Adapter assembly with pulley system and worm gear drive for interconnecting electromechanical surgical devices and surgical end effectors

Information

  • Patent Grant
  • 11864763
  • Patent Number
    11,864,763
  • Date Filed
    Wednesday, November 16, 2022
    2 years ago
  • Date Issued
    Tuesday, January 9, 2024
    12 months ago
Abstract
An adapter assembly for selective connection to a surgical device is provided. The adapter assembly includes an outer tube having a distal end and a proximal end, a housing secured to the proximal end of the outer tube, and a cable drive assembly supported by the housing. The cable drive assembly includes a worm gear drive assembly, a cable gear assembly coupled to the worm gear drive assembly, and one or more cables coupled to the cable gear assembly and axially translatable within the outer tube.
Description
TECHNICAL FIELD

The present disclosure relates to adapter assemblies for use in surgical systems. More specifically, the present disclosure relates to adapter assemblies for use with, and to electrically and mechanically interconnect, electromechanical surgical devices and surgical end effectors, and to surgical systems including handheld electromechanical surgical devices and adapter assemblies for connecting surgical end effectors to the handheld electromechanical surgical devices.


BACKGROUND

A number of surgical device manufacturers have developed product lines with proprietary powered drive systems for operating and/or manipulating a surgical device. In many instances the surgical devices include a powered handle assembly, which is reusable, and a disposable end effector or the like that is selectively connected to the powered handle assembly prior to use and then disconnected from the end effector following use in order to be disposed of or in some instances, sterilized for re-use.


Many of the existing end effectors for use with many of the existing powered surgical devices and/or handle assemblies are driven by a linear force. For example, end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures and transverse anastomosis procedures, each typically require a linear driving force in order to be operated. These end effectors are not compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power or the like.


In order to make the linear driven end effectors compatible with powered surgical devices and/or handle assemblies that use a rotary motion to deliver power, adapters and/or adapter assemblies are used to interface between and interconnect the linear driven end effectors with the powered rotary driven surgical devices and/or handle assemblies. Many of these adapter and/or adapter assemblies are complex devices including many parts and requiring extensive labor to assemble.


Adapter concepts often include a cable system for distal rotation and/or articulation. Some designs of cable systems include pulleys or lead screws with counter-directional threads to generate linear motion. Consistent with stroke dynamics, lead screw designs can require additional length to accommodate coordinated cable take-up and release. By comparison, pulley designs can be more compact than lead screw designs, but typically require different considerations including those associated with assembly and tensioning.


Accordingly, a need exists to develop adapters and/or adapter assemblies that incorporate fewer parts, are less labor intensive to assemble, and are ultimately more economical to manufacture. Specifically, a need exits to develop such adapters and/or adapter assemblies with improved pulley designs that simplify manufacturing and assembly as well as improve cable tensioning.


SUMMARY

According to an aspect of the present disclosure, an adapter assembly is provided. The adapter assembly selectively interconnects an end effector that is configured to perform a function and a surgical device that is configured to operate the end effector. The adapter assembly includes an outer tube having a distal end and a proximal end, a housing secured to the proximal end of the outer tube, and a cable drive assembly supported by the housing.


The cable drive assembly includes a worm gear, a cable gear coupled to the worm gear and rotatable in response to rotation of the worm gear, a capstan coupled to the cable gear and rotatable in response to rotation of the cable gear, and a cable coupled to the capstan. The cable may be axially translatable in response rotation of the capstan to actuate a function of the end effector while connected to the distal end of the outer tube.


In certain embodiments of the adapter assembly, the cable drive assembly may include a second worm gear, a second cable gear coupled to the second worm gear, a second capstan coupled to the second cable gear, and a second cable coupled to the second capstan. The second cable may be axially translatable in response to rotation of one or more of the second worm gear, the second cable gear, and the second capstan.


In some embodiments of the adapter assembly, the cable drive assembly may further include one or more pulleys supporting the cable and configured to direct the cable into the outer tube.


In certain embodiments of the adapter assembly, the cable drive assembly may further include a body portion that supports the worm gear and the cable gear in contacting relation with one another.


The adapter assembly may further include a firing assembly that extends through the cable drive assembly and into the outer tube. In some embodiments, the firing assembly may include a firing shaft that rotates independent of the cable drive assembly to actuate a firing function of the end effector.


The housing of the adapter assembly may include an outer housing and an inner housing that support the cable drive assembly therein.


In some embodiments of the adapter assembly, the outer tube defines a longitudinal axis that extends between the proximal and distal ends of the outer tube. The worm gear may be supported on a shaft member that extends in parallel relationship to the longitudinal axis of the outer tube. The shaft member may be rotatable to rotate the worm gear.


According to another aspect of the present disclosure, a surgical stapling apparatus is provided. The surgical stapling apparatus includes an end effector, a surgical device configured to operate the end effector, and an adapter assembly for selectively interconnecting the end effector and the surgical device.


