Adaptive ambient services

Information

  • Patent Grant
  • 11750477
  • Patent Number
    11,750,477
  • Date Filed
    Monday, November 30, 2020
    3 years ago
  • Date Issued
    Tuesday, September 5, 2023
    8 months ago
Abstract
Adaptive ambient services are provided. In some embodiments, an adaptive ambient service includes providing an ambient service profile. In some embodiments, an ambient service includes implementing an ambient service profile for assisting control of the communications device use of an ambient service on a wireless network, in which the ambient service profile includes a plurality of service policy settings, and in which the ambient service profile is associated with an ambient service plan that provides for initial access to the ambient service with limited service capabilities prior to activation of a new service plan; monitoring use of the ambient service based on the ambient service profile; and adapting the ambient service profile based on the monitored use of the ambient service.
Description
BACKGROUND

With the advent of mass market digital communications, applications and content distribution, many access networks such as wireless networks, cable networks and DSL (Digital Subscriber Line) networks are pressed for user capacity, with, for example, EVDO (Evolution-Data Optimized), HSPA (High Speed Packet Access), LTE (Long Term Evolution), WiMax (Worldwide Interoperability for Microwave Access), DOCSIS, DSL, and Wi-Fi (Wireless Fidelity) becoming user capacity constrained. In the wireless case, although network capacity will increase with new higher capacity wireless radio access technologies, such as MIMO (Multiple-Input Multiple-Output), and with more frequency spectrum and cell splitting being deployed in the future, these capacity gains are likely to be less than what is required to meet growing digital networking demand.


Similarly, although wire line access networks, such as cable and DSL, can have higher average capacity per user compared to wireless, wire line user service consumption habits are trending toward very high bandwidth applications and content that can quickly consume the available capacity and degrade overall network service experience. Because some components of service provider costs go up with increasing bandwidth, this trend will also negatively impact service provider profits.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1 illustrates a wireless network architecture for providing adaptive ambient service in accordance with some embodiments.



FIG. 2 illustrates a wireless network architecture for providing adaptive ambient service including a proxy server in accordance with some embodiments.



FIG. 3 illustrates a flow diagram for providing adaptive ambient service in accordance with some embodiments.



FIG. 4 illustrates another flow diagram for providing adaptive ambient service in accordance with some embodiments.



FIG. 5 illustrates another flow diagram for providing adaptive ambient service in accordance with some embodiments.



FIG. 6 illustrates another flow diagram for providing adaptive ambient service in accordance with some embodiments.



FIG. 7 illustrates a flow diagram for providing adaptive ambient service for a surf-out option in accordance with some embodiments.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


In some embodiments, adaptive ambient services for a device (e.g., any type of device capable of communicating with a wireless network) or use of a service on a wireless network are provided. In some embodiments, an ambient experience is the user experience that is available at the time the device is sold in the event the user has not yet signed up for a service plan or the device is not sold with a prepaid service plan or other required service plan. In some embodiments, an ambient service generally refers to a set of application access, network destinations, sources, and/or traffic control rules to enable an ambient service experience, and, in some embodiments, also includes a set of billing rules to keep an accounting of service usage for different service usages (e.g., various bill by account rules or service usage accounts). For example, the ambient experience can be defined by an ambient service profile, an ambient service plan, the other service usage activity control policies, and/or the ambient service or ambient experience bill-by-account usage accounting and/or billing policies in effect in the network, on the device, on an intermediate networking device, or any combination thereof.


