAGCGAGTACATGGAAATCGAAGAGGACATGAACAACTCTATCGCCCAC


TACCGCCAAGTGAACATCCGGACCGCCAACTGCACCACCGCCAACCAGAA


CTGCGTGAACAAGAGCAAGCTGCTGACCGATGTCTGA














Nucleotide sequence of optimised AAV- ESARE-dsGFP-



KCNA1 vector (SEQ ID No: 24) gcgctcgctcactgaggccgc


ccgggcaaagcccgggcgtcgggcgacctttggtcgcccggcctcagtga


gcgagcgagcgcgcagagagggagtggccaactccatcactaggggttcc


tgcggccgcACGCGTGTGTCTAGACTGCAGACCATGGGGATCCAGCGCAC


AGAGCCTTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTATT


CTCAGCCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTAGA


TCCAGCGCACAGAGCCTTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATGG


CTCAGCTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGGC


GCTGCTAGATCCAGCGCACAGAGCCTTCCTGCGTGGGGAAGCTCCTTGCT


GCGTCATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGAAG


CAGGCAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTCCTGCGTGGGGAA


GCTCCTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTATG


GTGCCGGAAGCAGGCAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTCCT


GCGTGGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTCTC


TCCTTTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTCGCGCAGCAGAGCA


CATTAGTCACTCGGGGCTGTGAAGGGGCGGGTCCTTGAGGGCACCCACGG


GAGGGGAGCGAGTAGGCGCGGAAGGCGGGGCCTGCGGCAGGAGAGGGCGC


GGGCGGGCTCTGGCGCGGAGCCTGGGCGCCGCCAATGGGAGCCAGGGCTC


CACGAGCTGCCGCCCACGGGCCCCGCGCAGCATAAATAGCCGCTGGTGGC


GGTTTCGGTGCAGAGCTCAAGCGAGTTCTCCCGCAGCCGCAGTCTCTGGG


CCTCTCTAGCTTCAGCGGCGACGAGCCTGCCACACTCGCTAAGCTCCTCC


GGCACCGCACACCTGCCACTGCCGCTGCAGCCGCCGGCTCTGCTCCCTTC


CGGCTTCTGCCTCAGAGGAGTTCTTAGCCTGTTCGGAGCCGCAGCACCGA


CGACCAGGCTAGCAGagaattcGCTGTCTGCGAGGGCCAGCTGTTGGGGT


GAGTACTCCCTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGT


TTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTT


TGAGGGTGGCCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCA


AGCTTGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAAT


GACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACT


GCAGCCCAAGCGGAGGATCCGCCACCatgcccgccatgaagatcgagtgc


cgcatcaccggcaccctgaacggcgtggagttcgagctggtgggcggcgg


agagggcacccccgaGCAGGGCCGCATGACCAACAAGATGAAGAGCACCA


AAGGCGCCCTGACCTTCAGCCCCTACCTGCTGAGCCACGTGATGGGCTAC


GGCTTCTACCACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCT


GCACGCCATCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGTACG


AGGACGGCGGCGTGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGC


CGCGTGATCGGCGACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAG


CGTGATCTTCACCGACAAGATCATCCGCAGCAACGCCACCGTGGAGCACC


TGCACCCCATGGGCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTC


AGCCTGCGCGACGGCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCA


CTTCAAGAGCGCCATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGT


TCGCCTTCCGCCGCGTGGAGGAGCTGCACAGCAACACCGAGCTGGGCATC


GTGGAGTACCAGCACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCG


AGATATCAGCCATGGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCA


CGCTGCCCATGTCTTGTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCA


GCCTGTGCTTCTGCTAGGATCAATGTGACCGGTGAGGGCAGAGGAAGTCT


TCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTATGACCGTGATGA


GCGGCGAGAACGTGGACGAGGCCTCTGCCGCTCCTGGACACCCTCAGGAT


GGCAGCTATCCCAGACAGGCCGACCACGACGATCACGAGTGCTGCGAGCG


GGTCGTGATCAACATCAGCGGCCTGAGATTCGAGACACAGCTGAAAACCC


TGGCCCAGTTCCCCAACACCCTGCTGGGCAACCCCAAGAAACGGATGCGG


TACTTCGACCCCCTGCGGAACGAGTACTTCTTCGACCGGAACCGGCCCAG


CTTCGACGCCATCCTGTACTACTACCAGAGCGGCGGCAGACTGCGGAGGC


CCGTGAATGTGCCCCTGGACATGTTCAGCGAGGAAATCAAGTTCTACGAG


CTGGGCGAGGAAGCCATGGAAAAGTTCAGAGAGGACGAGGGCTTCATCAA


AGAGGAAGAGAGGCCCCTGCCCGAGAAAGAATACCAGAGACAAGTGTGGC


TGCTGTTCGAGTACCCCGAGTCTAGCGGCCCTGCCAGAGTGATCGCCATC


GTGTCCGTGATGGTCATCCTGATCTCTATCGTGATCTTCTGCCTGGAAAC


CCTGCCTGAGCTGAAGGACGACAAGGACTTCACCGGCACCGTGCACCGGA


TCGACAACACCACCGTGATCTACAACAGCAATATCTTCACCGACCCATTC


TTCATCGTGGAAACACTGTGCATCATCTGGTTCAGCTTCGAGCTGGTCGT


GCGGTTCTTCGCCTGCCCCAGCAAGACCGACTTCTTCAAGAACATCATGA


ACTTCATTGATATCGTGGCCATCATCCCCTACTTCATCACCCTGGGCACC


GAGATCGCCGAGCAGGAAGGCAATCAGAAGGGCGAGCAGGCCACCAGCCT


GGCCATTCTGAGAGTGATCAGACTCGTGCGGGTGTTCCGGATCTTCAAGC


TGAGCCGGCACAGCAAGGGCCTGCAGATCCTGGGCCAGACACTGAAGGCC


AGCATGAGAGAGCTGGGCCTGCTGATCTTCTTTCTGTTCATCGGCGTGAT


CCTGTTCAGCAGCGCCGTGTACTTCGCCGAGGCCGAAGAAGCCGAGAGCC


ACTTCAGCTCTATCCCCGACGCCTTTTGGTGGGCCGTGGTGTCCATGACC


ACAGTGGGCTACGGCGACATGGTGCCCGTGACAATCGGCGGCAAGATCGT


GGGCAGCCTGTGTGCCATTGCCGGCGTGCTGACAGTCGCCCTGCCTGTGC


CTGTGATCGTGTCCAACTTCAACTACTTCTACCACCGGGAAACCGAGGGG


GAGGAACAGGCTCAGCTGCTGCACGTGTCCAGCCCCAATCTGGCCAGCGA


CAGCGACCTGAGCAGACGGTCTAGCAGCACCATGAGCAAGAGCGAGTACA


TGGAAATCGAAGAGGACATGAACAACTCTATCGCCCACTACCGCCAAGTG


AACATCCGGACCGCCAACTGCACCACCGCCAACCAGAACTGCGTGAACAA


GAGCAAGCTGCTGACCGATGTCTGAgTCGACAATCAACCTCATcgatacc


gagcgctgctcgagagatctacgggtggcatccctgtgacccctccccag


tgcctctcctggccctggaagttgccactccagtgcccaccagccttgtc


ctaataaaattaagttgcatcattttgtctgactaggtgtccttctataa


tattatggggtggaggggggtggtatggagcaaggggcaagttgggaaga


caacctgtagggcctgcggggtctattgggaaccaagctggagtgcagtg


gcacaatcttggctcactgcaatctccgcctcctgggttcaagcgattct


cctgcctcagcctcccgagttgttgggattccaggcatgcatgaccaggc


tcagctaatttttgtttttttggtagagacggggtttcaccatattggcc


aggctggtctccaactcctaatctcaggtgatctacccaccttggcctcc


caaattgctgggattacaggcgtgaaccactgctcccttccctgtccttc


tgattttgtaggtaaccacgtgcggaccgagcggccgcaggaacccctag


tgatggagttggccactccctctctgcgcgctcgctcgctcactgaggcc


gggcgaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagt


gagcgagcgagcgcgcagctgcctgcaggggcgcctgatgcggtattttc


tccttacgcatctgtgcggtatttcacaccgcatacgtcaaagcaaccat


agtacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacg


cgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgc


tttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctc


taaatcgggggctccctttagggttccgatttagtgctttacggcacctc


gaccccaaaaaacttgatttgggtgatggttcacgtagtgggccatcgcc


ctgatagacggtttttcgccctttgacgttggagtccacgttctttaata


gtggactcttgttccaaactggaacaacactcaaccctatctcgggctat


tcttttgatttataagggattttgccgatttcggcctattggttaaaaaa


tgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgt


ttacaattttatggtgcactctcagtacaatctgctctgatgccgcatag


ttaagccagccccgacacccgccaacacccgctgacgcgccctgacgggc


ttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccggga


gctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcagacgaa


agggcctcgtgatacgcctatttttataggttaatgtcatgataataatg


gtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccc


tatttgtttatttttctaaatacattcaaatatgtatccgctcatgagac


aataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagt


attcaacatttccgtgtcgcccttattcccttttttgcggcattttgcct


tcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaag


atcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggt


aagatccttgagagttttcgccccgaagaacgttttccaatgatgagcac


ttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggc


aagagcaactcggtcgccgcatacactattctcagaatgacttggttgag


tactcaccagtcacagaaaagcatcttacggatggcatgacagtaagaga


attatgcagtgctgccataaccatgagtgataacactgcggccaacttac


ttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaac


atgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatga


agccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaa


caacgttgcgcaaactattaactggcgaactacttactctagcttcccgg


caacaattaatagactggatggaggcggataaagttgcaggaccacttct


gcgctcggcccttccggctggctggtttattgctgataaatctggagccg


gtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaag


ccctcccgtatcgtagttatctacacgacggggagtcaggcaactatgga


tgaacgaaatagacagatcgctgagataggtgcctcactgattaagcatt


ggtaactgtcagaccaagtttactcatatatactttagattgatttaaaa


cttcatttttaatttaaaaggatctaggtgaagatcctttttgataatct


catgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagacc


ccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgta


atctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgttt


gccggatcaagagctaccaactctttttccgaaggtaactggcttcagca


gagcgcagataccaaatactgtccttctagtgtagccgtagttaggccac


cacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcct


gttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttgg


actcaagacgatagttaccggataaggcgcagcggtcgggctgaacgggg


ggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgag


atacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaa


aggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacg


agggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtt


tcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggc


ggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggcc


ttttgctggccttttgctcacatgtcctgcag














Nucleotide sequence of ESARE-dsGFP-KCNJ2 construct



 (SEQ ID NO: 25) AGAGCCTTCCTGCGTGGGGAAGCTCCTTGCTGC


GTCATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGAAGCA


GGCAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTCCTGCGTGGGGAAGC


TCCTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTATGGT


GCCGGAAGCAGGCAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTCCTGC


GTGGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTCTCTC


CTTTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTAGATCCAGCGCACAGA


GCCTTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTATTCTC


AGCCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTAGATCC


AGCGCACAGAGCCTTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATGGCTC


AGCTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGGCTGC


TGCTCGCGCAGCAGAGCACATTAGTCACTCGGGGCTGTGAAGGGGCGGGT


CCTTGAGGGCACCCACGGGAGGGGAGCGAGTAGGCGCGGAAGGCGGGGCC


TGCGGCAGGAGAGGGCGCGGGCGGGCTCTGGCGCGGAGCCTGGGCGCCGC


CAATGGGAGCCAGGGCTCCACGAGCTGCCGCCCACGGGCCCCGCGCAGCA


TAAATAGCCGCTGGTGGCGGTTTCGGTGCAGAGCTCAAGCGAGTTCTCCC


GCAGCCGCAGTCTCTGGGCCTCTCTAGCTTCAGCGGCGACGAGCCTGCCA


CACTCGCTAAGCTCCTCCGGCACCGCACACCTGCCACTGCCGCTGCAGCC


GCCGGCTCTGCTCCCTTCCGGCTTCTGCCTCAGAGGAGTTCTTAGCCTGT


TCGGAGCCGCAGCACCGACGACCAGGCTAGCAGagaattcGCTGTCTGCG


AGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACTTC


TGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCT


GGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAAG


ACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGATCTGGCC


ATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGTGT


CCACTCCCAGGTCCAACTGCAGCCCAAGCGGAGGATCCGCCACCatgccc


gccatgaagatcgagtgccgcatcaccggcaccctgaacggcgtggagtt


cgagctggtgggcggcggagagggcacccccgaGCAGGGCCGCATGACCA


ACAAGATGAAGAGCACCAAAGGCGCCCTGACCTTCAGCCCCTACCTGCTG


AGCCACGTGATGGGCTACGGCTTCTACCACTTCGGCACCTACCCCAGCGG


CTACGAGAACCCCTTCCTGCACGCCATCAACAACGGCGGCTACACCAACA


CCCGCATCGAGAAGTACGAGGACGGCGGCGTGCTGCACGTGAGCTTCAGC


TACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAAGGTGGTGGGCAC


CGGCTTCCCCGAGGACAGCGTGATCTTCACCGACAAGATCATCCGCAGCA


ACGCCACCGTGGAGCACCTGCACCCCATGGGCGATAACGTGCTGGTGGGC


AGCTTCGCCCGCACCTTCAGCCTGCGCGACGGCGGCTACTACAGCTTCGT


GGTGGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCATCCTGC


AGAACGGGGGCCCCATGTTCGCCTTCCGCCGCGTGGAGGAGCTGCACAGC


AACACCGAGCTGGGCATCGTGGAGTACCAGCACGCCTTCAAGACCCCCAT


CGCCTTCGCCAGATCTCGAGATATCAGCCATGGCTTCCCGCCGGCGGTGG


CGGCGCAGGATGATGGCACGCTGCCCATGTCTTGTGCCCAGGAGAGCGGG


ATGGACCGTCACCCTGCAGCCTGTGCTTCTGCTAGGATCAATGTGACCGG


TGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCG


GCCCTatgggcagtgtgagaaccaaccgctacagcatcgtctcttcagaa


gaagacggtatgaagttggccaccatggcagttgcaaatggctttgggaa


cgggaagagtaaagtccacacccgacaacagtgcaggagccgctttgtga


agaaagatggccactgtaatgttcagttcatcaatgtgggtgagaagggg


caacggtacctcgcagacatcttcaccacgtgtgtggacattcgctggcg


gtggatgctggttatcttctgcctggctttcgtcctgtcatggctgtttt


ttggctgtgtgttttggttgatagctctgctccatggggacctggatgca


tccaaagagggcaaagcttgtgtgtccgaggtcaacagcttcacggctgc


cttcctcttctccattgagacccagacaaccataggctatggtttcagat


gtgtcacggatgaatgcccaattgctgttttcatggtggtgttccagtca


atcgtgggctgcatcatcgatgctttcatcattggcgcagtcatggccaa


gatggcaaagccaaagaagagaaacgagactcttgtcttcagtcacaatg


ccgtgattgccatgagagacggcaagctgtgtttgatgtggcgagtgggc


aatcttcggaaaagccacttggtggaagctcatgttcgagcacagctcct


caaatccagaattacttctgaaggggagtatatccctctggatcaaatag


acatcaatgttgggtttgacagtggaatcgatcgtatatttctggtgtcc


ccaatcactatagtccatgaaatagatgaagacagtcctttatatgattt


gagtaaacaggacattgacaacgcagactttgaaatcgtggtcatactgg


aaggcatggtggaagccactgccatgacgacacagtgccgtagctcttat


ctagcaaatgaaatcctgtggggccaccgctatgagcctgtgctctttga


agagaagcactactacaaagtggactactccaggttccacaaaacttacg


aagtccccaacactcccctttgtagtgccagagacttagcagaaaagaaa


tatatcctctcaaatgcaaattcattttgctatgaaaatgaagttgccct


cacaagcaaagaggaagacgacagtgaaaatggagttccagaaagcacta


gtacggacacgccccctgacatagaccttcacaaccaggcaagtgtacct


ctagagcccaggcccttacggcgagagtcggagatatga

















Nucleotide sequence of optimised AAV- ESARE-dsGFP-



KCNJ2 vector (SEQ ID NO: 26) cctgcaggcagctgcgcgctc


gctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgaccttt


ggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaa


ctccatcactaggggttcctgcggccgcACGCGTGTGTCTAGACTGCAGA


CCATGGGGATCCAGCGCACAGAGCCTTCCTGCGTGGGGAAGCTCCTTGCT


GCGTCATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGAAG


CAGGCAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTCCTGCGTGGGGAA


GCTCCTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTCTCTCCTTTTATG


GTGCCGGAAGCAGGCAGGCTGCTGCTAGATCCAGCGCACAGAGCCTTCCT


GCGTGGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTATTCTCAGCCTCTC


TCCTTTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTAGATCCAGCGCACA


GAGCCTTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATGGCTCAGCTATTC


TCAGCCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGGCTGCTGCTAGAT


CCAGCGCACAGAGCCTTCCTGCGTGGGGAAGCTCCTTGCTGCGTCATGGC


TCAGCTATTCTCAGCCTCTCTCCTTTTATGGTGCCGGAAGCAGGCAGGCT


GCTGCTCGCGCAGCAGAGCACATTAGTCACTCGGGGCTGTGAAGGGGCGG


GTCCTTGAGGGCACCCACGGGAGGGGAGCGAGTAGGCGCGGAAGGCGGGG


CCTGCGGCAGGAGAGGGCGCGGGCGGGCTCTGGCGCGGAGCCTGGGCGCC


GCCAATGGGAGCCAGGGCTCCACGAGCTGCCGCCCACGGGCCCCGCGCAG


CATAAATAGCCGCTGGTGGCGGTTTCGGTGCAGAGCTCAAGCGAGTTCTC


CCGCAGCCGCAGTCTCTGGGCCTCTCTAGCTTCAGCGGCGACGAGCCTGC


CACACTCGCTAAGCTCCTCCGGCACCGCACACCTGCCACTGCCGCTGCAG


CCGCCGGCTCTGCTCCCTTCCGGCTTCTGCCTCAGAGGAGTTCTTAGCCT


GTTCGGAGCCGCAGCACCGACGACCAGGCTAGCAGagaattcGCTGTCTG


CGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACT


TCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCAC


CTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAA


AGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGATCTGG


CCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGT


GTCCACTCCCAGGTCCAACTGCAGCCCAAGCGGAGGATCCGCCACCatgc


ccgccatgaagatcgagtgccgcatcaccggcaccctgaacggcgtggag


ttcgagctggtgggcggcggagagggcacccccgaGCAGGGCCGCATGAC


CAACAAGATGAAGAGCACCAAAGGCGCCCTGACCTTCAGCCCCTACCTGC


TGAGCCACGTGATGGGCTACGGCTTCTACCACTTCGGCACCTACCCCAGC


GGCTACGAGAACCCCTTCCTGCACGCCATCAACAACGGCGGCTACACCAA


CACCCGCATCGAGAAGTACGAGGACGGCGGCGTGCTGCACGTGAGCTTCA


GCTACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAAGGTGGTGGGC


ACCGGCTTCCCCGAGGACAGCGTGATCTTCACCGACAAGATCATCCGCAG


CAACGCCACCGTGGAGCACCTGCACCCCATGGGCGATAACGTGCTGGTGG


GCAGCTTCGCCCGCACCTTCAGCCTGCGCGACGGCGGCTACTACAGCTTC


GTGGTGGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCATCCT


GCAGAACGGGGGCCCCATGTTCGCCTTCCGCCGCGTGGAGGAGCTGCACA


GCAACACCGAGCTGGGCATCGTGGAGTACCAGCACGCCTTCAAGACCCCC


ATCGCCTTCGCCAGATCTCGAGATATCAGCCATGGCTTCCCGCCGGCGGT


GGCGGCGCAGGATGATGGCACGCTGCCCATGTCTTGTGCCCAGGAGAGCG


GGATGGACCGTCACCCTGCAGCCTGTGCTTCTGCTAGGATCAATGTGACC


GGTGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCC


CGGCCCTatgggcagtgtgagaaccaaccgctacagcatcgtctcttcag


aagaagacggtatgaagttggccaccatggcagttgcaaatggctttggg


aacgggaagagtaaagtccacacccgacaacagtgcaggagccgctttgt


gaagaaagatggccactgtaatgttcagttcatcaatgtgggtgagaagg


ggcaacggtacctcgcagacatcttcaccacgtgtgtggacattcgctgg


cggtggatgctggttatcttctgcctggctttcgtcctgtcatggctgtt


ttttggctgtgtgttttggttgatagctctgctccatggggacctggatg


catccaaagagggcaaagcttgtgtgtccgaggtcaacagcttcacggct


gccttcctcttctccattgagacccagacaaccataggctatggtttcag


atgtgtcacggatgaatgcccaattgctgttttcatggtggtgttccagt


caatcgtgggctgcatcatcgatgctttcatcattggcgcagtcatggcc


aagatggcaaagccaaagaagagaaacgagactcttgtcttcagtcacaa


tgccgtgattgccatgagagacggcaagctgtgtttgatgtggcgagtgg


gcaatcttcggaaaagccacttggtggaagctcatgttcgagcacagctc


ctcaaatccagaattacttctgaaggggagtatatccctctggatcaaat


agacatcaatgttgggtttgacagtggaatcgatcgtatatttctggtgt


ccccaatcactatagtccatgaaatagatgaagacagtcctttatatgat


ttgagtaaacaggacattgacaacgcagactttgaaatcgtggtcatact


ggaaggcatggtggaagccactgccatgacgacacagtgccgtagctctt


atctagcaaatgaaatcctgtggggccaccgctatgagcctgtgctcttt


gaagagaagcactactacaaagtggactactccaggttccacaaaactta


cgaagtccccaacactcccctttgtagtgccagagacttagcagaaaaga


aatatatcctctcaaatgcaaattcattttgctatgaaaatgaagttgcc


ctcacaagcaaagaggaagacgacagtgaaaatggagttccagaaagcac


tagtacggacacgccccctgacatagaccttcacaaccaggcaagtgtac


ctctagagcccaggcccttacggcgagagtcggagatatgagTCGACAAT


CAACCTCATcgataccgagcgctgctcgagagatctacgggtggcatccc


tgtgacccctccccagtgcctctcctggccctggaagttgccactccagt


gcccaccagccttgtcctaataaaattaagttgcatcattttgtctgact


aggtgtccttctataatattatggggtggaggggggtggtatggagcaag


gggcaagttgggaagacaacctgtagggcctgcggggtctattgggaacc


aagctggagtgcagtggcacaatcttggctcactgcaatctccgcctcct


gggttcaagcgattctcctgcctcagcctcccgagttgttgggattccag


gcatgcatgaccaggctcagctaatttttgtttttttggtagagacgggg


tttcaccatattggccaggctggtctccaactcctaatctcaggtgatct


acccaccttggcctcccaaattgctgggattacaggcgtgaaccactgct


cccttccctgtccttctgattttgtaggtaaccacgtgcggaccgagcgg


ccgcaggaacccctagtgatggagttggccactccctctctgcgcgctcg


ctcgctcactgaggccgggcgaccaaaggtcgcccgacgcccgggctttg


cccgggcggcctcagtgagcgagcgagcgcgcagctgcctgcaggggcgc


ctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcat


acgtcaaagcaaccatagtacgcgccctgtagcggcgcattaagcgcggc


gggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctag


cgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggc


tttccccgtcaagctctaaatcgggggctccctttagggttccgatttag


tgctttacggcacctcgaccccaaaaaacttgatttgggtgatggttcac


gtagtgggccatcgccctgatagacggtttttcgccctttgacgttggag


tccacgttctttaatagtggactcttgttccaaactggaacaacactcaa


ccctatctcgggctattcttttgatttataagggattttgccgatttcgg


cctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaatttt


aacaaaatattaacgtttacaattttatggtgcactctcagtacaatctg


ctctgatgccgcatagttaagccagccccgacacccgccaacacccgctg


acgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagct


gtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcacc


gaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggtta


atgtcatgataataatggtttcttagacgtcaggtggcacttttcgggga


aatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatat


gtatccgctcatgagacaataaccctgataaatgcttcaataatattgaa


aaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttt


tttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaa


agtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaac


tggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgt


tttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatc


ccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctc


agaatgacttggttgagtactcaccagtcacagaaaagcatcttacggat


ggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataa


cactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaa


ccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgg


gaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgat


gcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactac


ttactctagcttcccggcaacaattaatagactggatggaggcggataaa


gttgcaggaccacttctgcgctcggcccttccggctggctggtttattgc


tgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcac


tggggccagatggtaagccctcccgtatcgtagttatctacacgacgggg


agtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgc


ctcactgattaagcattggtaactgtcagaccaagtttactcatatatac


tttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaag


atcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgtt


ccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatc


ctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgcta


ccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaa


ggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgt


agccgtagttaggccaccacttcaagaactctgtagcaccgcctacatac


ctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtc


gtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagc


ggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacg


acctacaccgaactgagatacctacagcgtgagctatgagaaagcgccac


gcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcg


gaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctt


tatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtg


atgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcct


ttttacggttcctggccttttgctggccttttgctcacatgt














Nucleotide sequence of NRAM-hCfos-dsGFP-KCNA1 cons



truct (SEQ ID NO: 27) TGTTCGTGACTGTGACTAGAAGTTTGTT


CGTGACTGTGACTAGAAGTTTGTTCGTGACTGTGACTAGAAGTTTGTTCG


TGACTGTGAactcattcataaaacgcttgttataaaagcagtggctgcgg


cgcctcgtactccaaccgcatctgcagcgagcaactgagaagccaagact


gagccggcggccGAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGT


ACTCCCTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCC


AAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAG


GGTGGCCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCT


TGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACA


TCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAG


CCCAAGCGGAGGATCCGCCACCatgcccgccatgaagatcgagtgccgca


tcaccggcaccctgaacggcgtggagttcgagctggtgggcggcggagag


ggcacccccgaGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGG


CGCCCTGACCTTCAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCT


TCTACCACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCAC


GCCATCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGA


CGGCGGCGTGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCG


TGATCGGCGACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTG


ATCTTCACCGACAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCA


CCCCATGGGCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCC


TGCGCGACGGCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTC


AAGAGCGCCATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGC


CTTCCGCCGCGTGGAGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGG


AGTACCAGCACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGAT


ATCAGCCATGGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCT


GCCCATGTCTTGTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCT


GTGCTTCTGCTAGGATCAATGTGACCGGTGAGGGCAGAGGAAGTCTTCTA


ACATGCGGTGACGTGGAGGAGAATCCCGGCCCTATGACCGTGATGAGCGG


CGAGAACGTGGACGAGGCCTCTGCCGCTCCTGGACACCCTCAGGATGGCA


GCTATCCCAGACAGGCCGACCACGACGATCACGAGTGCTGCGAGCGGGTC


GTGATCAACATCAGCGGCCTGAGATTCGAGACACAGCTGAAAACCCTGGC


CCAGTTCCCCAACACCCTGCTGGGCAACCCCAAGAAACGGATGCGGTACT


TCGACCCCCTGCGGAACGAGTACTTCTTCGACCGGAACCGGCCCAGCTTC


GACGCCATCCTGTACTACTACCAGAGCGGCGGCAGACTGCGGAGGCCCGT


GAATGTGCCCCTGGACATGTTCAGCGAGGAAATCAAGTTCTACGAGCTGG


GCGAGGAAGCCATGGAAAAGTTCAGAGAGGACGAGGGCTTCATCAAAGAG


GAAGAGAGGCCCCTGCCCGAGAAAGAATACCAGAGACAAGTGTGGCTGCT


GTTCGAGTACCCCGAGTCTAGCGGCCCTGCCAGAGTGATCGCCATCGTGT


CCGTGATGGTCATCCTGATCTCTATCGTGATCTTCTGCCTGGAAACCCTG


CCTGAGCTGAAGGACGACAAGGACTTCACCGGCACCGTGCACCGGATCGA


CAACACCACCGTGATCTACAACAGCAATATCTTCACCGACCCATTCTTCA


TCGTGGAAACACTGTGCATCATCTGGTTCAGCTTCGAGCTGGTCGTGCGG


TTCTTCGCCTGCCCCAGCAAGACCGACTTCTTCAAGAACATCATGAACTT


CATTGATATCGTGGCCATCATCCCCTACTTCATCACCCTGGGCACCGAGA


TCGCCGAGCAGGAAGGCAATCAGAAGGGCGAGCAGGCCACCAGCCTGGCC


ATTCTGAGAGTGATCAGACTCGTGCGGGTGTTCCGGATCTTCAAGCTGAG


CCGGCACAGCAAGGGCCTGCAGATCCTGGGCCAGACACTGAAGGCCAGCA


TGAGAGAGCTGGGCCTGCTGATCTTCTTTCTGTTCATCGGCGTGATCCTG


TTCAGCAGCGCCGTGTACTTCGCCGAGGCCGAAGAAGCCGAGAGCCACTT


CAGCTCTATCCCCGACGCCTTTTGGTGGGCCGTGGTGTCCATGACCACAG


TGGGCTACGGCGACATGGTGCCCGTGACAATCGGCGGCAAGATCGTGGGC


AGCCTGTGTGCCATTGCCGGCGTGCTGACAGTCGCCCTGCCTGTGCCTGT


GATCGTGTCCAACTTCAACTACTTCTACCACCGGGAAACCGAGGGGGAGG


AACAGGCTCAGCTGCTGCACGTGTCCAGCCCCAATCTGGCCAGCGACAGC


GACCTGAGCAGACGGTCTAGCAGCACCATGAGCAAGAGCGAGTACATGGA


AATCGAAGAGGACATGAACAACTCTATCGCCCACTACCGCCAAGTGAACA


TCCGGACCGCCAACTGCACCACCGCCAACCAGAACTGCGTGAACAAGAGC


AAGCTGCTGACCGATGTCTGAgTCGACAATCAACCTCA














Nucleotide sequence of optimised AAV- NRAM-hCfos -



dsGFP-KCNA1 vector (SEQ ID NO: 28) cctgcaggcagctgc


gcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcg


acctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagt


ggccaactccatcactaggggttcctgcggccgcacgcgtTTCGCTATTA


CGCCAGTTTTATTCTAGAAGTTTGTTCGTGACTGTGACTAGAAGTTTGTT


CGTGACTGTGACTAGAAGTTTGTTCGTGACTGTGACTAGAAGTTTGTTCG


TGACTGTGAactcattcataaaacgcttgttataaaagcagtggctgcgg


cgcctcgtactccaaccgcatctgcagcgagcaactgagaagccaagact


gagccggcggccGAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGT


ACTCCCTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCC


AAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAG


GGTGGCCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCT


TGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACA


TCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAG


CCCAAGCGGAGGATCCGCCACCatgcccgccatgaagatcgagtgccgca


tcaccggcaccctgaacggcgtggagttcgagctggtgggcggcggagag


ggcacccccgaGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGG


CGCCCTGACCTTCAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCT


TCTACCACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCAC


GCCATCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGA


CGGCGGCGTGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCG


TGATCGGCGACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTG


ATCTTCACCGACAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCA


CCCCATGGGCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCC


TGCGCGACGGCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTC


AAGAGCGCCATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGC


CTTCCGCCGCGTGGAGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGG


AGTACCAGCACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGAT


ATCAGCCATGGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCT


GCCCATGTCTTGTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCT


GTGCTTCTGCTAGGATCAATGTGACCGGTGAGGGCAGAGGAAGTCTTCTA


ACATGCGGTGACGTGGAGGAGAATCCCGGCCCTATGACCGTGATGAGCGG


CGAGAACGTGGACGAGGCCTCTGCCGCTCCTGGACACCCTCAGGATGGCA


GCTATCCCAGACAGGCCGACCACGACGATCACGAGTGCTGCGAGCGGGTC


GTGATCAACATCAGCGGCCTGAGATTCGAGACACAGCTGAAAACCCTGGC


CCAGTTCCCCAACACCCTGCTGGGCAACCCCAAGAAACGGATGCGGTACT


TCGACCCCCTGCGGAACGAGTACTTCTTCGACCGGAACCGGCCCAGCTTC


GACGCCATCCTGTACTACTACCAGAGCGGCGGCAGACTGCGGAGGCCCGT


GAATGTGCCCCTGGACATGTTCAGCGAGGAAATCAAGTTCTACGAGCTGG


GCGAGGAAGCCATGGAAAAGTTCAGAGAGGACGAGGGCTTCATCAAAGAG


GAAGAGAGGCCCCTGCCCGAGAAAGAATACCAGAGACAAGTGTGGCTGCT


GTTCGAGTACCCCGAGTCTAGCGGCCCTGCCAGAGTGATCGCCATCGTGT


CCGTGATGGTCATCCTGATCTCTATCGTGATCTTCTGCCTGGAAACCCTG


CCTGAGCTGAAGGACGACAAGGACTTCACCGGCACCGTGCACCGGATCGA


CAACACCACCGTGATCTACAACAGCAATATCTTCACCGACCCATTCTTCA


TCGTGGAAACACTGTGCATCATCTGGTTCAGCTTCGAGCTGGTCGTGCGG


TTCTTCGCCTGCCCCAGCAAGACCGACTTCTTCAAGAACATCATGAACTT


CATTGATATCGTGGCCATCATCCCCTACTTCATCACCCTGGGCACCGAGA


TCGCCGAGCAGGAAGGCAATCAGAAGGGCGAGCAGGCCACCAGCCTGGCC


ATTCTGAGAGTGATCAGACTCGTGCGGGTGTTCCGGATCTTCAAGCTGAG


CCGGCACAGCAAGGGCCTGCAGATCCTGGGCCAGACACTGAAGGCCAGCA


TGAGAGAGCTGGGCCTGCTGATCTTCTTTCTGTTCATCGGCGTGATCCTG


TTCAGCAGCGCCGTGTACTTCGCCGAGGCCGAAGAAGCCGAGAGCCACTT


CAGCTCTATCCCCGACGCCTTTTGGTGGGCCGTGGTGTCCATGACCACAG


TGGGCTACGGCGACATGGTGCCCGTGACAATCGGCGGCAAGATCGTGGGC


AGCCTGTGTGCCATTGCCGGCGTGCTGACAGTCGCCCTGCCTGTGCCTGT


GATCGTGTCCAACTTCAACTACTTCTACCACCGGGAAACCGAGGGGGAGG


AACAGGCTCAGCTGCTGCACGTGTCCAGCCCCAATCTGGCCAGCGACAGC


GACCTGAGCAGACGGTCTAGCAGCACCATGAGCAAGAGCGAGTACATGGA


AATCGAAGAGGACATGAACAACTCTATCGCCCACTACCGCCAAGTGAACA


TCCGGACCGCCAACTGCACCACCGCCAACCAGAACTGCGTGAACAAGAGC


AAGCTGCTGACCGATGTCTGAgTCGACAATCAACCTCATcgataccgagc


gctgctcgagagatctacgggtggcatccctgtgacccctccccagtgcc


tctcctggccctggaagttgccactccagtgcccaccagccttgtcctaa


taaaattaagttgcatcattttgtctgactaggtgtccttctataatatt


atggggtggaggggggtggtatggagcaaggggcaagttgggaagacaac


ctgtagggcctgcggggtctattgggaaccaagctggagtgcagtggcac


aatcttggctcactgcaatctccgcctcctgggttcaagcgattctcctg


cctcagcctcccgagttgttgggattccaggcatgcatgaccaggctcag


ctaatttttgtttttttggtagagacggggtttcaccatattggccaggc


tggtctccaactcctaatctcaggtgatctacccaccttggcctcccaaa


ttgctgggattacaggcgtgaaccactgctcccttccctgtccttctgat


tttgtaggtaaccacgtgcggaccgagcggccgcaggaacccctagtgat


ggagttggccactccctctctgcgcgctcgctcgctcactgaggccgggc


gaccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagc


gagcgagcgcgcagctgcctgcaggggcgcctgatgcggtattttctcct


tacgcatctgtgcggtatttcacaccgcatacgtcaaagcaaccatagta


cgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgca


gcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttc


ttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaa


tcgggggctccctttagggttccgatttagtgctttacggcacctcgacc


ccaaaaaacttgatttgggtgatggttcacgtagtgggccatcgccctga


tagacggtttttcgccctttgacgttggagtccacgttctttaatagtgg


actcttgttccaaactggaacaacactcaaccctatctcgggctattctt


ttgatttataagggattttgccgatttcggcctattggttaaaaaatgag


ctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttac


aattttatggtgcactctcagtacaatctgctctgatgccgcatagttaa


gccagccccgacacccgccaacacccgctgacgcgccctgacgggcttgt


ctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctg


catgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagg


gcctcgtgatacgcctatttttataggttaatgtcatgataataatggtt


tcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctat


ttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaat


aaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtatt


caacatttccgtgtcgcccttattcccttttttgcggcattttgccttcc


tgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatc


agttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaag


atccttgagagttttcgccccgaagaacgttttccaatgatgagcacttt


taaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaag


agcaactcggtcgccgcatacactattctcagaatgacttggttgagtac


tcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaatt


atgcagtgctgccataaccatgagtgataacactgcggccaacttacttc


tgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatg


ggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagc


cataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaa


cgttgcgcaaactattaactggcgaactacttactctagcttcccggcaa


caattaatagactggatggaggcggataaagttgcaggaccacttctgcg


ctcggcccttccggctggctggtttattgctgataaatctggagccggtg


agcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccc


tcccgtatcgtagttatctacacgacggggagtcaggcaactatggatga


acgaaatagacagatcgctgagataggtgcctcactgattaagcattggt


aactgtcagaccaagtttactcatatatactttagattgatttaaaactt


catttttaatttaaaaggatctaggtgaagatcctttttgataatctcat


gaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccg


tagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatc


tgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgcc


ggatcaagagctaccaactctttttccgaaggtaactggcttcagcagag


cgcagataccaaatactgtccttctagtgtagccgtagttaggccaccac


ttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgtt


accagtggctgctgccagtggcgataagtcgtgtcttaccgggttggact


caagacgatagttaccggataaggcgcagcggtcgggctgaacggggggt


tcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagata


cctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaagg


cggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagg


gagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcg


ccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcgga


gcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttt


tgctggccttttgctcacatgt














Nucleotide sequence of NRAM-hCfos -dsGFP-KCNJ2 con



struct (SEQ ID NO: 29) GAAGTTTGTTCGTGACTGTGACTAGAA


GTTTGTTCGTGACTGTGACTAGAAGTTTGTTCGTGACTGTGACTAGAAGT


TTGTTCGTGACTGTGAACTCATTCATAAAACGCTTGTTATAAAAGCAGTG


GCTGCGGCGCCTCGTACTCCAACCGCATCTGCAGCGAGCAACTGAGAAGC


CAAGACTGAGCCGGCGGCCGAATTCGCTGTCTGCGAGGGCCAGCTGTTGG


GGTGAGTACTCCCTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTC


AGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGC


CTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTG


TCAAGCTTGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGAC


AATGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCA


ACTGCAGCCCAAGCGGAGGATCCGCCACCATGCCCGCCATGAAGATCGAG


TGCCGCATCACCGGCACCCTGAACGGCGTGGAGTTCGAGCTGGTGGGCGG


CGGAGAGGGCACCCCCGAGCAGGGCCGCATGACCAACAAGATGAAGAGCA


CCAAAGGCGCCCTGACCTTCAGCCCCTACCTGCTGAGCCACGTGATGGGC


TACGGCTTCTACCACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTT


CCTGCACGCCATCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGT


ACGAGGACGGCGGCGTGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCC


GGCCGCGTGATCGGCGACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGA


CAGCGTGATCTTCACCGACAAGATCATCCGCAGCAACGCCACCGTGGAGC


ACCTGCACCCCATGGGCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACC


TTCAGCCTGCGCGACGGCGGCTACTACAGCTTCGTGGTGGACAGCCACAT


GCACTTCAAGAGCGCCATCCACCCCAGCATCCTGCAGAACGGGGGCCCCA


TGTTCGCCTTCCGCCGCGTGGAGGAGCTGCACAGCAACACCGAGCTGGGC


ATCGTGGAGTACCAGCACGCCTTCAAGACCCCCATCGCCTTCGCCAGATC


TCGAGATATCAGCCATGGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATG


GCACGCTGCCCATGTCTTGTGCCCAGGAGAGCGGGATGGACCGTCACCCT


GCAGCCTGTGCTTCTGCTAGGATCAATGTGACCGGTGAGGGCAGAGGAAG


TCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTATGGGCAGTG


TGAGAACCAACCGCTACAGCATCGTCTCTTCAGAAGAAGACGGTATGAAG


TTGGCCACCATGGCAGTTGCAAATGGCTTTGGGAACGGGAAGAGTAAAGT


CCACACCCGACAACAGTGCAGGAGCCGCTTTGTGAAGAAAGATGGCCACT


GTAATGTTCAGTTCATCAATGTGGGTGAGAAGGGGCAACGGTACCTCGCA


GACATCTTCACCACGTGTGTGGACATTCGCTGGCGGTGGATGCTGGTTAT


CTTCTGCCTGGCTTTCGTCCTGTCATGGCTGTTTTTTGGCTGTGTGTTTT


GGTTGATAGCTCTGCTCCATGGGGACCTGGATGCATCCAAAGAGGGCAAA


GCTTGTGTGTCCGAGGTCAACAGCTTCACGGCTGCCTTCCTCTTCTCCAT


TGAGACCCAGACAACCATAGGCTATGGTTTCAGATGTGTCACGGATGAAT


GCCCAATTGCTGTTTTCATGGTGGTGTTCCAGTCAATCGTGGGCTGCATC


ATCGATGCTTTCATCATTGGCGCAGTCATGGCCAAGATGGCAAAGCCAAA


GAAGAGAAACGAGACTCTTGTCTTCAGTCACAATGCCGTGATTGCCATGA


GAGACGGCAAGCTGTGTTTGATGTGGCGAGTGGGCAATCTTCGGAAAAGC


CACTTGGTGGAAGCTCATGTTCGAGCACAGCTCCTCAAATCCAGAATTAC


TTCTGAAGGGGAGTATATCCCTCTGGATCAAATAGACATCAATGTTGGGT


TTGACAGTGGAATCGATCGTATATTTCTGGTGTCCCCAATCACTATAGTC


CATGAAATAGATGAAGACAGTCCTTTATATGATTTGAGTAAACAGGACAT


TGACAACGCAGACTTTGAAATCGTGGTCATACTGGAAGGCATGGTGGAAG


CCACTGCCATGACGACACAGTGCCGTAGCTCTTATCTAGCAAATGAAATC


CTGTGGGGCCACCGCTATGAGCCTGTGCTCTTTGAAGAGAAGCACTACTA


CAAAGTGGACTACTCCAGGTTCCACAAAACTTACGAAGTCCCCAACACTC


CCCTTTGTAGTGCCAGAGACTTAGCAGAAAAGAAATATATCCTCTCAAAT


GCAAATTCATTTTGCTATGAAAATGAAGTTGCCCTCACAAGCAAAGAGGA


AGACGACAGTGAAAATGGAGTTCCAGAAAGCACTAGTACGGACACGCCCC


CTGACATAGACCTTCACAACCAGGCAAGTGTACCTCTAGAGCCCAGGCCC


TTACGGCGAGAGTCGGAGATATGA














Nucleotide sequence of optimised AAV- NRAM-hCfos -



dsGFP-KCNJ2 vector (SEQ ID NO: 30) CAGGCAGCTGCGCGC


TCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCT


TTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCC


AACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTTTCGCTATTACGCC


AGTTTTATTCTAGAAGTTTGTTCGTGACTGTGACTAGAAGTTTGTTCGTG


ACTGTGACTAGAAGTTTGTTCGTGACTGTGACTAGAAGTTTGTTCGTGAC


TGTGAACTCATTCATAAAACGCTTGTTATAAAAGCAGTGGCTGCGGCGCC


TCGTACTCCAACCGCATCTGCAGCGAGCAACTGAGAAGCCAAGACTGAGC


CGGCGGCCGAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTC


CCTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAA


ACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTG


GCCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAG


GTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCA


CTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGCCCA


AGCGGAGGATCCGCCACCATGCCCGCCATGAAGATCGAGTGCCGCATCAC


CGGCACCCTGAACGGCGTGGAGTTCGAGCTGGTGGGCGGCGGAGAGGGCA


CCCCCGAGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGGCGCC


CTGACCTTCAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCTTCTA


CCACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCACGCCA


TCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGACGGC


GGCGTGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGAT


CGGCGACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTGATCT


TCACCGACAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCACCCC


ATGGGCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTGCG


CGACGGCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTCAAGA


GCGCCATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGCCTTC


CGCCGCGTGGAGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGGAGTA


CCAGCACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGATATCA


GCCATGGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCTGCCC


ATGTCTTGTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCTGTGC


TTCTGCTAGGATCAATGTGACCGGTGAGGGCAGAGGAAGTCTTCTAACAT


GCGGTGACGTGGAGGAGAATCCCGGCCCTATGGGCAGTGTGAGAACCAAC


CGCTACAGCATCGTCTCTTCAGAAGAAGACGGTATGAAGTTGGCCACCAT


GGCAGTTCAAATGGCTTTGGGAACGGGAAGAGTAAAGTCCACACCCGACA


ACAGTGCAGGAGCCGCTTTGTGAAGAAAGATGGCCACTGTAATGTTCAGT


TCATCAATGTGGGTGAGAAGGGGCAACGGTACCTCGCAGACATCTTCACC


ACGTGTGTGGACATTCGCTGGCGGTGGATGCTGGTTATCTTCTGCCTGGC


TTTCGTCCTGTCATGGCTGTTTTTTGGCTGTGTGTTTTGGTTGATAGCTC


TGCTCCATGGGGACCTGGATGCATCCAAAGAGGGCAAAGCTTGTGTGTCC


GAGGTCAACAGCTTCACGGCTGCCTTCCTCTTCTCCATTGAGACCCAGAC


AACCATAGGCTATGGTTTCAGATGTGTCACGGATGAATGCCCAATTGCTG


TTTTCATGGTGGTGTTCCAGTCAATCGTGGGCTGCATCATCGATGCTTTC


ATCATTGGCGCAGTCATGGCCAAGATGGCAAAGCCAAAGAAGAGAAACGA


GACTCTTGTCTTCAGTCACAATGCCGTGATTGCCATGAGAGACGGCAAGC


TGTGTTTGATGTGGCGAGTGGGCAATCTTCGGAAAAGCCACTTGGTGGAA


GCTCATGTTCGAGCACAGCTCCTCAAATCCAGAATTACTTCTGAAGGGGA


GTATATCCCTCTGGATCAAATAGACATCAATGTTGGGTTTGACAGTGGAA


TCGATCGTATATTTCTGGTGTCCCCAATCACTATAGTCCATGAAATAGAT


GAAGACAGTCCTTTATATGATTTGAGTAAACAGGACATTGACAACGCAGA


CTTTGAAATCGTGGTCATACTGGAAGGCATGGTGGAAGCCACTGCCATGA


CGACACAGTGCCGTAGCTCTTATCTAGCAAATGAAATCCTGTGGGGCCAC


CGCTATGAGCCTGTGCTCTTTGAAGAGAAGCACTACTACAAAGTGGACTA


CTCCAGGTTCCACAAAACTTACGAAGTCCCCAACACTCCCCTTTGTAGTG


CCAGAGACTTAGCAGAAAAGAAATATATCCTCTCAAATGCAAATTCATTT


TGCTATGAAAATGAAGTTGCCCTCACAAGCAAAGAGGAAGACGACAGTGA


AAATGGAGTTCCAGAAAGCACTAGTACGGACACGCCCCCTGACATAGACC


TTCACAACCAGGCAAGTGTACCTCTAGAGCCCAGGCCCTTACGGCGAGAG


TCGGAGATATGAGTCGACAATCAACCTCATCGATACCGAGCGCTGCTCGA


GAGATCTACGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGC


CCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCTAATAAAATTAA


GTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATATTATGGGGTGG


AGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGC


CTGCGGGGTCTATTGGGAACCAAGCTGGAGTGCAGTGGCACAATCTTGGC


TCACTGCAATCTCCGCCTCCTGGGTTCAAGCGATTCTCCTGCCTCAGCCT


CCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTAATTTTT


GTTTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCA


ACTCCTAATCTCAGGTGATCTACCCACCTTGGCCTCCCAAATTGCTGGGA


TTACAGGCGTGAACCACTGCTCCCTTCCCTGTCCTTCTGATTTTGTAGGT


AACCACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGC


CACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGG


TCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCG


CGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCT


GTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTG


TAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCG


CTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCC


TTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCT


CCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAAC


TTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTT


TTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTT


CCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTAT


AAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAA


CAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATG


GTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCC


GACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCG


GCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCA


GAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGA


TACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACG


TCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATT


TTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGAT


AAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTC


CGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGC


TCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTG


CACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAG


AGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCT


GCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCG


GTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTC


ACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGC


TGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGA


TCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCAT


GTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAA


CGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCA


AACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATA


GACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCT


TCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGT


CTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATC


GTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAG


ACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAG


ACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAA


TTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAAT


CCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGA


TCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTG


CAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGA


GCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATAC


CAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAAC


TCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGC


TGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGAT


AGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACA


CAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCG


TGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGT


ATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCA


GGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTG


ACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGA


AAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCT


TTTGCTCACATGT














Nucleotide sequence of Eqr1-dsGFP-KCNA1 construct 



(SEQ ID NO: 31) cgtctcgagctggccctccccacgcgggcgtccc


cgactcccgcgcgcgctcaggctcccagttgggaaccaaggagggggagg


atgggggggggggtgtgcgccgacccggaaacgccatataaggagcagga


aggatcccccgccggaacagaccttatttgggcagcgccttatatggagt


ggcccaatatggccctgccgcttccggctctgggaggaggggcgagcggg


ggttggggcgggggcaagctgggaactccaggcgcctggcccgggaggcc


actgctgctgttccaatactaggctttccaggagcctgagcgctcgcgat


gccggagcgggtcgcagggtggaggtgcccaccactcttggatgggaggg


cttcacgtcactccgggtcctcccggccggtccttccatattagggcttc


ctgcttcccatatatggccatgtacgtcacggcggaggcgggcccgtgct


gttccagacccttgaaatagaggccgattcggggagtcgcGAATTCGCTG


TCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCAT


GACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATAT


TCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCA


GAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGAT


CTGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCAC


AGGTGTCCACTCCCAGGTCCAACTGCAGCCCAAGCGGAGGATCCGCCACC


atgcccgccatgaagatcgagtgccgcatcaccggcaccctgaacggcgt


ggagttcgagctggtgggcggcggagagggcacccccgaGCAGGGCCGCA


TGACCAACAAGATGAAGAGCACCAAAGGCGCCCTGACCTTCAGCCCCTAC


CTGCTGAGCCACGTGATGGGCTACGGCTTCTACCACTTCGGCACCTACCC


CAGCGGCTACGAGAACCCCTTCCTGCACGCCATCAACAACGGCGGCTACA


CCAACACCCGCATCGAGAAGTACGAGGACGGCGGCGTGCTGCACGTGAGC


TTCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAAGGTGGT


GGGCACCGGCTTCCCCGAGGACAGCGTGATCTTCACCGACAAGATCATCC


GCAGCAACGCCACCGTGGAGCACCTGCACCCCATGGGCGATAACGTGCTG


GTGGGCAGCTTCGCCCGCACCTTCAGCCTGCGCGACGGCGGCTACTACAG


CTTCGTGGTGGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCA


TCCTGCAGAACGGGGGCCCCATGTTCGCCTTCCGCCGCGTGGAGGAGCTG


CACAGCAACACCGAGCTGGGCATCGTGGAGTACCAGCACGCCTTCAAGAC


CCCCATCGCCTTCGCCAGATCTCGAGATATCAGCCATGGCTTCCCGCCGG


CGGTGGCGGCGCAGGATGATGGCACGCTGCCCATGTCTTGTGCCCAGGAG


AGCGGGATGGACCGTCACCCTGCAGCCTGTGCTTCTGCTAGGATCAATGT


GACCGGTGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGA


ATCCCGGCCCTATGACCGTGATGAGCGGCGAGAACGTGGACGAGGCCTCT


GCCGCTCCTGGACACCCTCAGGATGGCAGCTATCCCAGACAGGCCGACCA


CGACGATCACGAGTGCTGCGAGCGGGTCGTGATCAACATCAGCGGCCTGA


GATTCGAGACACAGCTGAAAACCCTGGCCCAGTTCCCCAACACCCTGCTG


GGCAACCCCAAGAAACGGATGCGGTACTTCGACCCCCTGCGGAACGAGTA


CTTCTTCGACCGGAACCGGCCCAGCTTCGACGCCATCCTGTACTACTACC


AGAGCGGCGGCAGACTGCGGAGGCCCGTGAATGTGCCCCTGGACATGTTC


AGCGAGGAAATCAAGTTCTACGAGCTGGGCGAGGAAGCCATGGAAAAGTT


CAGAGAGGACGAGGGCTTCATCAAAGAGGAAGAGAGGCCCCTGCCCGAGA


AAGAATACCAGAGACAAGTGTGGCTGCTGTTCGAGTACCCCGAGTCTAGC


GGCCCTGCCAGAGTGATCGCCATCGTGTCCGTGATGGTCATCCTGATCTC


TATCGTGATCTTCTGCCTGGAAACCCTGCCTGAGCTGAAGGACGACAAGG


ACTTCACCGGCACCGTGCACCGGATCGACAACACCACCGTGATCTACAAC


AGCAATATCTTCACCGACCCATTCTTCATCGTGGAAACACTGTGCATCAT


CTGGTTCAGCTTCGAGCTGGTCGTGCGGTTCTTCGCCTGCCCCAGCAAGA


CCGACTTCTTCAAGAACATCATGAACTTCATTGATATCGTGGCCATCATC


CCCTACTTCATCACCCTGGGCACCGAGATCGCCGAGCAGGAAGGCAATCA


GAAGGGCGAGCAGGCCACCAGCCTGGCCATTCTGAGAGTGATCAGACTCG


TGCGGGTGTTCCGGATCTTCAAGCTGAGCCGGCACAGCAAGGGCCTGCAG


ATCCTGGGCCAGACACTGAAGGCCAGCATGAGAGAGCTGGGCCTGCTGAT


CTTCTTTCTGTTCATCGGCGTGATCCTGTTCAGCAGCGCCGTGTACTTCG


CCGAGGCCGAAGAAGCCGAGAGCCACTTCAGCTCTATCCCCGACGCCTTT


TGGTGGGCCGTGGTGTCCATGACCACAGTGGGCTACGGCGACATGGTGCC


CGTGACAATCGGCGGCAAGATCGTGGGCAGCCTGTGTGCCATTGCCGGCG


TGCTGACAGTCGCCCTGCCTGTGCCTGTGATCGTGTCCAACTTCAACTAC


TTCTACCACCGGGAAACCGAGGGGGAGGAACAGGCTCAGCTGCTGCACGT


GTCCAGCCCCAATCTGGCCAGCGACAGCGACCTGAGCAGACGGTCTAGCA


GCACCATGAGCAAGAGCGAGTACATGGAAATCGAAGAGGACATGAACAAC


TCTATCGCCCACTACCGCCAAGTGAACATCCGGACCGCCAACTGCACCAC


CGCCAACCAGAACTGCGTGAACAAGAGCAAGCTGCTGACCGATGTCTGAg


TC














Nucleotide sequence of optimised AAV- Eqr1-dsGFP-K



CNA1 vector (SEQ ID NO: 32) cctgcaggcagctgcgcgctcg


ctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttg


gtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaac


tccatcactaggggttcctgcggccgcacgcgtctcgagctggccctccc


cacgcgggcgtccccgactcccgcgcgcgctcaggctcccagttgggaac


caaggagggggaggatgggggggggggtgtgcgccgacccggaaacgcca


tataaggagcaggaaggatcccccgccggaacagaccttatttgggcagc


gccttatatggagtggcccaatatggccctgccgcttccggctctgggag


gaggggcgagcgggggttggggcgggggcaagctgggaactccaggcgcc


tggcccgggaggccactgctgctgttccaatactaggctttccaggagcc


tgagcgctcgcgatgccggagcgggtcgcagggtggaggtgcccaccact


cttggatgggagggcttcacgtcactccgggtcctcccggccggtccttc


catattagggcttcctgcttcccatatatggccatgtacgtcacggcgga


ggcgggcccgtgctgttccagacccttgaaatagaggccgattcggggag


tcgcGAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTC


TCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGA


GGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCG


CGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGT


GGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCACTTT


GCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGCCCAAGCG


GAGGATCCGCCACCatgcccgccatgaagatcgagtgccgcatcaccggc


accctgaacggcgtggagttcgagctggtgggcggcggagagggcacccc


cgaGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGGCGCCCTGA


CCTTCAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCTTCTACCAC


TTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCACGCCATCAA


CAACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGACGGCGGCG


TGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGC


GACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTGATCTTCAC


CGACAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCACCCCATGG


GCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTGCGCGAC


GGCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTCAAGAGCGC


CATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGCCTTCCGCC


GCGTGGAGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGGAGTACCAG


CACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGATATCAGCCA


TGGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCTGCCCATGT


CTTGTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCTGTGCTTCT


GCTAGGATCAATGTGACCGGTGAGGGCAGAGGAAGTCTTCTAACATGCGG


TGACGTGGAGGAGAATCCCGGCCCTATGACCGTGATGAGCGGCGAGAACG


TGGACGAGGCCTCTGCCGCTCCTGGACACCCTCAGGATGGCAGCTATCCC


AGACAGGCCGACCACGACGATCACGAGTGCTGCGAGCGGGTCGTGATCAA


CATCAGCGGCCTGAGATTCGAGACACAGCTGAAAACCCTGGCCCAGTTCC


CCAACACCCTGCTGGGCAACCCCAAGAAACGGATGCGGTACTTCGACCCC


CTGCGGAACGAGTACTTCTTCGACCGGAACCGGCCCAGCTTCGACGCCAT


CCTGTACTACTACCAGAGCGGCGGCAGACTGCGGAGGCCCGTGAATGTGC


CCCTGGACATGTTCAGCGAGGAAATCAAGTTCTACGAGCTGGGCGAGGAA


GCCATGGAAAAGTTCAGAGAGGACGAGGGCTTCATCAAAGAGGAAGAGAG


GCCCCTGCCCGAGAAAGAATACCAGAGACAAGTGTGGCTGCTGTTCGAGT


ACCCCGAGTCTAGCGGCCCTGCCAGAGTGATCGCCATCGTGTCCGTGATG


GTCATCCTGATCTCTATCGTGATCTTCTGCCTGGAAACCCTGCCTGAGCT


GAAGGACGACAAGGACTTCACCGGCACCGTGCACCGGATCGACAACACCA


CCGTGATCTACAACAGCAATATCTTCACCGACCCATTCTTCATCGTGGAA


ACACTGTGCATCATCTGGTTCAGCTTCGAGCTGGTCGTGCGGTTCTTCGC


CTGCCCCAGCAAGACCGACTTCTTCAAGAACATCATGAACTTCATTGATA


TCGTGGCCATCATCCCCTACTTCATCACCCTGGGACCGAGATCGCCGAGC


AGGAAGGCAATCAGAAGGGCGAGCAGGCCACCAGCCTGGCCATTCTGAGA


GTGATCAGACTCGTGCGGGTGTTCCGGATCTTCAAGCTGAGCCGGCACAG


CAAGGGCCTGCAGATCCTGGGCCAGACACTGAAGGCCAGCATGAGAGAGC


TGGGCCTGCTGATCTTCTTTCTGTTCATCGGCGTGATCCTGTTCAGCAGC


GCCGTGTACTTCGCCGAGGCCGAAGAAGCCGAGAGCCACTTCAGCTCTAT


CCCCGACGCCTTTTGGTGGGCCGTGGTGTCCATGACCACAGTGGGCTACG


GCGACATGGTGCCCGTGACAATCGGCGGCAAGATCGTGGGCAGCCTGTGT


GCCATTGCCGGCGTGCTGACAGTCGCCCTGCCTGTGCCTGTGATCGTGTC


CAACTTCAACTACTTCTACCACCGGGAAACCGAGGGGGAGGAACAGGCTC


AGCTGCTGCACGTGTCCAGCCCCAATCTGGCCAGCGACAGCGACCTGAGC


AGACGGTCTAGCAGCACCATGAGCAAGAGCGAGTACATGGAAATCGAAGA


GGACATGAACAACTCTATCGCCCACTACCGCCAAGTGAACATCCGGACCG


CCAACTGCACCACCGCCAACCAGAACTGCGTGAACAAGAGCAAGCTGCTG


ACCGATGTCTGAgTCGACAATCAACCTCATcgataccgagcgctgctcga


gagatctacgggtggcatccctgtgacccctccccagtgcctctcctggc


cctggaagttgccactccagtgcccaccagccttgtcctaataaaattaa


gttgcatcattttgtctgactaggtgtccttctataatattatggggtgg


aggggggtggtatggagcaaggggcaagttgggaagacaacctgtagggc


ctgcggggtctattgggaaccaagctggagtgcagtggcacaatcttggc


tcactgcaatctccgcctcctgggttcaagcgattctcctgcctcagcct


cccgagttgttgggattccaggcatgcatgaccaggctcagctaattttt


gtttttttggtagagacggggtttcaccatattggccaggctggtctcca


actcctaatctcaggtgatctacccaccttggcctcccaaattgctggga


ttacaggcgtgaaccactgctcccttccctgtccttctgattttgtaggt


aaccacgtgcggaccgagcggccgcaggaacccctagtgatggagttggc


cactccctctctgcgcgctcgctcgctcactgaggccgggcgaccaaagg


tcgcccgacgcccgggctttgcccgggcggcctcagtgagcgagcgagcg


cgcagctgcctgcaggggcgcctgatgcggtattttctccttacgcatct


gtgcggtatttcacaccgcatacgtcaaagcaaccatagtacgcgccctg


tagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccg


ctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcc


tttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggct


ccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaac


ttgatttgggtgatggttcacgtagtgggccatcgccctgatagacggtt


tttcgccctttgacgttggagtccacgttctttaatagtggactcttgtt


ccaaactggaacaacactcaaccctatctcgggctattcttttgatttat


aagggattttgccgatttcggcctattggttaaaaaatgagctgatttaa


caaaaatttaacgcgaattttaacaaaatattaacgtttacaattttatg


gtgcactctcagtacaatctgctctgatgccgcatagttaagccagcccc


gacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccg


gcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtca


gaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtga


tacgcctatttttataggttaatgtcatgataataatggtttcttagacg


tcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatt


tttctaaatacattcaaatatgtatccgctcatgagacaataaccctgat


aaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttc


cgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgc


tcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtg


cacgagtgggttacatcgaactggatctcaacagcggtaagatccttgag


agttttcgccccgaagaacgttttccaatgatgagcacttttaaagttct


gctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcg


gtcgccgcatacactattctcagaatgacttggttgagtactcaccagtc


acagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgc


tgccataaccatgagtgataacactgcggccaacttacttctgacaacga


tcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcat


gtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaa


cgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgca


aactattaactggcgaactacttactctagcttcccggcaacaattaata


gactggatggaggcggataaagttgcaggaccacttctgcgctcggccct


tccggctggctggtttattgctgataaatctggagccggtgagcgtgggt


ctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatc


gtagttatctacacgacggggagtcaggcaactatggatgaacgaaatag


acagatcgctgagataggtgcctcactgattaagcattggtaactgtcag


accaagtttactcatatatactttagattgatttaaaacttcatttttaa


tttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaat


cccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaaga


tcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttg


caaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaaga


gctaccaactctttttccgaaggtaactggcttcagcagagcgcagatac


caaatactgtccttctagtgtagccgtagttaggccaccacttcaagaac


tctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggc


tgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgat


agttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcaca


cagcccagcttggagcgaacgacctacaccgaactgagatacctacagcg


tgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggt


atccggtaagcggcagggtcggaacaggagagcgcacgagggagcttcca


gggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctg


acttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatgga


aaaacgccagcaacgcggcctttttacggttcctggccttttgctggcct


tttgctcacatgt














Nucleotide sequence of Egr1-dsGFP-KCNJ2 construct 



(SEQ ID NO: 33) ctggccctccccacgcgggcgtccccgactcccg


cgcgcgctcaggctcccagttgggaaccaaggagggggaggatggggggg


ggggtgtgcgccgacccggaaacgccatataaggagcaggaaggatcccc


cgccggaacagaccttatttgggcagcgccttatatggagtggcccaata


tggccctgccgcttccggctctgggaggaggggcgagcgggggttggggc


gggggcaagctgggaactccaggcgcctggcccgggaggccactgctgct


gttccaatactaggctttccaggagcctgagcgctcgcgatgccggagcg


ggtcgcagggtggaggtgcccaccactcttggatgggagggcttcacgtc


actccgggtcctcccggccggtccttccatattagggcttcctgcttccc


atatatggccatgtacgtcacggcggaggcgggcccgtgctgttccagac


ccttgaaatagaggccgattcggggagtcgcGAATTCGCTGTCTGCGAGG


GCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACTTCTGC


GCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGC


CCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAAGACA


ATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGATCTGGCCATA


CACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCA


CTCCCAGGTCCAACTGCAGCCCAAGCGGAGGATCCGCCACCatgcccgcc


atgaagatcgagtgccgcatcaccggcaccctgaacggcgtggagttcga


gctggtgggcggcggagagggcacccccgaGCAGGGCCGCATGACCAACA


AGATGAAGAGCACCAAAGGCGCCCTGACCTTCAGCCCCTACCTGCTGAGC


CACGTGATGGGCTACGGCTTCTACCACTTCGGCACCTACCCCAGCGGCTA


CGAGAACCCCTTCCTGCACGCCATCAACAACGGCGGCTACACCAACACCC


GCATCGAGAAGTACGAGGACGGCGGCGTGCTGCACGTGAGCTTCAGCTAC


CGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAAGGTGGTGGGCACCGG


CTTCCCCGAGGACAGCGTGATCTTCACCGACAAGATCATCCGCAGCAACG


CCACCGTGGAGCACCTGCACCCCATGGGCGATAACGTGCTGGTGGGCAGC


TTCGCCCGCACCTTCAGCCTGCGCGACGGCGGCTACTACAGCTTCGTGGT


GGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCATCCTGCAGA


ACGGGGGCCCCATGTTCGCCTTCCGCCGCGTGGAGGAGCTGCACAGCAAC


ACCGAGCTGGGCATCGTGGAGTACCAGCACGCCTTCAAGACCCCCATCGC


CTTCGCCAGATCTCGAGATATCAGCCATGGCTTCCCGCCGGCGGTGGCGG


CGCAGGATGATGGCACGCTGCCCATGTCTTGTGCCCAGGAGAGCGGGATG


GACCGTCACCCTGCAGCCTGTGCTTCTGCTAGGATCAATGTGACCGGTGA


GGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCC


CTatgggcagtgtgagaaccaaccgctacagcatcgtctcttcagaagaa


gacggtatgaagttggccaccatggcagttgcaaatggctttgggaacgg


gaagagtaaagtccacacccgacaacagtgcaggagccgctttgtgaaga


aagatggccactgtaatgttcagttcatcaatgtgggtgagaaggggcaa


cggtacctcgcagacatcttcaccacgtgtgtggacattcgctggcggtg


gatgctggttatcttctgcctggctttcgtcctgtcatggctgttttttg


gctgtgtgttttggttgatagctctgctccatggggacctggatgcatcc


aaagagggcaaagcttgtgtgtccgaggtcaacagcttcacggctgcctt


cctcttctccattgagacccagacaaccataggctatggtttcagatgtg


tcacggatgaatgcccaattgctgttttcatggtggtgttccagtcaatc


gtgggctgcatcatcgatgctttcatcattggcgcagtcatggccaagat


ggcaaagccaaagaagagaaacgagactcttgtcttcagtcacaatgccg


tgattgccatgagagacggcaagctgtgtttgatgtggcgagtgggcaat


cttcggaaaagccacttggtggaagctcatgttcgagcacagctcctcaa


atccagaattacttctgaaggggagtatatccctctggatcaaatagaca


tcaatgttgggtttgacagtggaatcgatcgtatatttctggtgtcccca


atcactatagtccatgaaatagatgaagacagtcctttatatgatttgag


taaacaggacattgacaacgcagactttgaaatcgtggtcatactggaag


gcatggtggaagccactgccatgacgacacagtgccgtagctcttatcta


gcaaatgaaatcctgtggggccaccgctatgagcctgtgctctttgaaga


gaagcactactacaaagtggactactccaggttccacaaaacttacgaag


tccccaacactcccctttgtagtgccagagacttagcagaaaagaaatat


atcctctcaaatgcaaattcattttgctatgaaaatgaagttgccctcac


aagcaaagaggaagacgacagtgaaaatggagttccagaaagcactagta


cggacacgccccctgacatagaccttcacaaccaggcaagtgtacctcta


gagcccaggcccttacggcgagagtcggagatatgagTCGACAATC














Nucleotide sequence of optimised AAV- Egr1-dsGFP-K



CNJ2 vector (SEQ ID NO: 34) cctgcaggcagctgcgcgctcg


ctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttg


gtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaac


tccatcactaggggttcctgcggccgcacgcgtctcgagctggccctccc


cacgcgggcgtccccgactcccgcgcgcgctcaggctcccagttgggaac


caaggagggggaggatgggggggggggtgtgcgccgacccggaaacgcca


tataaggagcaggaaggatcccccgccggaacagaccttatttgggcagc


gccttatatggagtggcccaatatggccctgccgcttccggctctgggag


gaggggcgagcgggggttggggcgggggcaagctgggaactccaggcgcc


tggcccgggaggccactgctgctgttccaatactaggctttccaggagcc


tgagcgctcgcgatgccggagcgggtcgcagggtggaggtgcccaccact


cttggatgggagggcttcacgtcactccgggtcctcccggccggtccttc


catattagggcttcctgcttcccatatatggccatgtacgtcacggcgga


ggcgggcccgtgctgttccagacccttgaaatagaggccgattcggggag


tcgcGAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTC


TCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGA


GGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCG


CGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGT


GGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCACTTT


GCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGCCCAAGCG


GAGGATCCGCCACCatgcccgccatgaagatcgagtgccgcatcaccggc


accctgaacggcgtggagttcgagctggtgggcggcggagagggcacccc


cgaGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAGGCGCCCTGA


CCTTCAGCCCCTACCTGCTGAGCCACGTGAGGGCTACGGCTTCTACCACT


TCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCACGCCATCAAC


AACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGACGGCGGCGT


GCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGCG


ACTTCAAGGTGGTGGGCACCGGCTTCCCCGAGGACAGCGTGATCTTCACC


GACAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCACCCCATGGG


CGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTGCGCGACG


GCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTCAAGAGCGCC


ATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTTCGCCTTCCGCCG


CGTGGAGGAGCTGCACAGCAACACCGAGCTGGGCATCGTGGAGTACCAGC


ACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGATATCAGCCAT


GGCTTCCCGCCGGCGGTGGCGGCGCAGGATGATGGCACGCTGCCCATGTC


TTGTGCCCAGGAGAGCGGGATGGACCGTCACCCTGCAGCCTGTGCTTCTG


CTAGGATCAATGTGACCGGTGAGGGCAGAGGAAGTCTTCTAACATGCGGT


GACGTGGAGGAGAATCCCGGCCCTatgggcagtgtgagaaccaaccgcta


cagcatcgtctcttcagaagaagacggtatgaagttggccaccatggcag


ttgcaaatggctttgggaacgggaagagtaaagtccacacccgacaacag


tgcaggagccgctttgtgaagaaagatggccactgtaatgttcagttcat


caatgtgggtgagaaggggcaacggtacctcgcagacatcttcaccacgt


gtgtggacattcgctggcggtggatgctggttatcttctgcctggctttc


gtcctgtcatggctgttttttggctgtgtgttttggttgatagctctgct


ccatggggacctggatgcatccaaagagggcaaagcttgtgtgtccgagg


tcaacagcttcacggctgccttcctcttctccattgagacccagacaacc


ataggctatggtttcagatgtgtcacggatgaatgcccaattgctgtttt


catggtggtgttccagtcaatcgtgggctgcatcatcgatgctttcatca


ttggcgcagtcatggccaagatggcaaagccaaagaagagaaacgagact


cttgtcttcagtcacaatgccgtgattgccatgagagacggcaagctgtg


tttgatgtggcgagtgggcaatcttcggaaaagccacttggtggaagctc


atgttcgagcacagctcctcaaatccagaattacttctgaaggggagtat


atccctctggatcaaatagacatcaatgttgggtttgacagtggaatcga


tcgtatatttctggtgtccccaatcactatagtccatgaaatagatgaag


acagtcctttatatgatttgagtaaacaggacattgacaacgcagacttt


gaaatcgtggtcatactggaaggcatggtggaagccactgccatgacgac


acagtgccgtagctcttatctagcaaatgaaatcctgtggggccaccgct


atgagcctgtgctctttgaagagaagcactactacaaagtggactactcc


aggttccacaaaacttacgaagtccccaacactcccctttgtagtgccag


agacttagcagaaaagaaatatatcctctcaaatgcaaattcattttgct


atgaaaatgaagttgccctcacaagcaaagaggaagacgacagtgaaaat


ggagttccagaaagcactagtacggacacgccccctgacatagaccttca


caaccaggcaagtgtacctctagagcccaggcccttacggcgagagtcgg


agatatgagTCGACAATCAACCTCATcgataccgagcgctgctcgagaga


tctacgggtggcatccctgtgacccctccccagtgcctctcctggccctg


gaagttgccactccagtgcccaccagccttgtcctaataaaattaagttg


catcattttgtctgactaggtgtccttctataatattatggggtggaggg


gggtggtatggagcaaggggcaagttgggaagacaacctgtagggcctgc


ggggtctattgggaaccaagctggagtgcagtggcacaatcttggctcac


tgcaatctccgcctcctgggttcaagcgattctcctgcctcagcctcccg


agttgttgggattccaggcatgcatgaccaggctcagctaatttttgttt


ttttggtagagacggggtttcaccatattggccaggctggtctccaactc


ctaatctcaggtgatctacccaccttggcctcccaaattgctgggattac


aggcgtgaaccactgctcccttccctgtccttctgattttgtaggtaacc


acgtgcggaccgagcggccgcaggaacccctagtgatggagttggccact


ccctctctgcgcgctcgctcgctcactgaggccgggcgaccaaaggtcgc


ccgacgcccgggctttgcccgggcggcctcagtgagcgagcgagcgcgca


gctgcctgcaggggcgcctgatgcggtattttctccttacgcatctgtgc


ggtatttcacaccgcatacgtcaaagcaaccatagtacgcgccctgtagc


ggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctac


acttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttc


tcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccct


ttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttga


tttgggtgatggttcacgtagtgggccatcgccctgatagacggtttttc


gccctttgacgttggagtccacgttctttaatagtggactcttgttccaa


actggaacaacactcaaccctatctcgggctattcttttgatttataagg


gattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaa


aatttaacgcgaattttaacaaaatattaacgtttacaattttatggtgc


actctcagtacaatctgctctgatgccgcatagttaagccagccccgaca


cccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcat


ccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagagg


ttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacg


cctatttttataggttaatgtcatgataataatggtttcttagacgtcag


gtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttc


taaatacattcaaatatgtatccgctcatgagacaataaccctgataaat


gcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtg


tcgcccttattcccttttttgcggcattttgccttcctgtttttgctcac


ccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacg


agtgggttacatcgaactggatctcaacagcggtaagatccttgagagtt


ttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgcta


tgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcg


ccgcatacactattctcagaatgacttggttgagtactcaccagtcacag


aaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgcc


ataaccatgagtgataacactgcggccaacttacttctgacaacgatcgg


aggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaa


ctcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgac


gagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaact


attaactggcgaactacttactctagcttcccggcaacaattaatagact


ggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccg


gctggctggtttattgctgataaatctggagccggtgagcgtgggtctcg


cggtatcattgcagcactggggccagatggtaagccctcccgtatcgtag


ttatctacacgacggggagtcaggcaactatggatgaacgaaatagacag


atcgctgagataggtgcctcactgattaagcattggtaactgtcagacca


agtttactcatatatactttagattgatttaaaacttcatttttaattta


aaaggatctaggtgaagatcctttttgataatctcatgaccaaaatccct


taacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaa


aggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaa


caaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagcta


ccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaa


tactgtccttctagtgtagccgtagttaggccaccacttcaagaactctg


tagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgct


gccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagtt


accggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagc


ccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgag


ctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatcc


ggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggg


gaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgactt


gagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaa


cgccagcaacgcggcctttttacggttcctggccttttgctggccttttg


ctcacatgt














Nucleotide sequence of Tet-On-dCAS9VP64 construct 



(SEQ ID NO: 35) ATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTAC


CACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCT


ATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGA


TAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAA


AGTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAG


TCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGCTC


GGTACCCACCGGTGTCGACTCTAGAgccaccATGCCCAAGAAGAAGAGGA


AGGTGGGAAGGGGGATGGACAAGAAGTACTCCATTGGGCTCGCTATCGGC


ACAAACAGCGTCGGCTGGGCCGTCATTACGGACGAGTACAAGGTGCCGAG


CAAAAAATTCAAAGTTCTGGGCAATACCGATCGCCACAGCATAAAGAAGA


ACCTCATTGGCGCCCTCCTGTTCGACTCCGGGGAGACGGCCGAAGCCACG


CGGCTCAAAAGAACAGCACGGCGCAGATATACCCGCAGAAAGAATCGGAT