The adapter assembly of the surgical stapling apparatus includes an outer tube having a distal end and a proximal end, a housing secured to the proximal end of the outer tube, and a cable drive assembly supported by the housing. The cable drive assembly includes a worm gear, a cable gear coupled to the worm gear, a capstan coupled to the cable gear, and a cable coupled to the capstan. The cable may be axially translatable in response rotation of one or more of the worm gear, the cable gear, and the capstan.


The adapter assembly of the surgical stapling apparatus may further include a firing assembly that extends through the cable drive assembly and into the outer tube. The firing assembly may include a firing shaft that rotates independent of the cable drive assembly to actuate a firing function of the end effector.


In some embodiments of the surgical stapling apparatus, the cable drive assembly may further include a second worm gear, a second cable gear coupled to the second worm gear, a second capstan coupled to the second cable gear, and a second cable coupled to the second capstan. The second cable may be axially translatable in response to rotation of one or more of the second worm gear, the second cable gear, and the second capstan.


In certain embodiments of the surgical stapling apparatus, the housing of the adapter assembly may include an outer housing and an inner housing. The inner and outer housings may support the cable drive assembly therein.


In some embodiments of the surgical stapling apparatus, the cable drive assembly may further include one or more pulleys supporting the cable and configured to direct the cable into the outer tube.


In certain embodiments of the surgical stapling apparatus, the cable drive assembly may further include a body portion that supports the worm gear and the cable gear in contacting relation with one another.


In some embodiments of the surgical stapling apparatus, the outer tube of the adapter assembly defines a longitudinal axis that extends between the proximal and distal ends of the outer tube. The worm gear may be supported on a shaft member that extends in parallel relationship to the longitudinal axis of the outer tube. The shaft member may be rotatable to rotate the worm gear.


According to yet another aspect of the present disclosure, an adapter assembly for selective connection to a surgical device is provided. The adapter assembly includes an outer tube having a distal end and a proximal end, a housing secured to the proximal end of the outer tube, and a cable drive assembly supported by the housing. The cable drive assembly includes a worm gear drive assembly, a cable gear assembly coupled to the worm gear drive assembly, and one or more cables coupled to the cable gear assembly and axially translatable within the outer tube.


In some embodiments, the cable drive assembly may further include a second worm gear, a second cable gear coupled to the second worm gear, a second capstan coupled to the second cable gear, and a second cable coupled to the second capstan.


Further details and aspects of exemplary embodiments of the present disclosure are described in more detail below with reference to the appended figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiment(s) given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a perspective view of an electromechanical surgical system in accordance with the principles of the present disclosure;



FIG. 2A is a perspective view of an adapter assembly of the electromechanical surgical system of FIG. 1;



FIG. 2B is a perspective view of the indicated area of detail shown in FIG. 2A;



FIG. 3 is an enlarged, top, perspective view of a proximal portion of the adapter assembly of FIG. 2, the proximal portion of the adapter assembly shown with a portion of an outer housing thereof removed for clarity;



FIG. 4 is a perspective view, with parts separated, of the proximal portion of the adapter assembly of FIG. 2;



FIG. 5 is an enlarged, perspective view, of the indicated area of detail shown in FIG. 4;



FIG. 6 is an enlarged, perspective view of a distal housing of the adapter assembly of FIG. 2;



FIG. 7 is a perspective view, with parts separated, of a drive system of the adapter assembly of FIG. 2;



FIG. 8 is a cross-sectional view of the adapter assembly of FIG. 2 as taken along section line 8-8 shown in FIG. 2;



FIG. 9 is a cross-sectional view of a portion of the adapter assembly of FIG. 2 as taken along section line 9-9 shown in FIG. 8;



FIG. 10 is a cross-sectional view of a portion of the adapter assembly of FIG. 2 as taken along section line 10-10 shown in FIG. 8;



FIG. 11 is a perspective view, with parts separated, of an end effector of the electromechanical surgical system of FIG. 1;



FIG. 12 is a perspective view illustrating cables of the drive system of FIG. 7 being tensioned with tensioning devices;



FIG. 13 is a cross-sectional view of FIG. 11 as taken along section line 13-13 shown in FIG. 12; and



FIG. 14 is a perspective view of the drive system of FIG. 7 and of a tensioning device.





DETAILED DESCRIPTION

Electromechanical surgical systems of the present disclosure include surgical devices in the form of powered handheld electromechanical instruments configured for selective attachment to a plurality of different end effectors that are each configured for actuation and manipulation by the powered handheld electromechanical surgical instrument. In particular, the presently described electromechanical surgical systems include adapter assemblies that interconnect the powered handheld electromechanical surgical instruments to the plurality of different end effectors. Each adapter assembly includes an articulation assembly and a firing assembly that is operatively coupled to a powered handheld electromechanical surgical instrument for effectuating actuation and/or manipulation of the plurality of different end effectors.


Embodiments of the presently disclosed electromechanical surgical systems, surgical devices/handle assemblies, adapter assemblies, and/or end effectors/loading units are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the system, assembly, device, and/or component thereof, farther from the user, while the term “proximal” refers to that portion of the system, assembly, device, and/or component thereof, closer to the user.