For example, if a service processor (e.g., on the device, the intermediate networking device, or both) is used in large part to define the ambient service profile, then the initial provisioning and activation settings in the service processor, and possibly a service controller in the network, can define the user service upgrade offering choices, network destination access control possibilities, traffic control policies, mobile commerce transaction capabilities (e.g., which transaction websites, WAP sites or portals the user can access to purchase information, content, music, games and/or eBooks), possibly free news or weather or other modest bandwidth Internet services that are provided free of charge to entice the user into using/upgrading the service or using the transactions or viewing advertisements, what advertisements are displayed to the user or what advertisement based websites the user is exposed to, certain applications may have access while others are blocked (e.g., Internet based text services have access but email downloads do not), or various other example service capabilities related to, for example, any set of application access, destinations, sources, traffic control rules to enable an ambient service experience, and/or a set of billing rules to keep an accounting of service usage for different service usages (e.g., various bill by account rules or service usage accounts). Examples of the type of useful services that can be enabled with the ambient service techniques disclosed herein include the following embodiments. In some embodiments, a content purchasing service (e.g., books, news, magazines, music, video, games, and mobile applications) is facilitated in which the device access is partially, largely, or entirely limited to the device or network based applications, source/destination addresses, and/or content transfers required to properly implement the service, in which other applications, source/destination addresses and/or content types are partly, largely, or entirely blocked. In some embodiments, such ambient services can have service usage monitoring and accounting that is reported for one or more individual ambient services. For example, the service usage for a book storefront browsing and download service can be separately accounted for while other services such as a general Internet shopping or auction service, a music service, a picture upload and store/print service, a search and/or advertisement service can also each have individual service usage accounting, or in some cases, groups of services can have aggregate service usage accounting. In some embodiments, an ambient service is provided for the device prior to the time a user has paid for permanent or full time access services, which, for example, can include a service selection platform for allowing the device user to access certain limited network functions and/or resources, and to access those network resources necessary to choose a pay-for-service plan option. In some embodiments, the individual and/or group ambient service usage accounting can be transformed into one or more billing records in which the service usage for each ambient service is billed to an entity, which can be the business entity that provides the ambient service experience and/or transaction platform, or the end user, or the central service provider, or an MVNO service provider, or a distribution partner, or an OEM, or another entity interested in paying for one or more ambient services.


In some embodiments, allowing some or all of these services, and blocking or throttling other ambient user service attempts (e.g., unpaid large file size Internet downloads or uploads or movie viewing or other access that would consume bandwidth and cause the ambient service to be a potential source of losses for the service provider) is made possible, for example, by various service profile control capabilities of the service processor and/or the service controller or using various other techniques. In some bill by account embodiments, as described herein, in which each service activity can, for example, be separately tracked with the service monitor and other agents and server functions to produce a billing offset that allows categorization and mediation of different billing entities (accounts) provides the capability for the service provider to individually account for the costs of each ambient service element. For example, this allows for business models in which the free access to the end user can be paid for or partially paid for by one or more service provider partners who are billed for service access using the bill by account capabilities (e.g., the transaction partners can pay for user access to their transaction experience and perhaps pay a revenue share for transaction billing, the advertising sponsored website partners pay for their access service share).


While the service control capabilities of the service processor and the bill by account service cost sharing and transaction revenue sharing in some cases can create a profitable ambient business model, in other cases, the ambient services can be a potential source of losses for the service provider. Accordingly, in some embodiments, the ambient service capabilities can be modified over time to reduce service cost to the service provider or VSP based on a variety of decision factors. For example, the user can have one level of traffic control for a period of time, and if the user has not signed up for service by the end of the period or if the user is no longer in good standing (e.g., based on various service usage criteria) for use of the service, the ambient service access is reduced (e.g., the transmission speed can be reduced or throttled, and/or the total volume of data transmitted can be reduced or throttled, possibly additionally according to time of day parameters and/or network busy state parameters) by changing the service control policy settings in the service processor, and the service level can be further reduced over time if the user continues to not sign up for service or the user does not create much transaction revenue. In some embodiments, this can limit or prevent users from “camping” on free ambient services without generating any meaningful revenue to fund the service, or viewing any advertising to fund the service. In some embodiments, a user can be throttled in such a manner until the user executes a “useful activity” or a “preferred activity” (e.g., a purchase, viewing advertising, answering a questionnaire, signing up for a service, accepting a beta trial, and/or earning valued customer points), and after a useful or preferred activity occurs, then the access capabilities of the device are increased. As another example, various recursive throttling algorithms can be utilized to one or more of the service activities offered in ambient service mode so that the user experiences what full speed service is like, and if the user continues consuming appreciable bandwidth with the service activity, then the activity is throttled back to reduce costs until or unless the user selects a pay-for-service plan (or accumulates sufficient service access points as described herein). In these and other similar examples, the service processor or service controller can issue the user a notification explaining that their service is currently free so their usage is being throttled, and if they desire to receive better service, service plan upgrade offers can be delivered to the user interface (UI). In some embodiments, the level of access (e.g., ambient service bandwidth and/or transfer limits, reachable addresses beyond the ambient service, and/or bandwidth or transfer limits for open Internet usage and/or email usage, text usage) is increased as the user increases the number of useful or preferred activities (e.g., the user accumulates “service access points,” which are then spent on access activities). It will now be apparent to one of ordinary skill in the art that the various ambient service parameters including various provisioning and activation processes used to provide an ambient service, can also be managed by various virtual service provider (VSP) techniques. For example, this allows the same service controllers and service processor solutions to be used to define a wide range of ambient experiences for various device groups or user groups that are controlled by different VSPs.