CTGCTACCTGCAGGAGATCTTTAGTAATGAGATGGCTAAGGTGGATGACT


CTTTCTTCCATAGGCTGGAGGAGTCCTTTTTGGTGGAGGAGGATAAAAAG


CACGAGCGCCACCCAATCTTTGGCAATATCGTGGACGAGGTGGCGTACCA


TGAAAAGTACCCAACCATATATCATCTGAGGAAGAAGCTTGTAGACAGTA


CTGATAAGGCTGACTTGCGGTTGATCTATCTCGCGCTGGCGCATATGATC


AAATTTCGGGGACACTTCCTCATCGAGGGGGACCTGAACCCAGACAACAG


CGATGTCGACAAACTCTTTATCCAACTGGTTCAGACTTACAATCAGCTTT


TCGAAGAGAACCCGATCAACGCATCCGGAGTTGACGCCAAAGCAATCCTG


AGCGCTAGGCTGTCCAAATCCCGGCGGCTCGAAAACCTCATCGCACAGCT


CCCTGGGGAGAAGAAGAACGGCCTGTTTGGTAATCTTATCGCCCTGTCAC


TCGGGCTGACCCCCAACTTTAAATCTAACTTCGACCTGGCCGAAGATGCC


AAGCTTCAACTGAGCAAAGACACCTACGATGATGATCTCGACAATCTGCT


GGCCCAGATCGGCGACCAGTACGCAGACCTTTTTTTGGCGGCAAAGAACC


TGTCAGACGCCATTCTGCTGAGTGATATTCTGCGAGTGAACACGGAGATC


ACCAAAGCTCCGCTGAGCGCTAGTATGATCAAGCGCTATGATGAGCACCA


CCAAGACTTGACTTTGCTGAAGGCCCTTGTCAGACAGCAACTGCCTGAGA


AGTACAAGGAAATTTTCTTCGATCAGTCTAAAAATGGCTACGCCGGATAC


ATTGACGGCGGAGCAAGCCAGGAGGAATTTTACAAATTTATTAAGCCCAT


CTTGGAAAAAATGGACGGCACCGAGGAGCTGCTGGTAAAGCTTAACAGAG


AAGATCTGTTGCGCAAACAGCGCACTTTCGACAATGGAAGCATCCCCCAC


CAGATTCACCTGGGCGAACTGCACGCTATCCTCAGGCGGCAAGAGGATTT


CTACCCCTTTTTGAAAGATAACAGGGAAAAGATTGAGAAAATCCTCACAT


TTCGGATACCCTACTATGTAGGCCCCCTCGCCCGGGGAAATTCCAGATTC


GCGTGGATGACTCGCAAATCAGAAGAGACCATCACTCCCTGGAACTTCGA


GGAAGTCGTGGATAAGGGGGCCTCTGCCCAGTCCTTCATCGAAAGGATGA


CTAACTTTGATAAAAATCTGCCTAACGAAAAGGTGCTTCCTAAACACTCT


CTGCTGTACGAGTACTTCACAGTTTATAACGAGCTCACCAAGGTCAAATA


CGTCACAGAAGGGATGAGAAAGCCAGCATTCCTGTCTGGAGAGCAGAAGA


AAGCTATCGTGGACCTCCTCTTCAAGACGAACCGGAAAGTTACCGTGAAA


CAGCTCAAAGAAGACTATTTCAAAAAGATTGAATGTTTCGACTCTGTTGA


AATCAGCGGAGTGGAGGATCGCTTCAACGCATCCCTGGGAACGTATCACG


ATCTCCTGAAAATCATTAAAGACAAGGACTTCCTGGACAATGAGGAGAAC


GAGGACATTCTTGAGGACATTGTCCTCACCCTTACGTTGTTTGAAGATAG


GGAGATGATTGAAGAACGCTTGAAAACTTACGCTCATCTCTTCGACGACA


AAGTCATGAAACAGCTCAAGAGGCGCCGATATACAGGATGGGGGCGGCTG


TCAAGAAAACTGATCAATGGGATCCGAGACAAGCAGAGTGGAAAGACAAT


CCTGGATTTTCTTAAGTCCGATGGATTTGCCAACCGGAACTTCATGCAGT


TGATCCATGATGACTCTCTCACCTTTAAGGAGGACATCCAGAAAGCACAA


GTTTCTGGCCAGGGGGACAGTCTTCACGAGCACATCGCTAATCTTGCAGG


TAGCCCAGCTATCAAAAAGGGAATACTGCAGACCGTTAAGGTCGTGGATG


AACTCGTCAAAGTAATGGGAAGGCATAAGCCCGAGAATATCGTTATCGAG


ATGGCCCGAGAGAACCAAACTACCCAGAAGGGACAGAAGAACAGTAGGGA


AAGGATGAAGAGGATTGAAGAGGGTATAAAAGAACTGGGGTCCCAAATCC


TTAAGGAACACCCAGTTGAAAACACCCAGCTTCAGAATGAGAAGCTCTAC


CTGTACTACCTGCAGAACGGCAGGGACATGTACGTGGATCAGGAACTGGA


CATCAATCGGCTCTCCGACTACGACGTGGCTGCTATCGTGCCCCAGTCTT


TTCTCAAAGATGATTCTATTGATAATAAAGTGTTGACAAGATCCGATAAA


gcTAGAGGGAAGAGTGATAACGTCCCCTCAGAAGAAGTTGTCAAGAAAAT


GAAAAATTATTGGCGGCAGCTGCTGAACGCCAAACTGATCACACAACGGA


AGTTCGATAATCTGACTAAGGCTGAACGAGGTGGCCTGTCTGAGTTGGAT


AAAGCCGGCTTCATCAAAAGGCAGCTTGTTGAGACACGCCAGATCACCAA


GCACGTGGCCCAAATTCTCGATTCACGCATGAACACCAAGTACGATGAAA


ATGACAAACTGATTCGAGAGGTGAAAGTTATTACTCTGAAGTCTAAGCTG


GTCTCAGATTTCAGAAAGGACTTTCAGTTTTATAAGGTGAGAGAGATCAA


CAATTACCACCATGCGCATGATGCCTACCTGAATGCAGTGGTAGGCACTG


CACTTATCAAAAAATATCCCAAGCTTGAATCTGAATTTGTTTACGGAGAC


TATAAAGTGTACGATGTTAGGAAAATGATCGCAAAGTCTGAGCAGGAAAT


AGGCAAGGCCACCGCTAAGTACTTCTTTTACAGCAATATTATGAATTTTT


TCAAGACCGAGATTACACTGGCCAATGGAGAGATTCGGAAGCGACCACTT


ATCGAAACAAACGGAGAAACAGGAGAAATCGTGTGGGACAAGGGTAGGGA


TTTCGCGACAGTCCGGAAGGTCCTGTCCATGCCGCAGGTGAACATCGTTA


AAAAGACCGAAGTACAGACCGGAGGCTTCTCCAAGGAAAGTATCCTCCCG


AAAAGGAACAGCGACAAGCTGATCGCACGCAAAAAAGATTGGGACCCCAA


GAAATACGGCGGATTCGATTCTCCTACAGTCGCTTACAGTGTACTGGTTG


TGGCCAAAGTGGAGAAAGGGAAGTCTAAAAAACTCAAAAGCGTCAAGGAA


CTGCTGGGCATCACAATCATGGAGCGATCAAGCTTCGAAAAAAACCCCAT


CGACTTTCTCGAGGCGAAAGGATATAAAGAGGTCAAAAAAGACCTCATCA


TTAAGCTTCCCAAGTACTCTCTCTTTGAGCTTGAAAACGGCCGGAAACGA


ATGCTCGCTAGTGCGGGCGAGCTGCAGAAAGGTAACGAGCTGGCACTGCC


CTCTAAATACGTTAATTTCTTGTATCTGGCCAGCCACTATGAAAAGCTCA


AAGGGTCTCCCGAAGATAATGAGCAGAAGCAGCTGTTCGTGGAACAACAC


AAACACTACCTTGATGAGATCATCGAGCAAATAAGCGAATTCTCCAAAAG


AGTGATCCTCGCCGACGCTAACCTCGATAAGGTGCTTTCTGCTTACAATA


AGCACAGGGATAAGCCCATCAGGGAGCAGGCAGAAAACATTATCCACTTG


TTTACTCTGACCAACTTGGGCGCGCCTGCAGCCTTCAAGTACTTCGACAC


CACCATAGACAGAAAGCGGTACACCTCTACAAAGGAGGTCCTGGACGCCA


CACTGATTCATCAGTCAATTACGGGGCTCTATGAAACAAGAATCGACCTC


TCTCAGCTCGGTGGAGACAGCAGGGCTGACCCCAAGAAGAAGAGGAAGGT


GGAGGCCAGCGGTTCCGGACGGGCTGACGCATTGGACGATTTTGATCTGG


ATATGCTGGGAAGTGACGCCCTCGATGATTTTGACCTTGACATGCTTGGT


TCGGATGCCCTTGATGACTTTGACCTCGACATGCTCGGCAGTGACGCCCT


TGATGATTTCGACCTGGACATGCTGATTAACTCT














Nucleotide sequence of optimised AAV- Tet-On-dCAS9



VP64 vector (SEQ ID NO: 36) cctgcaggcagctgcgcgctcg


ctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttg


gtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaac


tccatcactaggggttcctgcggcctCTAGACCAGTTTGGTTAGATCTCG


AGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACC


ACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTA


TCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGAT


AGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAA


GTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGT


CGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGCTCG


GTACCCACCGGTGTCGACTCTAGAgccaccATGCCCAAGAAGAAGAGGAA


GGTGGGAAGGGGGATGGACAAGAAGTACTCCATTGGGCTCGCTATCGGCA


CAAACAGCGTCGGCTGGGCCGTCATTACGGACGAGTACAAGGTGCCGAGC


AAAAAATTCAAAGTTCTGGGCAATACCGATCGCCACAGCATAAAGAAGAA


CCTCATTGGCGCCCTCCTGTTCGACTCCGGGGAGACGGCCGAAGCCACGC


GGCTCAAAAGAACAGCACGGCGCAGATATACCCGCAGAAAGAATCGGATC


TGCTACCTGCAGGAGATCTTTAGTAATGAGATGGCTAAGGTGGATGACTC


TTTCTTCCATAGGCTGGAGGAGTCCTTTTTGGTGGAGGAGGATAAAAAGC


ACGAGCGCCACCCAATCTTTGGCAATATCGTGGACGAGGTGGCGTACCAT


GAAAAGTACCCAACCATATATCATCTGAGGAAGAAGCTTGTAGACAGTAC


TGATAAGGCTGACTTGCGGTTGATCTATCTCGCGCTGGCGCATATGATCA


AATTTCGGGGACACTTCCTCATCGAGGGGGACCTGAACCCAGACAACAGC


GATGTCGACAAACTCTTTATCCAACTGGTTCAGACTTACAATCAGCTTTT


CGAAGAGAACCCGATCAACGCATCCGGAGTTGACGCCAAAGCAATCCTGA


GCGCTAGGCTGTCCAAATCCCGGCGGCTCGAAAACCTCATCGCACAGCTC


CCTGGGGAGAAGAAGAACGGCCTGTTTGGTAATCTTATCGCCCTGTCACT


CGGGCTGACCCCCAACTTTAAATCTAACTTCGACCTGGCCGAAGATGCCA


AGCTTCAACTGAGCAAAGACACCTACGATGATGATCTCGACAATCTGCTG


GCCCAGATCGGCGACCAGTACGCAGACCTTTTTTTGGCGGCAAAGAACCT


GTCAGACGCCATTCTGCTGAGTGATATTCTGCGAGTGAACACGGAGATCA


CCAAAGCTCCGCTGAGCGCTAGTATGATCAAGCGCTATGATGAGCACCAC


CAAGACTTGACTTTGCTGAAGGCCCTTGTCAGACAGCAACTGCCTGAGAA


GTACAAGGAAATTTTCTTCGATCAGTCTAAAAATGGCTACGCCGGATACA


TTGACGGCGGAGCAAGCCAGGAGGAATTTTACAAATTTATTAAGCCCATC


TTGGAAAAAATGGACGGCACCGAGGAGCTGCTGGTAAAGCTTAACAGAGA


AGATCTGTTGCGCAAACAGCGCACTTTCGACAATGGAAGCATCCCCCACC


AGATTCACCTGGGCGAACTGCACGCTATCCTCAGGCGGCAAGAGGATTTC


TACCCCTTTTTGAAAGATAACAGGGAAAAGATTGAGAAAATCCTCACATT


TCGGATACCCTACTATGTAGGCCCCCTCGCCCGGGGAAATTCCAGATTCG


CGTGGATGACTCGCAAATCAGAAGAGACCATCACTCCCTGGAACTTCGAG


GAAGTCGTGGATAAGGGGGCCTCTGCCCAGTCCTTCATCGAAAGGATGAC


TAACTTTGATAAAAATCTGCCTAACGAAAAGGTGCTTCCTAAACACTCTC


TGCTGTACGAGTACTTCACAGTTTATAACGAGCTCACCAAGGTCAAATAC


GTCACAGAAGGGATGAGAAAGCCAGCATTCCTGTCTGGAGAGCAGAAGAA


AGCTATCGTGGACCTCCTCTTCAAGACGAACCGGAAAGTTACCGTGAAAC


AGCTCAAAGAAGACTATTTCAAAAAGATTGAATGTTTCGACTCTGTTGAA


ATCAGCGGAGTGGAGGATCGCTTCAACGCATCCCTGGGAACGTATCACGA


TCTCCTGAAAATCATTAAAGACAAGGACTTCCTGGACAATGAGGAGAACG


AGGACATTCTTGAGGACATTGTCCTCACCCTTACGTTGTTTGAAGATAGG


GAGATGATTGAAGAACGCTTGAAAACTTACGCTCATCTCTTCGACGACAA


AGTCATGAAACAGCTCAAGAGGCGCCGATATACAGGATGGGGGCGGCTGT


CAAGAAAACTGATCAATGGGATCCGAGACAAGCAGAGTGGAAAGACAATC


CTGGATTTTCTTAAGTCCGATGGATTTGCCAACCGGAACTTCATGCAGTT


GATCCATGATGACTCTCTCACCTTTAAGGAGGACATCCAGAAAGCACAAG


TTTCTGGCCAGGGGGACAGTCTTCACGAGCACATCGCTAATCTTGCAGGT


AGCCCAGCTATCAAAAAGGGAATACTGCAGACCGTTAAGGTCGTGGATGA


ACTCGTCAAAGTAATGGGAAGGCATAAGCCCGAGAATATCGTTATCGAGA


TGGCCCGAGAGAACCAAACTACCCAGAAGGGACAGAAGAACAGTAGGGAA


AGGATGAAGAGGATTGAAGAGGGTATAAAAGAACTGGGGTCCCAAATCCT


TAAGGAACACCCAGTTGAAAACACCCAGCTTCAGAATGAGAAGCTCTACC


TGTACTACCTGCAGAACGGCAGGGACATGTACGTGGATCAGGAACTGGAC


ATCAATCGGCTCTCCGACTACGACGTGGCTGCTATCGTGCCCCAGTCTTT


TCTCAAAGATGATTCTATTGATAATAAAGTGTTGACAAGATCCGATAAAg


cTAGAGGGAAGAGTGATAACGTCCCCTCAGAAGAAGTTGTCAAGAAAATG


AAAAATTATTGGCGGCAGCTGCTGAACGCCAAACTGATCACACAACGGAA


GTTCGATAATCTGACTAAGGCTGAACGAGGTGGCCTGTCTGAGTTGGATA


AAGCCGGCTTCATCAAAAGGCAGCTTGTTGAGACACGCCAGATCACCAAG


CACGTGGCCCAAATTCTCGATTCACGCATGAACACCAAGTACGATGAAAA


TGACAAACTGATTCGAGAGGTGAAAGTTATTACTCTGAAGTCTAAGCTGG


TCTCAGATTTCAGAAAGGACTTTCAGTTTTATAAGGTGAGAGAGATCAAC


AATTACCACCATGCGCATGATGCCTACCTGAATGCAGTGGTAGGCACTGC


ACTTATCAAAAAATATCCCAAGCTTGAATCTGAATTTGTTTACGGAGACT


ATAAAGTGTACGATGTTAGGAAAATGATCGCAAAGTCTGAGCAGGAAATA


GGCAAGGCCACCGCTAAGTACTTCTTTTACAGCAATATTATGAATTTTTT


CAAGACCGAGATTACACTGGCCAATGGAGAGATTCGGAAGCGACCACTTA


TCGAAACAAACGGAGAAACAGGAGAAATCGTGTGGGACAAGGGTAGGGAT


TTCGCGACAGTCCGGAAGGTCCTGTCCATGCCGCAGGTGAACATCGTTAA


AAAGACCGAAGTACAGACCGGAGGCTTCTCCAAGGAAAGTATCCTCCCGA


AAAGGAACAGCGACAAGCTGATCGCACGCAAAAAAGATTGGGACCCCAAG


AAATACGGCGGATTCGATTCTCCTACAGTCGCTTACAGTGTACTGGTTGT


GGCCAAAGTGGAGAAAGGGAAGTCTAAAAAACTCAAAAGCGTCAAGGAAC


TGCTGGGCATCACAATCATGGAGCGATCAAGCTTCGAAAAAAACCCCATC


GACTTTCTCGAGGCGAAAGGATATAAAGAGGTCAAAAAAGACCTCATCAT


TAAGCTTCCCAAGTACTCTCTCTTTGAGCTTGAAAACGGCCGGAAACGAA


TGCTCGCTAGTGCGGGCGAGCTGCAGAAAGGTAACGAGCTGGCACTGCCC


TCTAAATACGTTAATTTCTTGTATCTGGCCAGCCACTATGAAAAGCTCAA


AGGGTCTCCCGAAGATAATGAGCAGAAGCAGCTGTTCGTGGAACAACACA


AACACTACCTTGATGAGATCATCGAGCAAATAAGCGAATTCTCCAAAAGA


GTGATCCTCGCCGACGCTAACCTCGATAAGGTGCTTTCTGCTTACAATAA


GCACAGGGATAAGCCCATCAGGGAGCAGGCAGAAAACATTATCCACTTGT


TTACTCTGACCAACTTGGGCGCGCCTGCAGCCTTCAAGTACTTCGACACC


ACCATAGACAGAAAGCGGTACACCTCTACAAAGGAGGTCCTGGACGCCAC


ACTGATTCATCAGTCAATTACGGGGCTCTATGAAACAAGAATCGACCTCT


CTCAGCTCGGTGGAGACAGCAGGGCTGACCCCAAGAAGAAGAGGAAGGTG


GAGGCCAGCGGTTCCGGACGGGCTGACGCATTGGACGATTTTGATCTGGA


TATGCTGGGAAGTGACGCCCTCGATGATTTTGACCTTGACATGCTTGGTT


CGGATGCCCTTGATGACTTTGACCTCGACATGCTCGGCAGTGACGCCCTT


GATGATTTCGACCTGGACATGCTGATTAACTCTAGATAAGaattcAATAA


AAGATCTTTATTTTCATTAGATCTGTGTGTTGGTTTTTTGTGTgcggccg


caggaacccctagtgatggagttggccactccctctctgcgcgctcgctc


gctcactgaggccgggcgaccaaaggtcgcccgacgcccgggctttgccc


gggcggcctcagtgagcgagcgagcgcgcagctgcctgcaggggcgcctg


atgcggtattttctccttacgcatctgtgcggtatttcacaccgcatacg


tcaaagcaaccatagtacgcgccctgtagcggcgcattaagcgcggcggg


tgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgc


ccgctctttcgctttcttcccttcctttctcgccacgttcgccggctttc


cccgtcaagctctaaatcgggggctccctttagggttccgatttagtgct


ttacggcacctcgaccccaaaaaacttgatttgggtgatggttcacgtag


tgggccatcgccctgatagacggtttttcgccctttgacgttggagtcca


cgttctttaatagtggactcttgttccaaactggaacaacactcaaccct


atctcgggctattcttttgatttataagggattttgccgatttcggccta


ttggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaaca


aaatattaacgtttacaattttatggtgcactctcagtacaatctgctct


gatgccgcatagttaagccagccccgacacccgccaacacccgctgacgc


gccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtga


ccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaa


cgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgt


catgataataatggtttcttagacgtcaggtggcacttttcggggaaatg


tgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtat


ccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaag


gaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttg


cggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagta


aaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactgga


tctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttc


caatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgt


attgacgccgggcaagagcaactcggtcgccgcatacactattctcagaa


tgacttggttgagtactcaccagtcacagaaaagcatcttacggatggca


tgacagtaagagaattatgcagtgctgccataaccatgagtgataacact


gcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgc


ttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaac


cggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcct


gtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttac


tctagcttcccggcaacaattaatagactggatggaggcggataaagttg


caggaccacttctgcgctcggcccttccggctggctggtttattgctgat


aaatctggagccggtgagcgtggaagccgcggtatcattgcagcactggg


gccagatggtaagccctcccgtatcgtagttatctacacgacggggagtc


aggcaactatggatgaacgaaatagacagatcgctgagataggtgcctca


ctgattaagcattggtaactgtcagaccaagtttactcatatatacttta


gattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcc


tttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccac


tgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatccttt


ttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccag


cggtggtttgtttgccggatcaagagctaccaactctttttccgaaggta


actggcttcagcagagcgcagataccaaatactgtccttctagtgtagcc


gtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcg


ctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgt


cttaccgggttggactcaagacgatagttaccggataaggcgcagcggtc


gggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacct


acaccgaactgagatacctacagcgtgagctatgagaaagcgccacgctt


cccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaac


aggagagcgcacgagggagcttccagggggaaacgcctggtatctttata


gtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgc


tcgtcaggggggcggagcctatggaaaaacgccagcaacgcggccttttt


acggttcctggccttttgctggccttttgctcacatgt














Nucleotide sequence of sgRNA KCNA1 (SEQ ID NO: 37)