Turning now to FIG. 1, an electromechanical surgical system, in accordance with the present disclosure, generally referred to as 10, includes a surgical device 100 in the form of a powered handheld electromechanical instrument, an adapter assembly 200, and a surgical loading unit (e.g., multiple- or single-use loading unit) or end effector 300. Surgical device 100 is configured for selective connection with adapter assembly 200, and, in turn, adapter assembly 200 is configured for selective connection with end effector 300. Together, surgical device 100 and adapter assembly 200 may cooperate to actuate end effector 300.


Surgical device 100 of electromechanical surgical system 10 includes a handle housing 102 including a controller or circuit board (not shown) and a drive mechanism 106 situated therein. The circuit board is configured to control the various operations of surgical device 100. Handle housing 102 defines a cavity therein (not shown) for selective removable receipt of a rechargeable battery 103 therein. The battery 103 is configured to supply power to any electrical components of surgical device 100. The drive mechanism 106 within the handle housing 102 is configured to drive rotatable shafts 106a-106c (and/or gear components—not shown) within handle housing 102 in order to perform the various operations of surgical device 100. In particular, drive mechanism 106 (and/or components thereof) is operable to selectively articulate end effector 300 about a longitudinal axis “X” and relative to a distal end of adapter assembly 200, to selectively rotate end effector 300 about longitudinal axis “X” and relative to handle housing 102, to selectively move/approximate/separate an anvil assembly 310 and a cartridge assembly 320 of end effector 300 relative to one another, and/or to fire a stapling and cutting cartridge within cartridge assembly 320 of end effector 300.


Handle housing 102 of surgical device 100 includes an upper housing portion 102a that houses various components of surgical device 100, and a lower hand grip portion 102b extending from upper housing portion 102a. Lower hand grip portion 102b of handle housing 102 may be disposed distally of a proximal-most end of upper housing portion 102a of handle housing 102. The location of lower hand grip portion 102b relative to upper housing portion 102a is selected to balance a weight of surgical device 100 while surgical device 100 is connected to or supports adapter assembly 200 and/or end effector 300.


A connection portion 104 of handle housing 102 is configured to secure to a proximal end of adapter assembly 200. Connection portion 104 houses an articulation contact surface 105 in electrical communication with the circuit board (not shown) of surgical device 100 to control drive mechanism 106. Each rotatable drive shaft 106a-106c of drive mechanism 106 can be independently, and/or dependently, actuatable and rotatable. In embodiments, rotatable drive shafts, 106a, 106b, and 106c may be arranged in a common plane or line with one another. As can be appreciated, any number of rotatable drive shafts can be arranged in any suitable configuration.


Handle housing 102 of surgical device 100 supports finger-actuated control buttons, rocker devices, and/or the like for activating various functions of surgical device 100. For example, handle housing 102 may support actuators including an actuation pad 108 in operative registration with sensors 108a that cooperate with actuation pad 108 to effectuate, for instance, opening, closing, and/or firing of end effector 300. Handle housing 102 can support actuators 107a, 107b which can be disposed in electrical communication with one or more motors (not shown) of drive mechanism 106 to effectuate rotation of rotatable drive shafts 106a, 106b, and/or 106c for actuation thereof to enable adjustment of one or more of the components of adapter assembly 200. Any of the presently described actuators can have any suitable configuration (e.g., button, knob, toggle, slide, etc.).


Reference may be made to International Application No. PCT/US2008/077249, filed Sep. 22, 2008 (Inter. Pub. No. WO 2009/039506), and U.S. Patent Application Publication No. 2011/0121049, filed on Nov. 20, 2009, the entire contents of each of which being incorporated herein by reference, for a detailed description of various internal components of and operation of exemplary electromechanical surgical systems, the components of which are combinable and/or interchangeable with one or more components of electromechanical surgical systems 10 described herein.


With reference to FIGS. 2A and 2B, adapter assembly 200 of electromechanical surgical system 10 includes a housing 202 at a proximal end portion thereof and an outer tube 204 that extends distally from housing 202 along longitudinal axis “X” to a distal end portion 206. Distal end portion 206 of outer tube 204 couples a distal end of adapter assembly 200 to a proximal end of end effector 300. Reference can be made to U.S. Patent Application Publication No. 2015/0297199, filed Apr. 21, 2014 for a detailed description of exemplary distal end portions, the entire contents of which are incorporated herein as discussed above. As described in U.S. Patent Application Publication No. 2015/0297199, the distal end portion may support a gimbal or the like that couple to an articulation assembly such as the articulation or cable drive assembly described herein to enable end effectors, such as end effector 300 of electromechanical surgical system 10, to articulate relative to adapter assembly 200 of electromechanical surgical system 10. Such distal end portions 206 may support a rotatable gear 206a that engages with a proximal end of end effector 300 to effectuate a firing thereof as described in greater detail below.