Similarly, rather than controlling ambient service profile settings using the device assisted services functions and/or VSP functions to control the service controller, service processor, provisioning and activation settings, various other embodiments call for the ambient service profile settings to be controlled by various network based service activity control equipment as similarly described herein and/or by various intermediate networking devices. For example, depending on the level of service control and service monitoring sophistication (e.g., advanced DPI (Deep Packet Inspection), TCP (Transmission Control Protocol) session aware techniques, or other service aware techniques), some, much, most or all of the above described ambient services functionality can be implemented using network based service controls and various VSP management and control techniques. Similarly, in some embodiments, service processor, provisioning and activation settings, and the ambient service profile settings can also be (at least in part) controlled by various intermediate networking devices. In some embodiments, network equipment that can provide ambient service controls include, for example, service gateways, routers, charging functions, HLRs, home agents, proxy servers, and other network equipment as would be apparent to one of ordinary skill in the art.


Whether the ambient service monitoring and control apparatus is implemented with device assisted service techniques, network based techniques, or a combination of both, various embodiments described herein provide for adaptive ambient service embodiments that address the dynamic (e.g., non-static) nature of Internet service access needs (e.g., allowable source/destination and/or application lists, blocked source/destination and/or application lists, traffic control policies for each source/destination and/or application).


Providing an ambient service profile for an ambient service can be complicated by the variable nature of network addresses and offered services such as, for example, the Internet. For example, a central service provider, MVNO provider or VSP may desire to provide ambient service access to a given web site partner's web service, in exchange for a business deal with the website partner that motivates the service provider to provide the ambient access. In this example, the ambient access is intended to enable access (either wide open or throttled) to the website partner's collection of URLs (and possibly one or more applications) associated with the service, while blocking or differentially throttling access to other network destinations and/or applications not associated with the web site partner services. A problem can arise in this example whenever the website partner changes the addresses and/or domains associated with the website services, because any static access list and access list policies generally makes a static list impractical. In such cases, the adaptive ambient service embodiments described herein provide a solution to these and other problems, whether the adaptive ambient access controls and/or traffic controls are implemented with device assisted service apparatus, network based apparatus, or a combination of both.


As another example, an ambient service profile for a transaction service provider can include that service provider's domain or web site as an allowed destination. However, there are often inline advertisements provided by ad servers and/or partner sites that should also be included in the set of allowed destinations in the ambient service profile, and these are often dynamic or frequently changing. As another example, an ambient service provider may not want to allow access to sites that typically involve relatively high data usage (e.g., streaming and/or downloading of video content), while allowing other sites that result in less bandwidth intensive service usage activities. As another example, during a session a user may attempt to surf out of the ambient service, such as when the user attempts to access a website or service that is not an allowed or pre-approved destination in the ambient service profile (e.g., a search site can be the pre-approved ambient service, but the ambient service partner paying for the search service access may desire to also allow and pay for user click-through to search results and/or advertising offers, or, for example, an ambient shopping service sponsor may desire to also pay for click-through to vendor partners sites to provide a purchase transaction opportunity to the user). Moreover, the defined ambient service profile quickly stagnates as various applications and destinations, for example, change over time or on each request/usage (e.g., new applications become available and/or web site content and link changes occur daily if not hourly and/or are dynamically generated using well known web site techniques). Thus, what is needed are adaptive techniques for providing an adaptive ambient service.