 AGTCAATGATCACATCCTCC

















Nucleotide sequence of sgRNA LacZ (control) (SEQ I



D NO: 38) TGCGAATACGCCCACGCGAT

















Nucleotide sequence of optimised AAV- sgRNA KCNA1-



cFos-rTTA-EGFP vector (SEQ ID NO: 39) ctgcgcgctcgc


tcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttgg


tcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaact


ccatcactaggggttcctgcggccgcacgcgtTTAACGAGGGCCTATTTC


CCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATA


ATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTG


ACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTT


TTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTC


TTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGagtcaatgatcac


atcctccGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGT


TATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGTTAACATCGA


TtCTCGAGTTCGCTATTACGCCAGTTTTATTGCGGCCGCAGCTTTCCTTT


AGGAACAGAGGCTTCGAGCCTTTAAGGCTGCGTACTTGCTTCTCCTAATA


CCAGAGACTCAAAAAAAAAAAAAAAGTTCCAGATTGCTGGACAATGACCC


GGGTCTCATCCCTTGACCCTGGGAACCGGGTCCACATTGAATCAGGTGCG


AATGTTCGCTCGCCTTCTCTGCCTTTCCCGCCTCCCCTCCCCCGGCCGCG


GCCCCGGTTCCCCCCCTGCGCTGCACCCTCAGAGTTGGCTGCAGCCGGCG


AGCTGTTCCCGTCAATCCCTCCCTCCTTTACACAGGATGTCCATATTAGG


ACATCTGCGTCAGCAGGTTTCCACGGCCGGTCCCTGTTGTTCTGGGGGGG


GGACCATCTCCGAAATCCTACACGCGGAAGGTCTAGGAGACCCCCTAAGA


TCCCAAATGTGAACACTCATAGGTGAAAGATGTATGCCAAGACGGGGGTT


GAAAGCCTGGGGCGTAGAGTTGACGACAGAGCGCCCGCAGAGGGCCTTGG


GGCGCGCTTCCCCCCCCTTCCAGTTCCGCCCAGTGACGTAGGAAGTCCAT


CCATTCACAGCGCTTCTATAAAGGCGCCAGCTGAGGCGCCTACTACTCCA


ACCGCGACTGCAGCGAGCAACTGAGAAGACTGGATAGAGCCGGCGGTTCC


GCGAACGAGCAGTGACCGCGCTCCCACCCAGCTCTGCTCTGCAGCTCCCA


CCAGTGTCTGGCCGCATCGATTCTAGAATTCGCTGTCTGCGAGGGCCAGC


TGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACTTCTGCGCTAAG


ATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGG


TGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAAGACAATCTTT


TTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTG


AGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCA


GGTCCAACTGCAGCCCAAGCGGAGGATCCATGTCTAGACTGGACAAGAGC


AAAGTCATAAACGGCGCTCTGGAATTACTCAATGGAGTCGGTATCGAAGG


CCTGACGACAAGGAAACTCGCTCAAAAGCTGGGAGTTGAGCAGCCTACCC


TGTACTGGCACGTGAAGAACAAGCGGGCCCTGCTCGATGCCCTGCCAATC


GAGATGCTGGACAGGCATCATACCCACTTCTGCCCCCTGGAAGGCGAGTC


ATGGCAAGACTTTCTGCGGAACAACGCCAAGTCATTCCGCTGTGCTCTCC


TCTCACATCGCGACGGGGCTAAAGTGCATCTCGGCACCCGCCCAACAGAG


AAACAGTACGAAACCCTGGAAAATCAGCTCGCGTTCCTGTGTCAGCAAGG


CTTCTCCCTGGAGAACGCACTGTACGCTCTGTCCGCCGTGGGCCACTTTA


CACTGGGCTGCGTATTGGAGGAACAGGAGCATCAAGTAGCAAAAGAGGAA


AGAGAGACACCTACCACCGATTCTATGCCCCCACTTCTGAGACAAGCAAT


TGAGCTGTTCGACCGGCAGGGAGCCGAACCTGCCTTCCTTTTCGGCCTGG


AACTAATCATATGTGGCCTGGAGAAACAGCTAAAGTGCGAAAGCGGCGGG


CCGGCCGACGCCCTTGACGATTTTGACTTAGACATGCTCCCAGCCGATGC


CCTGACGACTTTGACCTTGATATGCTGCCTGCTGACGCTCTTGACGATTT


TGACCTTGACATGCTCCCCGGGTTCGAAGCtGAgGGTCGGGGCTCTCTGC


TCACATGTGGCGACGTCGAGGAGAATCCCGGACCGGCCCCgGGTGTACAA


atggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggt


cgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagg


gcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcacc


accggcaagctgcccgtgccctggcccaccctcgtgaccaccctgaccta


cggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgact


tcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttc


ttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgaggg


cgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggagg


acggcaacatcctggggcacaagctggagtacaactacaacagccacaac


gtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaa


gatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactacc


agcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccac


tacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcga


tcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggca


tggacgagctgtacaagtaaACCGGTGCTAGCtaaTctagagTCGACAAT


CAACCTCATcgataccgagcgctgctcgagagatctacgggtggcatccc


tgtgacccctccccagtgcctctcctggccctggaagttgccactccagt


gcccaccagccttgtcctaataaaattaagttgcatcattttgtctgact


aggtgtccttctataatattatggggtggaggggggtggtatggagcaag


gggcaagttgggaagacaacctgtagggcctgcggggtctattgggaacc


aagctggagtgcagtggcacaatcttggctcactgcaatctccgcctcct


gggttcaagcgattctcctgcctcagcctcccgagttgttgggattccag


gcatgcatgaccaggctcagctaatttttgtttttttggtagagacgggg


tttcaccatattggccaggctggtctccaactcctaatctcaggtgatct


acccaccttggcctcccaaattgctgggattacaggcgtgaaccactgct


cccttccctgtccttctgattttgtaggtaaccacgtgcggaccgagcgg


ccgcaggaacccctagtgatggagttggccactccctctctgcgcgctcg


ctcgctcactgaggccgggcgaccaaaggtcgcccgacgcccgggctttg


cccgggcggcctcagtgagcgagcgagcgcgcagctgcctgcaggggcgc


ctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcat


acgtcaaagcaaccatagtacgcgccctgtagcggcgcattaagcgcggc


gggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctag


cgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggc


tttccccgtcaagctctaaatcgggggctccctttagggttccgatttag


tgctttacggcacctcgaccccaaaaaacttgatttgggtgatggttcac


gtagtgggccatcgccctgatagacggtttttcgccctttgacgttggag


tccacgttctttaatagtggactcttgttccaaactggaacaacactcaa


ccctatctcgggctattcttttgatttataagggattttgccgatttcgg


cctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaatttt


aacaaaatattaacgtttacaattttatggtgcactctcagtacaatctg


ctctgatgccgcatagttaagccagccccgacacccgccaacacccgctg


acgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagct


gtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcacc


gaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggtta


atgtcatgataataatggtttcttagacgtcaggtggcacttttcgggga


aatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatat


gtatccgctcatgagacaataaccctgataaatgcttcaataatattgaa


aaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttt


tttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaa


agtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaac


tggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgt


tttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatc


ccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctc


agaatgacttggttgagtactcaccagtcacagaaaagcatcttacggat


ggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataa


cactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaa


ccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgg


gaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgat


gcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactac


ttactctagcttcccggcaacaattaatagactggatggaggcggataaa


gttgcaggaccacttctgcgctcggcccttccggctggctggtttattgc


tgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcac


tggggccagatggtaagccctcccgtatcgtagttatctacacgacgggg


agtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgc


ctcactgattaagcattggtaactgtcagaccaagtttactcatatatac


tttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaag


atcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgtt


ccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatc


ctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgcta


ccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaa


ggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgt


agccgtagttaggccaccacttcaagaactctgtagcaccgcctacatac


ctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtc


gtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagc


ggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacg


acctacaccgaactgagatacctacagcgtgagctatgagaaagcgccac


gcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcg


gaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctt


tatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtg


atgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcct


ttttacggttcctggccttttgctggccttttgctca














Nucleotide sequence of optimised AAV- sgRNA LacZ-c



Fos-rTTA-EGFP vector (SEQ ID NO: 40) cctgcaggcagct


gcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcggg


cgacctttggtcgcccggcctcagtgagcgagcgagcgcgcagagaggga


gtggccaactccatcactaggggttcctgcggccgcacgcgtTTAACGAG


GGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGT


TAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTAC


AAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTA


AAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTA


TTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGTGC


GAATACGCCCACGCGATGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG


GCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTG


TTAACATCGATtTCCCACGGGGTCTCGAGTTCGCTATTACGCCAGTTTTA


TTGCGGCCGCAGCTTTCCTTTAGGAACAGAGGCTTCGAGCCTTTAAGGCT


GCGTACTTGCTTCTCCTAATACCAGAGACTCAAAAAAAAAAAAAAAGTTC


CAGATTGCTGGACAATGACCCGGGTCTCATCCCTTGACCCTGGGAACCGG


GTCCACATTGAATCAGGTGCGAATGTTCGCTCGCCTTCTCTGCCTTTCCC


GCCTCCCCTCCCCCGGCCGCGGCCCCGGTTCCCCCCCTGCGCTGCACCCT


CAGAGTTGGCTGCAGCCGGCGAGCTGTTCCCGTCAATCCCTCCCTCCTTT


ACACAGGATGTCCATATTAGGACATCTGCGTCAGCAGGTTTCCACGGCCG


GTCCCTGTTGTTCTGGGGGGGGGACCATCTCCGAAATCCTACACGCGGAA


GGTCTAGGAGACCCCCTAAGATCCCAAATGTGAACACTCATAGGTGAAAG


ATGTATGCCAAGACGGGGGTTGAAAGCCTGGGGCGTAGAGTTGACGACAG


AGCGCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCCCTTCCAGTTCCGC


CCAGTGACGTAGGAAGTCCATCCATTCACAGCGCTTCTATAAAGGCGCCA


GCTGAGGCGCCTACTACTCCAACCGCGACTGCAGCGAGCAACTGAGAAGA


CTGGATAGAGCCGGCGGTTCCGCGAACGAGCAGTGACCGCGCTCCCACCC


AGCTCTGCTCTGCAGCTCCCACCAGTGTCTGGCCGCATCGATTCTAGAAT


TCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGC


GGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATT


TGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATC


TGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCT


TGAGATCTGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCT


CTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGCCCAAGCGGAGGATCC


ATGTCTAGACTGGACAAGAGCAAAGTCATAAACGGCGCTCTGGAATTACT


CAATGGAGTCGGTATCGAAGGCCTGACGACAAGGAAACTCGCTCAAAAGC


TGGGAGTTGAGCAGCCTACCCTGTACTGGCACGTGAAGAACAAGCGGGCC


CTGCTCGATGCCCTGCCAATCGAGATGCTGGACAGGCATCATACCCACTT


CTGCCCCCTGGAAGGCGAGTCATGGCAAGACTTTCTGCGGAACAACGCCA


AGTCATTCCGCTGTGCTCTCCTCTCACATCGCGACGGGGCTAAAGTGCAT


CTCGGCACCCGCCCAACAGAGAAACAGTACGAAACCCTGGAAAATCAGCT


CGCGTTCCTGTGTCAGCAAGGCTTCTCCCTGGAGAACGCACTGTACGCTC


TGTCCGCCGTGGGCCACTTTACACTGGGCTGCGTATTGGAGGAACAGGAG


CATCAAGTAGCAAAAGAGGAAAGAGAGACACCTACCACCGATTCTATGCC


CCCACTTCTGAGACAAGCAATTGAGCTGTTCGACCGGCAGGGAGCCGAAC


CTGCCTTCCTTTTCGGCCTGGAACTAATCATATGTGGCCTGGAGAAACAG


CTAAAGTGCGAAAGCGGCGGGCCGGCCGACGCCCTTGACGATTTTGACTT


AGACATGCTCCCAGCCGATGCCCTTGACGACTTTGACCTTGATATGCTGC


CTGCTGACGCTCTTGACGATTTTGACCTTGACATGCTCCCCGGGTTCGAA


GCtGAgGGTCGGGGCTCTCTGCTCACATGTGGCGACGTCGAGGAGAATCC


CGGACCGGCCCCgGGTGTACAAatggtgagcaagggcgaggagctgttca


ccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccac


aagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagct


gaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggccca


ccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctacccc


gaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggcta


cgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagaccc


gcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctg


aagggcatcgacttcaaggaggacggcaacatcctggggcacaagctgga


gtacaactacaacagccacaacgtctatatcatggccgacaagcagaaga


acggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagc


gtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccc


cgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagca


aagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgacc


gccgccgggatcactctcggcatggacgagctgtacaagtaaACCGGTGC


TAGCtaaTctagagTCGACAATCAACCTCATcgataccgagcgctgctcg


agagatctacgggtggcatccctgtgacccctccccagtgcctctcctgg


ccctggaagttgccactccagtgcccaccagccttgtcctaataaaatta


agttgcatcattttgtctgactaggtgtccttctataatattatggggtg


gaggggggtggtatggagcaaggggcaagttgggaagacaacctgtaggg


cctgcggggtctattgggaaccaagctggagtgcagtggcacaatcttgg


ctcactgcaatctccgcctcctgggttcaagcgattctcctgcctcagcc


tcccgagttgttgggattccaggcatgcatgaccaggctcagctaatttt


tgtttttttggtagagacggggtttcaccatattggccaggctggtctcc


aactcctaatctcaggtgatctacccaccttggcctcccaaattgctggg


attacaggcgtgaaccactgctcccttccctgtccttctgattttgtagg


taaccacgtgcggaccgagcggccgcaggaacccctagtgatggagttgg


ccactccctctctgcgcgctcgctcgctcactgaggccgggcgaccaaag


gtcgcccgacgcccgggctttgcccgggcggcctcagtgagcgagcgagc


gcgcagctgcctgcaggggcgcctgatgcggtattttctccttacgcatc


tgtgcggtatttcacaccgcatacgtcaaagcaaccatagtacgcgccct


gtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgacc


gctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttc


ctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggc


tccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaa


cttgatttgggtgatggttcacgtagtgggccatcgccctgatagacggt


ttttcgccctttgacgttggagtccacgttctttaatagtggactcttgt


tccaaactggaacaacactcaaccctatctcgggctattcttttgattta


taagggattttgccgatttcggcctattggttaaaaaatgagctgattta


acaaaaatttaacgcgaattttaacaaaatattaacgtttacaattttat


ggtgcactctcagtacaatctgctctgatgccgcatagttaagccagccc


cgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctccc


ggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtc


agaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtg


atacgcctatttttataggttaatgtcatgataataatggtttcttagac


gtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttat


ttttctaaatacattcaaatatgtatccgctcatgagacaataaccctga


taaatgcttcaataatattgaaaaaggaagagtatgagtattcaacattt


ccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttg


ctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggt


gcacgagtgggttacatcgaactggatctcaacagcggtaagatccttga


gagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttc


tgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactc


ggtcgccgcatacactattctcagaatgacttggttgagtactcaccagt


cacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtg


ctgccataaccatgagtgataacactgcggccaacttacttctgacaacg


atcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatca


tgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaa


acgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgc


aaactattaactggcgaactacttactctagcttcccggcaacaattaat


agactggatggaggcggataaagttgcaggaccacttctgcgctcggccc


ttccggctggctggtttattgctgataaatctggagccggtgagcgtggg


tctcgcggtatcattgcagcactggggccagatggtaagccctcccgtat


cgtagttatctacacgacggggagtcaggcaactatggatgaacgaaata


gacagatcgctgagataggtgcctcactgattaagcattggtaactgtca


gaccaagtttactcatatatactttagattgatttaaaacttcattttta


atttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaa


tcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaag


atcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgctt


gcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaag


agctaccaactctttttccgaaggtaactggcttcagcagagcgcagata


ccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaa


ctctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtgg


ctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacga


tagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcac


acagcccagcttggagcgaacgacctacaccgaactgagatacctacagc


gtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacagg


tatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttcc


agggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctct


gacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatgg


aaaaacgccagcaacgcggcctttttacggttcctggccttttgctggcc


ttttgctcacatgt






Claims
  • 1. An expression vector for use in a method of treatment of a neurological disorder associated with neuronal hyperexcitability in a subject, the vector comprising: (a) (i) a polynucleotide sequence (“gene”) encoding a polypeptide (“gene product”) which ameliorates said disorder when expressed in the subject’s neural cells, wherein the gene is operably linked to (ii) a neuronal activity-dependent promoter suitable to drive expression of the gene product in the subject’s neural cells; or(b) (i) an intermediate polynucleotide sequence (“intermediate gene”) encoding an intermediate polypeptide (“intermediate gene product”) which alters expression of a further polynucleotide sequence (“further gene”), the further gene encoding a further polypeptide (“further gene product”) which ameliorates said disorder when expressed in the subject’s neural cells, wherein the intermediate gene is operably linked to: (ii) a neuronal activity-dependent promoter suitable to drive expression of the intermediate gene product in the subject’s neural cells.
  • 2. The expression vector for use of claim 1, wherein the level of expression of the gene product or intermediate gene product or further gene product increases when the neuron becomes more excited and decreases when the neuron becomes less excited.
  • 3. The expression vector for use according to any one of the above claims, wherein the promoter is a pyramidal neuronal activity-dependent promoter.
  • 4. The expression vector for use according to any one of the above claims, wherein the promoter is an immediate early gene (IEG) promoter.
  • 5. The expression vector for use according to any one of the above claims, wherein the promoter is c-Fos.
  • 6. The expression vector for use according to any one of the above claims, wherein the promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 3 or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 3.
  • 7. The expression vector for use according to any one of claims 1-4, wherein the promoter is Arc, or wherein the promoter comprises a nucleotide sequences that comprises part of the Arc nucleotide sequence.
  • 8. The expression vector for use according to any one of claims 1-4, wherein the promoter is mArc (“minimal Arc”).
  • 9. The expression vector for use according to claim 7 or claim 8, wherein the promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 15 or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 15.