Referring to FIGS. 2A-4, housing 202 of adapter assembly 200 includes an inner housing 202a and an outer housing 202b having first and second housing halves 202c, 202d. Inner housing 202a includes a housing body 208 having a proximal housing body 208a and a distal housing body 208b that couple together via fastener-receiving arms 208c, 208d of proximal housing body 208a and fastener-receiving ears 208e, 208f of distal housing body 208b. Proximal housing body 208a of inner housing 202a supports an electrical assembly 209 therein and a mounting assembly 210 thereon.


Electrical assembly 209 of housing 202 may include a circuit board with contact pins 209a for electrical connection to a corresponding electrical plug (not shown) disposed in connection portion 104 of surgical device 100 (e.g., for calibration and communication of life-cycle information to the circuit board of the surgical device 100).


Mounting assembly 210 of housing 202 includes a mounting button 212 that is biased in an extended position and is configured to be depressed downwardly to a compressed position. In the compressed position, mounting button 212 is disposed in close approximation with housing body 208 of inner housing 202a and offset from the extended position thereof. Mounting button 212 includes sloped engagement features 212a that are configured to contact connection portion 104 (FIG. 1) of handle housing 102 while mounting button 212 is in the extended position to facilitate securement of housing 202 of adapter assembly 200 to connection portion 104 of handle housing 102. For a detailed description of similar electrical and mounting assemblies, reference can be made to U.S. Patent Application Publication No. 2015/0157320, filed Nov. 21, 2014 m the entire contents of which are incorporated by reference herein.


Outer housing 202b of housing 202 is disposed around inner housing 202a of housing 202 to support an articulation or cable drive assembly 220 and a firing assembly 230 within housing 202 of adapter assembly 200. Distal housing body 208b of inner housing 208 includes a distal shaft 214a that is received within a proximal end of outer tube 204 and coupled thereto by a bearing 216 mounted within a channel 218 defined within outer housing 202b of housing 202.


As seen in FIG. 6, distal housing body 208b further includes mirrored arms 214b, 214c each defining a U-shaped passage 214d. U-shaped passages 214d of distal housing body 208b extend through arms 214b, 214c of distal housing body 208b and are configured to receive first and second cable gear assemblies 224, 225 of cable drive assembly 220 therein. Distal housing body 208b also includes pins or bosses 214e, 214f that extend proximally from a proximal surface of distal housing body 208b. The proximal surface of distal housing body 208b also defines distal pulley recesses 214g-214j therein.


With reference to FIGS. 5-7 and 10, cable drive assembly 220 includes a body portion 222, a first cable gear assembly 224, a second cable gear assembly 225, a first worm gear drive assembly 226, and a second worm gear drive assembly 227, proximal guide pulleys 228a-228d, and distal guide pulleys 229a-229d.


Body portion 222 of cable drive assembly 220 defines proximal pulley recesses 222a-222d that receive respective proximal guide pulleys 228a-228d therein to enable the respective proximal guide pulleys 228a-228d to rotate therein as cables 240a, 240b of cable drive assembly 220 rotate around respective proximal guide pulleys 228a-228d to manipulate end effector 300. Similarly, distal guide pulleys 229a-229d of cable drive assembly 220 are received within respective distal pulley recesses 214g-214j of distal housing body 208b of inner housing 202a to enable distal guide pulleys 229a-229d to rotate therein as cables 240a, 240b of cable drive assembly 220 rotate around respective distal guide pulleys 229a-229d to manipulate end effector 300.


Body portion 222 of cable drive assembly 220 includes an upper mounting projection 222e extending therefrom and positioned to partially receive first cable gear assembly 224 of cable drive assembly 220 therein for supporting first cable gear assembly 224 on upper mounting projection 222e of body portion 222. A lower mounting projection 222f (see FIG. 8) also extends from body portion 222 of cable drive assembly 220 in a direction opposite upper mounting projection 222e of body portion 222. Lower mounting projection 222f of body portion 222 is positioned to support second cable gear assembly 225 of cable drive assembly 220 thereon. Body portion 222 of cable drive assembly 220 further defines worm gear recesses 222g, 222h therein that rotatably receive first and second worm drive assemblies 226, 227, respectively in a proximal end thereof and pins 214e, 214f of distal housing body 208b in a distal end thereof. A firing shaft passage 222i is defined centrally through body portion 222 to receive a firing assembly 230 therein.


Referring to FIGS. 5, 7 and 8, first cable gear assembly 224 of cable drive assembly 220 includes an upper gear 224a, an upper capstan 224b supported on upper gear 224a, and an upper fastener 224c that couples upper capstan 224b to upper gear 224a while upper capstan 224b is coupled to upper mounting projection 222e of body portion 222 of cable drive assembly 220. Similarly, second cable gear assembly 225, which mirrors first cable gear assembly 224, includes a lower gear 225a, a lower capstan 225b supported on lower gear 225a, and a lower fastener 225c that couples lower capstan 225b to lower gear 225a while lower capstan 225b is coupled to lower mounting projection 222f of body portion 222 of cable drive assembly 220. Each of upper and lower gears 224a, 225a of respective first and second gear assemblies 224, 225 include a center protuberance 2245 that is received in respective upper and lower mounting projections 222e, 222f of body portion 222 to enable respective first and second gear assemblies 224, 225 to rotate about respective upper and lower mounting projections 222e, 222f of body portion 222. First and second cables 240a, 240b are wound around respective upper and lower capstans 224b, 225b and around respective proximal and distal guide pulleys 228a-228d, 229a-229d so that opposite ends/sides of each of the respective cables 240a, 240b extends distally through outer tube 204 to operatively couple to end effector 300 (e.g., to effectuate rotation and/or articulation thereof).