Accordingly, in some embodiments, adaptive ambient services using an adaptive ambient service profile are provided. In some embodiments, a flexible and efficient adaptive ambient service control is provided by using an intelligent element in the network that performs one or more of the following functions: (1) beginning with an initial list of allowable ambient service device access behaviors (e.g., addresses/URLs, applications and/or content types, in some cases, with a set of traffic control policies that are differentiated as discussed above), (2) as the user accesses the ambient service, determine if the access behavior of the device is within or outside of the desired ambient service access and/or traffic control policies (e.g., determine if the access behavior is properly associated with the desired ambient services and/or service policies), (3) for those access behaviors that are within the desired ambient service policies, expand the list of allowable ambient service device access behaviors to include the new behaviors that are desired and/or preferred (e.g., new sub-domains, advertising content sources, transaction partner addresses, and/or desired surf-outs), (4) for those device access behaviors that are outside of the desired/preferred ambient service policies (e.g., are not associated or beneficially associated with the desired/preferred ambient service), expand the list of blocked or differentially throttled ambient service device access behaviors to include the new behaviors that are undesired or less desired (e.g., not preferred). In some embodiments, the intelligent network element used to adapt the ambient service control is included in one or more network equipment functions (e.g., service gateways, routers, charging gateways, HLRs, AAA, base station, service controller, and/or other network equipment functions). In some embodiments the intelligent network element used to adapt the ambient service control is included in the device and/or intermediate networking device service processor. In some embodiments, the intelligent network element used to adapt the ambient service control is included in a combination of the device (and/or intermediate networking device) and one or more network equipment functions.


In some embodiments, a flexible and efficient adaptive ambient service is provided using a baseline (e.g., a basic starting point) of an adaptive ambient service profile that includes default or previously defined (e.g., by an ambient service provider, network provider, VSP, or another entity) allowable access list and disallowed access list for the ambient service, such as to various applications, destinations, sources, traffic control rules, and/or bill by account rules or a combination thereof. In some embodiments, the ambient service profile is an automated and a self-evolving service profile using various techniques, such as those described herein.


In some embodiments, an adaptive ambient service includes providing an ambient service profile. In some embodiments, the ambient service profile includes ambient service allowed access rules and ambient service disallowed access rules. In some embodiments, the ambient service profile further includes ambient service monitored access rules, in which access to, for example, certain applications or destinations is allowed but is considered suspect or unknown, and thus, such access is monitored (e.g., until that application or destination is reclassified under an ambient service allowed access rule or ambient service disallowed access rule). In some embodiments, the ambient service allowed/disallowed/monitored access rules include IP addresses, domains (e.g., URLs for web sites), or any other unique network destination or application or source identifiers. In some embodiments, the ambient service rules provide differentiated traffic control rules. In some embodiments, the differentiated traffic control rules provide differentiated bandwidth and/or total data transfer limits according to traffic control policy elements, such as activities associated with the main ambient service functions (e.g., the main partner website or a transaction service), activities associated with secondary ambient service functions (e.g., a secondary surf-out website or a less desired service activity), activities transferring different content types, activities associated with different applications, activities based on time of day, activities based on network busy state, activities that require higher or lower QOS (Quality Of Service), and/or other activities.


In some embodiments, the ambient service allowed access rules and/or ambient service disallowed access rules are pushed to (e.g., published, at predefined times, during low service usage times or periods of low service usage activities, or upon request) the device or the intermediate networking device (e.g., any type of networking device capable of communicating with a device and a network, including a wireless network, example intermediate networking devices include a femto cell, or any network communication device that translates the wireless data received from the device to a network, such as an access network) from the network (e.g., an element in the network that securely provides such data, such as a service controller for the ambient service). In some embodiments, the ambient service allowed access rules and/or ambient service disallowed access rules are pulled by (e.g., at predefined times, during low service usage times or periods of low service usage activities, or upon request) the device or the intermediate networking device from the network (e.g., an element in the network that securely provides such data, such as a service controller for the ambient service).


In some embodiments, the device or intermediate networking device includes techniques for automatically adapting the service profile based on ambient service usage and thereby updates the ambient service allowed access rules, the ambient service monitored access rules, and/or ambient service disallowed access rules locally. Device access activities that fall into the monitored access rules are those activities that are determined not to be disallowed (as of that point in time) and are allowed to take place while the intelligent adaptive service element tests the activities on the monitored access rules list to determine if they should be moved to the allowed access rules list, should be moved to the disallowed access rules list, or should remain on the monitored access rules list for further testing and/or observation. In this way, a useful and friendly user experience can be maintained as the adaptive ambient service rules undergo “training” to accommodate dynamic changes to the ambient service sites/applications. The device or intermediate networking device can then periodically provide the updated ambient service allowed access rules, ambient service monitored access rules, and/or ambient service disallowed access rules with the network using various network communication techniques, such as those described herein. In some embodiments, the device periodically synchronizes its locally stored ambient service allowed access rules, ambient service monitored access rules, and/or ambient service disallowed access rules with the network using various network communication techniques, such as those described herein. In some embodiments, the training for one or more of the three lists occurs on the device. In some embodiments, the training for one or more of the three lists occurs in the network. In some embodiments, the training for one or more of the three lists occurs partly on the device and partly in the network (e.g., depending, in some cases, on the device (such as the computing/memory capacity of the device), network bandwidth, and/or any other architecture criteria).