  • 10. The expression vector for use according to any one of claims 1-4, wherein the promoter is ESARE (“enhanced synaptic activity-responsive element”).
  • 11. The expression vector for use according to claim 9, wherein the promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 16 or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 16.
  • 12. The expression vector for use according to any one of claims 1-4, wherein the promoter is NRAM (“Npas4-specific Robust Activity Marker”).
  • 13. The expression vector for use according to claim 11, wherein the promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 17 or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 17.
  • 14. The expression vector for use according to any one of claims 1-4, wherein the promoter is Egr1.
  • 15. The expression vector for use according to claim 13, wherein the promoter has a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 18 or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 18.
  • 16. The expression vector for use according to any one of the above claims, wherein the gene or further gene is an ion channel gene, and the gene product or further gene product is an ion channel.
  • 17. The expression vector for use according to any one of the above claims, wherein the gene or further gene is a potassium ion channel gene, and the gene product or further gene product is a potassium ion channel.
  • 18. The expression vector for use according to any one of the above claims, wherein the gene or further gene is a KCNA1 gene, and the gene product or further gene product is a Kv1.1 potassium channel.
  • 19. The expression vector for use according to any one of the above claims, wherein the gene or further gene is an engineered KCNA1 gene, and the gene product or further gene product is an edited Kv1.1 potassium channel.
  • 20. The expression vector for use according to claim 19, wherein the engineered KCNA1 gene has a nucleotide sequence having at least 90% sequence identity to the nucleotide sequence shown in SEQ ID NO: 1, and wherein the edited Kv1.1 potassium channel has an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO: 2 and comprises a valine amino acid residue at a position corresponding to amino acid residue 400 shown in SEQ ID NO: 2.
  • 21. The expression vector for use according to any one of claims 1-16, wherein the gene or further gene is a KNCJ2 gene, and the gene product or further gene product is a Kir2.1 potassium channel.
  • 22. The expression vector for use according to claim 21, wherein the KNCJ2 gene has a nucleotide sequence having at least 90% sequence identity to the nucleotide sequence shown in SEQ ID NO: 13, and wherein the Kir2.1 potassium channel has an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO: 14.
  • 23. The expression vector for use according to any one of the above claims, wherein the further gene is an endogenous gene and the further gene product is an endogenous gene product.
  • 24. The expression vector for use according to claim 23, wherein the endogenous gene is KCNA1 or KCNJ2.
  • 25. The expression vector for use according to any one of the above claims, wherein the intermediate gene is endonuclease deficient cas (“dcas”), such as dcas9, spCas9 or saCas9.
  • 26. The expression vector for use according to claim 25, further comprising: (a) RNA polymerase III, optionally wherein the polymerase III is U6; and(b) an sgRNA (“single guide RNA”) that targets the further gene.
  • 27. The expression vector for use according to any one of the above claims, wherein the intermediate gene product increases expression of the further gene via an intermediate expression system, optionally an intermediate inducible expression system.
  • 28. The expression vector for use according to claim 27, wherein the intermediate inducible expression system is a Tet-On expression system.
  • 29. An expression vector system for use in a method of treatment of a neurological disorder associated with neuron hyperexcitability in a subject, comprising: (a) a first nucleotide sequence comprising a neuronal activity-dependent promoter suitable to drive expression of reverse tetracycline-controlled transactivator (“rtTA”) in the subject’s neural cells; and(b) a second nucleotide sequence comprising a Tet-On promoter suitable to drive expression of an intermediate gene or further gene according to any one of the above claims, wherein either the first nucleotide, second nucleotide, or expression system optionally further comprises: (c) an RNA polymerase, optionally wherein the RNA polymerase is RNA polymerase II or RNA polymerase III, further optionally wherein the RNA polymerase III is U6; and(d) an sgRNA (“single guide RNA”) that targets the further gene. and/or(e) a tetracycline, preferably doxycycline.
  • 30. An expression vector system for use according to claim 29, comprising: (a) a first nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 37 or 39, or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 37 or 39; and(b) a second nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 35 or 36, or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 35 or 36.
  • 31. The expression vector or vector system for use according to any one of the above claims,wherein the vector or vector system can cause a reduction in the spike frequency of a neuron of the subject by more than 5%, or more than 10%, or more than 20%, or more than 30%, or more than 40%, or more than 50%, or more than 60%, or more than 70%, or more than 80%, or more than 90%, or more than 91%, or more than 92%, or more than 93%, or more than 94%, or more than 95%, or more than 96%, or more than 97%, or more than 98%, or more than 99%, or 100%.
  • 32. The expression vector or vector system for use according to claim 31, wherein the vector or vector system can cause a reduction in the spike frequency of a neuron of the subject by more than 75%.
  • 33. The expression vector or vector system for use according to claim 32 or claim 31, wherein the reduction in the spike frequency of the neuron is measured using multi-electrode arrays on or after 21 DIV (days in vitro).
  • 34. The expression vector or vector system for use according to any one of claims 31-33, wherein the reduction in the spike frequency of the neuron is measured relative to a vector comprising SEQ ID NO: 6.
  • 35. The expression vector or vector system for use according to any one of claims 31-34, wherein the neuron is a primary cortical neuron.
  • 36. The expression vector or vector system for use according to any one of the above claims, wherein the vector or vector system can cause fewer than 10 action potentials per second, or fewer than 5 action potentials per second, or fewer than 4 action potentials per second, or fewer than 3 action potentials per second, or fewer than 2 action potentials per second, or no action potentials per second, in a neuron.
  • 37. The expression vector or vector system for use according to any one of the above claims, wherein the vector or vector system can cause a resting membrane potential in a neuron of less than -50 mV, or less than -60 mV, or less than -70 mV, or less than -80 mV, or less than -90 mV, or less than -100 mV.
  • 38. The expression vector or vector system for use according to any of the above claims, wherein the vector or vector system can increase the threshold for action potentials in a neuron to more than 50 pA, or more than 75 pA, or more than 100 pA, or more than 150 pA, or more than 200 pA, or more than 250 pA, or more than 300 pA, or more than 350 pA, or more than 400 pA, or more than 450 pA, or more than 500 pA, or more than 550 pA, or more than 600 pA, or more than 700 pA, or more than 800 pA, or more than 900 pA, or more than 1000 pA, wherein the threshold is the sum of current threshold and holding current.
  • 39. The expression vector or vector system for use according to any one of claims 36-38, wherein the number of action potentials, resting membrane potential, or threshold for action potentials is measured in an acute hippocampal slice from a subject.
  • 40. The expression vector or vector system for use according to any one of claims 36-39, wherein the number of action potentials, resting membrane potential, or threshold for action potentials is measured using acute hippocampal slice electrophysiology and/or patch clamp electrophysiology.
  • 41. The expression vector or vector system for use according to any one of claims 36-40, wherein the neuron is capable of driving a seizure and/or when the neuron generates sustained firing and/or when the neuron becomes over-depolarised.
  • 42. The expression vector or vector system for use according to any one of the above claims, wherein the vector or vector system can cause a greater anti-epileptic effect in a neuron driving a second seizure in a subject, than the anti-epileptic effect in the neuron driving the first seizure in the subject, wherein the second seizure is subsequent to the first seizure.
  • 43. The expression vector or vector system for use according to claim 42, wherein anti-epileptic effect is measured using any of the methods described in claims 23-33.
  • 44. The expression vector or vector system for use according to any one of the above claims, wherein the vector or vector system can prevent a second seizure in a subject, wherein the second seizure is subsequent to a first seizure in the subject.
  • 45. The expression vector or vector system for use of any of the above claims, wherein the method of treatment is close-loop therapy.
  • 46. The expression vector or vector system for use according to any one of the above claims, wherein the neurological disorder is a seizure disorder.
  • 47. The expression vector or vector system for use according to claim 46, wherein the seizure disorder is epilepsy, optionally neocortical epilepsy, temporal lobe epilepsy or refractory epilepsy.
  • 48. The expression vector or vector system for use according to any one of claims 1-45, wherein the neurological disorder is Parkinson’s disease, chronic pain, sudden unexpected death in epilepsy (SUDEP), migraine, cluster headache, trigeminal neuralgia, post-herpetic neuralgia, paroxysmal movement disorders, uni-or bipolar affective disorders, anxiety, or phobias.
  • 49. The expression vector or vector system for use according to any one of the above claims, wherein the vector or vector system is a viral vector or vector system.
  • 50. The expression vector or vector system for use according to claim 49, wherein the viral vector or vector system is a recombinant adeno-associated virus (AAV) vector or vector system, or a lentiviral vector or vector system, optionally wherein the lentiviral vector or vector system is a non-integrating lentiviral vector or vector system.
  • 51. The expression vector or vector system for use according to claim 49, wherein the vector or vector system comprises a nucleotide sequence having at least 95% identity to the nucleotide sequence of SEQ ID NO: 8, SEQ ID NO: 9 or SEQ ID NO: 10.
  • 52. The expression vector or vector system for use according to claim 49, wherein the vector or vector system comprises a nucleotide sequence having at least 95% identity to any one of SEQ ID NOs: 20-34.
  • 53. An expression vector comprising: (a) an engineered KCNA1 gene having a nucleotide sequence having at least 90% sequence identity to the nucleotide sequence shown in SEQ ID NO: 1, encoding an edited Kv1.1 potassium channel having an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO: 2 and comprises a valine amino acid residue at a position corresponding to amino acid residue 400 shown in SEQ ID NO: 2; and(b) an activity-dependent promoter having a nucleotide sequence comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 3 or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in SEQ ID NO: 3, wherein the gene is operably linked to the promoter.
  • 54. An expression vector system comprising: (a) (i) an engineered KCNA1 gene having a nucleotide sequence having at least 90% sequence identity to the nucleotide sequence shown in SEQ ID NO: 1, encoding an edited Kv1.1 potassium channel having an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO: 2 and comprises a valine amino acid residue at a position corresponding to amino acid residue 400 shown in SEQ ID NO: 2; or (ii) a KCNJ2 gene having a nucleotide sequence having at least 90% sequence identity to the nucleotide sequence shown in SEQ ID NO: 13, encoding a Kir2.1 potassium channel having an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO: 14; and(b) an activity-dependent promoter having a nucleotide sequence comprising or consisting of the nucleotide sequence shown in any one of SEQ ID NOs: 3 and 13-18, or a nucleotide sequence having at least 80% identity to the nucleotide sequence shown in any one of SEQ ID NOs: 3 and 13-18, wherein(c) the KCNA1 or KCNJ 2 gene is operably linked to the promoter; or(d) the KCNA1 or KCNJ 2 gene’s expression can be altered by an intermediate gene as defined in any one of the above claims, wherein the intermediate gene is operably linked to the activity-dependent promoter.
  • 55. An in vitro method of making viral particles comprising: transducing mammalian cells with a vector or vector system according to any one of the above claims and expressing viral packaging and envelope proteins necessary for particle formation in the cells; andculturing the transduced cells in a culture medium, such that the cells produce viral particles that are released into the medium.
  • 56. An in vitro method of claim 55, wherein the method comprises transducing the mammalian cells with one or more viral packaging and envelope expression vectors that encode the viral packaging and envelope proteins necessary for particle formation.
  • 57. An in vitro method of claim 55 or claim 56, wherein the one or more packaging proteins includes a non-functional integrase enzyme such that the vector or vector system is unable to incorporate its viral genome into the genome of the cell.
  • 58. An in vitro method of any one of claims 55-57, further comprising separating the viral particles from the culture medium and optionally concentrating the viral particles.
  • 59. A viral particle produced by the method of any one of claims 55-58, the viral particle optionally comprising an RNA molecule or DNA molecule transcribed from the expression vector or vector system of any of the above claims.
  • 60. A viral particle comprising a single stranded RNA molecule or DNA molecule encoding a gene, and/or intermediate gene, and/or further gene as described in any one of the above claims, wherein the gene, and/or intermediate gene, and/or further gene encodes a gene product, and/or intermediate gene product, and/or further gene product as defined in any one of the above claims,wherein the promoter is optionally as defined in any one of the above claims, andwherein the viral particle is optionally an AAV.
  • 61. A kit comprising an expression vector or vector system of any one of the above claims and one or more viral packaging and envelope expression vectors that encode viral packaging and envelope proteins necessary for particle formation when expressed in a cell.
  • 62. A kit of claim 61, wherein the viral packaging expression vector is an integrase-deficient viral packaging expression vector.
  • 63. A viral particle of claim 59 or claim 60 for use in a method of treatment, wherein the method of treatment is defined in any one of claims 45-48.
  • 64. A method of treatment of a neurological disorder as defined in any one of claims 1 and 45-48, comprising administering to an individual with the neurological disorder the expression vector or vector system as defined in any one of the above claims, or the viral particle of claim 59 or 60.
  • 65. A method of confirming the presence of a gene product and/or intermediate gene product, and/or further gene product as defined in any one of the above claims, the method comprising: transducing a cell with an expression vector of any one of the above claims or administering a viral particle of claim 59 or 60 to a cell under conditions that permit expression of the gene product and/or intermediate gene product, and/or further gene product; anddetecting the presence of the gene product and/or intermediate gene product, and/or further gene product in the cell using a hybridisation assay.
  • 66. An in vitro or ex vivo method of confirming the presence of a gene product and/or intermediate gene product, and/or further gene product as defined in any one of the above claims that has been obtained from a subject administered with a viral particle of claim 59 or 60, the method comprising: detecting the presence of the gene product and/or intermediate gene product, and/or further gene product in the cell using a hybridisation assay.
  • 67. A method of claim 65 or claim 66, wherein the hybridisation assay is an in situ hybridisation assay using a labelled RNA probe, optionally wherein the labelled RNA probe is fluorescently labelled.
  • 68. A cell comprising the expression vector or vector system of any one of the above claims.
Priority Claims (1)
Number Date Country Kind
2004498.8 Mar 2020 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2021/058210 3/29/2021 WO