First worm gear drive assembly 226 of cable drive assembly 220 includes a first worm drive 226a rotatably supported between bearings 226b, 226c. First worm drive 226a includes a worm gear 226d secured on a shaft member 226e. Shaft member 226e has a proximal driving end 226f received in bearing 226b and a distal end 226g received in bearing 226c.


Similarly, second worm gear drive assembly 227 of cable drive assembly 220 includes a first worm drive 227a rotatably supported between bearings 227b, 227c. Second worm drive 227a includes a worm gear 227d secured on a shaft member 227e. Shaft member 227e has a proximal driving end 227f received in bearing 227b and a distal end 227g received in bearing 227c.


Referring to FIGS. 7, 9, and 10, firing assembly 230 of adapter assembly 200 includes a firing shaft 232, a bearing 234 supported on firing shaft 232, and an input socket 236 secured to a proximal end 232a of firing shaft 232. Firing shaft 232 of firing assembly 230 includes spaced collars 232b, 232c and a distal driving end 232d. Collar 232b of firing shaft 232 supports bearing 234 thereon and collar 232c of firing shaft 232 supports firing shaft 232 against distal housing body 208b of inner housing 202a. Distal driving end 232d of firing shaft 232 is extends to distal end portion 206 of outer tube 204 to effectuate a firing of end effector 300 as described in greater detail below.


Turning now to FIG. 11, an embodiment of an end effector 300 is shown. End effector 300 includes an anvil 310 and a cartridge assembly 320 that are pinned together by pins 315a, 315b and movable between open and closed conditions. Anvil 310 and cartridge assembly 320 cooperate to apply linear rows of fasteners “F” (e.g., staples). In certain embodiments, fasteners “F” are of various sizes, and, in certain embodiments, fasteners “F” are loaded into various lengths or rows of cartridge assembly 320 of end effector 300 (e.g., about 30, 45 and 60 mm in length).


Cartridge assembly 320 of end effector 300 includes a base 322 secured to a mounting portion 324, a frame portion 326, and a cartridge portion 328. Cartridge portion 328 has a tissue engaging surface that defines fastener retaining slots 328a and a knife slot 328b therein. Mounting portion 324 of cartridge assembly 320 has mating surfaces 324a, 324b on a proximal end thereof and defines a receiving channel 324c therein that supports frame portion 326, cartridge portion 328, and a fastener firing assembly 330 therein. Cartridge assembly 320 supports a biasing member 340 (e.g., a leaf spring) that engages anvil 310.


Fastener firing assembly 330 of end effector 300 includes an electrical contact member 332 for electrical communication with the circuit board of surgical device 100, a bearing member 334, a gear member 336 that engages rotatable gear 206a of adapter assembly 200, and a screw assembly 338. Screw assembly 338 of fastener firing assembly 330 includes a lead screw 338a, a drive beam 338b, and an actuation sled 338c that is engageable with pusher members 338d.


Cartridge assembly 320 of end effector 300 also supports plunger assemblies 350a, 350b. Each of plunger assemblies 350a, 350b includes a spring 352, a plunger 354, and a pin 356 that secures each plunger assembly to mounting portion 324 of cartridge assembly 320. Plunger assemblies 350a, 350b cooperate with the proximal end of cartridge portion 328 to facilitate securement of cartridge portion 328 within mounting portion 324.


In order to secure the proximal end of end effector 300 to distal end portion 206 of outer tube 204 of adapter assembly 200, the proximal end of end effector 300 is aligned with distal end portion 206 of adapter assembly 200 so that the proximal end of end effector 300 can be coupled to distal end portion 206 of adapter assembly 200 such that mating surfaces 324a and 324b of end effector 300 engage with distal end portion 206 of adapter assembly 200 and the teeth of gear member 336 of end effector 300 enmesh with the teeth of rotatable gear 206a of distal end portion 206 of adapter assembly 200.


In use, actuation pad 108 of surgical device 100 is actuated to rotate one or both of rotatable drive shafts 106a, 106c (e.g., clockwise and/or counterclockwise) of surgical device 100 via motors (not shown) disposed within surgical device 100.