In some embodiments, various techniques are used for providing the adaptive ambient service. Generally, in some embodiments, a requested use of the ambient service is analyzed to determine its association with the ambient service. In some embodiments, service usage traffic patterns are analyzed. In some embodiments, the requested use of the ambient service is determined to be associated or within the ambient service by querying the ambient service (e.g., a server or network function for assisting in managing the ambient service/ambient service profile(s) and/or responding to such ambient service confirmation queries). In some embodiments, the requested used of the service is analyzed by testing the requested application, destination, and/or source. In some embodiments, access for an activity not already on the allowed list or the disallowed list is initially allowed (and in some embodiments, placed on the monitoring list) if the access is associated with a TCP session and/or socket already in progress that is associated with an allowed ambient service. In some embodiments, access for an activity not already on the allowed list or the disallowed list is initially allowed (and in some embodiments, placed on the monitoring list) if the access is associated with an application already associated with and/or connected to an allowed ambient service. In some embodiments, access for an activity not already on the allowed list or the disallowed list is initially allowed (and in some embodiments, placed on the monitoring list) if the access is associated with a URL referral from an allowed URL (e.g., a URL included in an allowed list of URLs). In some embodiments, access for an activity not already on the allowed list or the disallowed list is initially allowed (and in some embodiments, placed on the monitoring list) if the access is associated with a traffic usage pattern that is within certain pre-set/predefined parameters and/or satisfies other criteria for the ambient service.


In some embodiments, device assisted services (DAS) techniques for providing an activity map for classifying or categorizing service usage activities to associate various monitored activities (e.g., by URL, by network domain, by website, by network traffic type, by application or application type, and/or any other service usage activity categorization/classification) with associated IP addresses are provided. In some embodiments, a policy control agent (not shown), service monitor agent 1696, or another agent or function (or combinations thereof) of the service processor 115 provides a DAS activity map. In some embodiments, a policy control agent, service monitor agent, or another agent or function (or combinations thereof) of the service processor provides an activity map for classifying or categorizing service usage activities to associate various monitored activities (e.g., by Uniform Resource Locator (URL), by network domain, by website, by network traffic type, by application or application type, and/or any other service usage activity classification/categorization) with associated IP addresses. In some embodiments, a policy control agent, service monitor agent, or another agent or function (or combinations thereof) of the service processor determines the associated IP addresses for monitored service usage activities using various techniques to snoop the DNS request(s) (e.g., by performing such snooping techniques on the device 100 the associated IP addresses can be determined without the need for a network request for a reverse DNS lookup). In some embodiments, a policy control agent, service monitor agent, or another agent or function (or combinations thereof) of the service processor records and reports IP addresses or includes a DNS lookup function to report IP addresses or IP addresses and associated URLs for monitored service usage activities. For example, a policy control agent, service monitor agent, or another agent or function (or combinations thereof) of the service processor can determine the associated IP addresses for monitored service usage activities using various techniques to perform a DNS lookup function (e.g., using a local DNS cache on the monitored device 100). In some embodiments, one or more of these techniques are used to dynamically build and maintain a DAS activity map that maps, for example, URLs to IP addresses, applications to IP addresses, content types to IP addresses, and/or any other categorization/classification to IP addresses as applicable. In some embodiments, the DAS activity map is used for various DAS traffic control and/or throttling techniques as described herein with respect to various embodiments. In some embodiments, the DAS activity map is used to provide the user various UI related information and notification techniques related to service usage as described herein with respect to various embodiments. In some embodiments, the DAS activity map is used to provide service usage monitoring, prediction/estimation of future service usage, service usage billing (e.g., bill by account and/or any other service usage/billing categorization techniques), DAS techniques for ambient services usage monitoring, DAS techniques for generating micro-CDRs (e.g., also referred to as service usage partition, service usage recording partition, service charging bucket, device generated CDRs, such as in the case where the device and not a network component are generating the usage records, ambient usage records, specialized service usage records, or other terms to indicate a service usage data record generated to provide a more refined or detailed breakdown of service usage for the device), and/or any of the various other DAS related techniques as described herein with respect to various embodiments.