Rotation of rotatable drive shaft 106a of surgical device 100 causes a corresponding rotation of worm gear 227d of worm drive assembly 227 and thus, rotation of lower gear 225a of gear assembly 225. Rotation of lower gear 225a of gear assembly 225 rotates lower capstan 225b of gear assembly 225 to draw/retract/tighten one side/end of cable 240a of cable drive assembly 220 while letting out/releasing the opposite side/end of cable 240a. Similarly, rotation of rotatable drive shaft 106c of surgical device 100 causes a corresponding rotation of worm gear 226d of worm drive assembly 226 and thus, rotation of upper gear 224a of gear assembly 226. Rotation of upper gear 224a of gear assembly 224 rotates upper capstan 224b of gear assembly 224 to draw/retract/tighten one side/end of cable 240b of cable drive assembly 220 while letting out/releasing the opposite side/end of cable 240b. Cables 240a, 240b of cable drive assembly 200 can be drawn/retracted/tightened and/or let out/released as desired to effectuate articulation (e.g., a pitch and/or a yaw) of end effector 300 about longitudinal axis “X” of adapter assembly 200.


To fire fasteners “F” from end effector 300, actuation pad 108 of surgical device 100 is actuated to rotate rotatable drive shaft 106b via a motor 103a (see FIG. 1) within handle housing 102, and to effectuate rotation of firing shaft 232 of firing assembly 230 about longitudinal axis “X” of adapter assembly 200. Rotation of firing shaft 232 of firing assembly 230 rotates rotatable gear 206a of distal end portion 206 of adapter assembly 200, which in turn, causes rotation of gear member 336 of end effector 300.


Rotation of gear member 336 of firing assembly 330 rotates lead screw 338a of firing assembly 330 and enables drive beam 338b of firing assembly 330 to axially advance along lead screw 338a and through longitudinal knife slot 328b of cartridge portion 328 by virtue of a threaded engagement between lead screw 338a and drive beam 338b. Drive beam 338b of firing assembly 330 engages anvil 310 of end effector 300 to maintain anvil 310 and cartridge assembly 320 of end effector 300 in approximation. Distal advancement of drive beam 338b of firing assembly 330 advances actuation sled 338c of firing assembly 330 into engagement with pusher members 338d of end effector 300 and fires the fasteners “F” from fastener retention slots 328a of cartridge portion 328 for forming against corresponding fastener forming pockets (not shown) defined within anvil 310. End effector 300 can be reset and cartridge portion 328 of cartridge assembly 320 can be replaced so that end effector 300 can then be re-fired as needed or desired.


Turning now to FIGS. 12-14, upper capstan 224b of first cable gear assembly 224 defines a slot 224d therein and lower capstan 225b of second cable gear assembly 225 defines a slot 225d therein. Slots 224d, 225d of respective upper and lower capstans 224b, 225b are configured to selectively receive detents 402 of a rotatable knob 400 therein to enable tension in cables 240a, 240b to be adjusted upon rotation of upper and/or lower capstans 224b, 225b via rotation of rotatable knob 400. Rotatable knob 400 further defines a central channel 404 therethrough configured to selectively receive a fastener driver 500 (e.g., an Allen wrench) therethrough for tightening and/or loosening respective upper and lower fasteners 224c, 225c of respective first and second gear assemblies 224, 225 to further facilitate tension adjustments as needed or desired.


Persons skilled in the art will understand that the structures and methods specifically described herein and shown in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely as exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown or described in connection with certain embodiments may be combined with the elements and features of certain other embodiments without departing from the scope of the present disclosure, and that such modifications and variations are also included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not limited by what has been particularly shown and described.

Claims
  • 1. An adapter assembly for selectively interconnecting an end effector to a handle assembly supporting a motor, the motor configured to impart drive force from the handle assembly to the end effector to operate the end effector, the adapter assembly comprising: a proximal housing body configured to couple to the handle assembly;a distal housing body coupled to the proximal housing body;an outer tube extending distally from the distal housing body and configured to support the end effector on a distal end portion of the outer tube; anda cable drive assembly supported between the proximal and distal housing bodies and including: a body portion having an upper portion and a lower portion;a first cable gear assembly supported on the upper portion of the body portion and supporting a first cable;a second cable gear assembly supported on the lower portion of the body portion and supporting a second cable; anda plurality of guide pulleys supported between the body portion and the distal housing body, the plurality of guide pulleys configured to guide the first cable and the second cable through the distal housing body and into the outer tube for operating the end effector.
  • 2. The adapter assembly of claim 1, wherein the body portion of the cable drive assembly defines proximal pulley recesses in a distal surface of the body portion, wherein a first set of the plurality of guide pulleys are supported in the proximal pulley recesses.
  • 3. The adapter assembly of claim 2, wherein the distal housing body defines distal pulley recesses in a proximal surface of the distal housing body, wherein a second set of the plurality of guide pulleys are supported in the distal pulley recesses.
  • 4. The adapter assembly of claim 3, wherein the outer tube defines a central longitudinal axis that extends from a proximal end portion of the outer tube to a distal end portion of the outer tube, wherein each guide pulley of the first set of the plurality of guide pulleys directs one of the first cable or the second cable in a direction transverse to the central longitudinal axis.
  • 5. The adapter assembly of claim 4, wherein each guide pulley of the second set of the plurality of guide pulleys directs one of the first cable or the second cable in a longitudinal direction along the central longitudinal axis.
  • 6. The adapter assembly of claim 5, wherein when portions of the first or second cable are disposed between the first and second sets of the plurality of guide pulleys, the portions are transverse to the longitudinal axis.
  • 7. The adapter assembly of claim 6, wherein when the portions are disposed in a proximal position relative to the plurality of guide pulleys, the portions are parallel to the central longitudinal axis.
  • 8. The adapter assembly of claim 7, wherein when the portions are disposed in a distal position relative to the plurality of guide pulleys, the portions are parallel to the central longitudinal axis.
  • 9. The adapter assembly of claim 8, wherein in the distal position, the portions are closer to the central longitudinal axis than when the portions are disposed in the proximal position.
  • 10. The adapter assembly of claim 4, wherein each of the first and second sets of the plurality of guide pulleys circumscribes the central longitudinal axis.
  • 11. The adapter assembly of claim 10, wherein the first set of the plurality of guide pulleys is radially closer to the central longitudinal axis than the second set of the plurality of guide pulleys.
  • 12. The adapter assembly of claim 1, wherein the cable drive assembly includes a first capstan that supports the first cable and a second capstan that supports the second cable.
  • 13. The adapter assembly of claim 12, further comprising a first gear that rotates the first capstan and a second gear that rotates the second capstan.
  • 14. The adapter assembly of claim 13, wherein at least one of the first or second gears is coupled to a worm gear.
  • 15. The adapter assembly of claim 1, wherein the adapter assembly further includes a firing assembly that extends through the cable drive assembly and into the outer tube.
  • 16. A surgical stapling apparatus, comprising: an end effector;a handle assembly configured to operate the end effector; andan adapter assembly for selectively interconnecting the end effector and the handle assembly, the adapter assembly including: a proximal housing body coupled to the handle assembly;a distal housing body coupled to the proximal housing body;an outer tube extending distally from the distal housing body and configured to support the end effector on a distal end portion of the outer tube; anda cable drive assembly supported between the proximal and distal housing bodies and including: a body portion having an upper portion and a lower portion;a first cable gear assembly supported on the upper portion of the body portion and supporting a first cable;a second cable gear assembly supported on the lower portion of the body portion and supporting a second cable; anda plurality of guide pulleys configured to guide the first cable and the second cable through the distal housing body and into the outer tube for operating the end effector.
  • 17. The surgical stapling apparatus of claim 16, wherein the cable drive assembly includes a first capstan that supports the first cable and a second capstan that supports the second cable.
  • 18. The surgical stapling apparatus of claim 17, further comprising a first gear that rotates the first capstan and a second gear that rotates the second capstan.
  • 19. The surgical stapling apparatus of claim 18, wherein at least one of the first or second gears is coupled to a worm gear.
  • 20. An end effector assembly, comprising: an end effector;an adapter assembly for selective connection to the end effector and a handle assembly, the adapter assembly comprising: a proximal housing body configured to couple to the handle assembly;a distal housing body coupled to the proximal housing body;an outer tube extending distally from the distal housing body and supporting the end effector on a distal end portion of the outer tube; anda cable drive assembly supported between the proximal and distal housing bodies and including: a body portion;a first cable gear assembly coupled to the body portion and supporting a first cable;a second cable gear assembly coupled to the body portion and supporting a second cable; anda plurality of guide pulleys supported between the body portion and the distal housing body, the plurality of guide pulleys configured to guide the first cable and the second cable through the distal housing body and into the outer tube for operating the end effector.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/034,490, filed Sep. 28, 2020, which is a continuation of U.S. patent application Ser. No. 15/491,268, filed Apr. 19, 2017, now U.S. Pat. No. 10,799,239, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/333,584, filed May 9, 2016, the entire contents of each of which are incorporated by reference herein.

US Referenced Citations (491)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3006885 Marczyk Oct 1961 A
3025199 Whitman et al. Mar 1962 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4544090 Warman Oct 1985 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5467911 Tsuruta Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5582617 Klieman Dec 1996 A
5609560 Ichikawa et al. Mar 1997 A
5626587 Bishop et al. May 1997 A
5632432 Schulze et al. May 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5792135 Madhani Aug 1998 A
5792573 Pitzen et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Asko Jan 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6080185 Johnson Jun 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6860892 Tanaka et al. Mar 2005 B1
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141049 Stern et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7252660 Kunz Aug 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8551076 Duval et al. Oct 2013 B2
8556152 Marczyk et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8602287 Yates et al. Dec 2013 B2
8623000 Humayun et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652121 Quick et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8715306 Faller et al. May 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8888762 Whitman Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8905289 Patel et al. Dec 2014 B2
8919630 Milliman Dec 2014 B2
8931680 Milliman Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8950646 Viola Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9023014 Chowaniec et al. May 2015 B2
9033868 Whitman et al. May 2015 B2
9050119 Devengenzo Jun 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9064653 Prest et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9113847 Whitman et al. Aug 2015 B2
9113875 Viola et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113899 Garrison et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9271799 Shelton, IV Mar 2016 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
9889568 Kilroy Feb 2018 B2
10258333 Shelton, IV et al. Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
10799239 Nicholas Oct 2020 B2
11504123 Nicholas Nov 2022 B2
20010031975 Whitman Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040153124 Whitman Aug 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050125027 Knodel et al. Jun 2005 A1
20050131442 Yachia et al. Jun 2005 A1
20060089533 Ziegler Apr 2006 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20070005002 Millman Jan 2007 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20070270784 Smith et al. Nov 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20080308604 Timm Dec 2008 A1
20090012533 Barbagli et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20090289096 Shelton, IV Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20100001036 Marczyk Jan 2010 A1
20100001306 Park et al. Jan 2010 A1
20100023022 Zeiner et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100179382 Shelton, IV Jul 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross Jul 2011 A1
20110184245 Kia et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290851 Shelton, IV Dec 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20110295270 Giordano Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120205421 Shelton, IV Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120310221 Durant Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130178838 Malkowski Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130277409 Marczyk Oct 2013 A1
20130282021 Parihar Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140005662 Shelton, IV Jan 2014 A1
20140005678 Shelton, IV Jan 2014 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236173 Scirica Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica Oct 2014 A1
20140303668 Nicholas Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140365235 DeBoer et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150014392 Williams et al. Jan 2015 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150112381 Richard Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150133224 Whitman et al. May 2015 A1
20150133957 Kostrzewski May 2015 A1
20150136835 Shelton, IV May 2015 A1
20150150547 Ingmanson et al. Jun 2015 A1
20150150574 Richard et al. Jun 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150201931 Zergiebel et al. Jul 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150282822 Trees Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160000513 Shelton, IV et al. Jan 2016 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
20160175060 Park Jun 2016 A1
20160249918 Shelton, IV Sep 2016 A1
20160296216 Nicholas Oct 2016 A1
20160296234 Richard Oct 2016 A1
20170211667 Nicholas Jul 2017 A1
20170281189 Nalagatla Oct 2017 A1
20170296173 Shelton, IV Oct 2017 A1
20170319200 Nicholas Nov 2017 A1
20180125594 Beardsley May 2018 A1
20190069917 Sholev Mar 2019 A1
Foreign Referenced Citations (26)
Number Date Country
2451558 Jan 2003 CA
2824590 Apr 2014 CA
102247182 Nov 2011 CN
104970884 Oct 2015 CN
107019537 Aug 2017 CN
102008053842 May 2010 DE
0705571 Apr 1996 EP
1769754 Apr 2007 EP
1813212 Aug 2007 EP
1980214 Oct 2008 EP
2055243 May 2009 EP
2100562 Sep 2009 EP
2263568 Dec 2010 EP
2316345 May 2011 EP
2333509 Jun 2011 EP
2649948 Oct 2013 EP
2668910 Dec 2013 EP
2937047 Oct 2015 EP
3195812 Jul 2017 EP
2333509 Feb 2010 ES
08038488 Feb 1996 JP
2005125075 May 2005 JP
20120022521 Mar 2012 KR
2009039506 Mar 2009 WO
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
Non-Patent Literature Citations (42)
Entry
Chinese Office Action for application No. 2021111861697 with English Translation.
Extended European Search Report issued in European Application No. 17170006.5 dated Nov. 24, 2017.
Extended European Search Report corresponding to counterpart International Application No. EP 14 18 4882.0 dated May 12, 2015.
Canadian Office Action corresponding to counterpart International Application No. CA 2640399 dated May 7, 2015.
Japanese Office Action corresponding to counterpart International Application No. JP 2011-197365 dated Mar. 23, 2015.
Japanese Office Action corresponding to counterpart International Application No. JP 2011-084092 dated May 20, 2015.
Japanese Office Action corresponding to counterpart International Application No. JP 2014-148482 dated Jun. 2, 2015.
Extended European Search Report corresponding to counterpart International Application No. EP 14 18 9358.6 dated Jul. 8, 2015.
Extended European Search Report corresponding to counterpart International Application No. EP 14 19 6148.2 dated Apr. 23, 2015.
Partial European Search Report corresponding to counterpart International Application No. EP 14 19 6704.2 dated May 11, 2015.
Australian Office Action corresponding to counterpart International Application No. AU 2010241367 dated Aug. 20, 2015.
Partial European Search Report corresponding to counterpart International Application No. EP 14 19 97833 dated Sep. 3, 2015.
Extended European Search Report corresponding to counterpart International Application No. EP 15 16 9962.6 dated Sep. 14, 2015.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 16 4413.3 dated Dec. 8, 2016.
Chinese Office Action dated Sep. 30, 2020 for application No. 2017103218172 with English Translation.
Chinese Office Action for application No. 2017103218172 dated Apr. 30, 2021 with English Translation.
Chinese Office Action issued in corresponding Chinese Application No. 202111186169.7 dated Aug. 31, 2023, 16 pages.
Related Publications (1)
Number Date Country
20230072521 A1 Mar 2023 US
Provisional Applications (1)
Number Date Country
62333584 May 2016 US
Continuations (2)
Number Date Country
Parent 17034490 Sep 2020 US
Child 17987990 US
Parent 15491268 Apr 2017 US
Child 17034490 US