In some embodiments, various techniques are used for providing the adaptive ambient service that allows for a surf-out option (e.g., to an advertisement web site or to a web site in a search result, such as a search engine's paid search result or a search engine's organic search result). In some embodiments, a surf-out option is managed using a second set of rules in the ambient service profile for the surf-out option. In some embodiments, initial allowance of a surf-out website access is based on a main ambient website generating the surf-out (e.g. with a user click), or referring the surf-out. In some embodiments, once the main ambient service creates a surf-out that will be accounted to the main ambient service usage accounting, the surf-out website access rules are constructed according to a set of temporary allowance rules. These temporary allowance rules allow the main ambient service partner to sponsor the surf-out without the danger of the surf-out website becoming a permanent allowed ambient service that the main ambient service partner must sponsor indefinitely. For example, the temporary surf-out rules can then include one or more of the three access list types, such as an allowed access list, a disallowed access list, and a monitoring access list, as similarly discussed above, and similar types of adaptive rules can be applied to create one or more of the lists. In some embodiments, differences with the temporary surf-out rules include limitations based on, for example, a total time allowed for access to the surf-out site, rules based on limiting total data transfer or transfer bandwidth, rules on content type, rules on either allowing or disallowing a secondary surf-out (or beyond secondary to third tier, or through multiple/additional tiers/degrees of separation), and/or allowing or disallowing advertising sources. For example, as similar to other ambient access list rules, the surf-out rules can also be modified based on time of day, user priority, user class, user service plan, user useful activity points, and/or network busy state.


In some embodiments, once the content offered to the user is no longer associated with the main ambient service allowed or monitoring access list, the surf-out option is limited to one or more the following: a limitation on the number of new user actions or choices; a limitation on the number of new web pages or portal pages; a limitation on the number of new URLs or sub-URLs, domains or sub domains; a limitation on the existence or type of advertisements; a limitation on the existence or type or size of certain content; a limitation on the number of new addresses; a limitation on the type of file downloads; a limitation on the number of file downloads; a limitation on the activities of a given application; a limitation on the time for the surf-out sequence; and/or a limitation on the total data transfer for the surf-out sequence. In some embodiments, once one or more of these established limitations is exceeded, then the surf-out sequence is disallowed or differentially traffic controlled or throttled in some way using, for example, the various techniques described herein. In some embodiments, the differential throttling successively reduces the allowed connection bandwidth for the ambient service surf-out sequence based on a length of time from the point at which the surf-out sequence branched from the main ambient service allowed or monitored/monitoring access list, the number of user activities since the surf-out sequence branched from the main ambient service allowed or monitored/monitoring access list, the number of web pages selected since the surf-out sequence branched from the main ambient service allowed or monitored/monitoring access list, the total data transferred since the surf-out sequence branched from the main ambient service allowed or monitored/monitoring access list, the number of new URLs or domains since the surf-out sequence branched from the main ambient service allowed or monitored/monitoring access list. In some embodiments, after the surf-out activities or sequence is disallowed or differentially traffic controlled or throttled, once the user again utilizes the ambient service in a manner that is directly associated with the main ambient service allowed access list or monitoring access list, and the main ambient service experience again provides a surf-out or click through option for the same or similar surf-out experience, then the ambient surf-out limitations, for example, can be reset, removed, reduced and/or modified so that the user can again continue the same or similar surf-out experience. In some embodiments, the surf-out sequence is stored in an access list so that the surf-out sequence is remembered (e.g., stored for) the next time a similar sequence is selected from the main ambient service allowed or monitoring lists, and there may be differential service allowances applied to the surf-out sequence.


For example, there are many advantageous application settings, service models and service business models for which this type of capability and various techniques to limit surf-out sequences and, in some cases, to then “refresh” or remove limitations or modify the limitations for the same or a similar surf-out sequence is valuable. An example is provided and one reasonably skilled in the art can appreciate how this can be applied to many more examples. For example, an Internet search service provider can be an ambient service partner that sponsors ambient service access to their search website. A search website is generally not of much value unless the user can click-through to other web sites offered up in user click through options based on search results. Thus, in this example, it is important to allow the surf-out option. In some embodiments, the search provider charges differentially for paid or sponsored search results, banners or click-throughs offered up as part of an ambient service so that, for example, the search result sponsor can help to bear the costs of ambient access in the bill by account setting. However, once the user has selected a surf-out option, it is important to make sure the surf-out sequence does not become an unlimited access allowance for the user to then surf the Internet for any purpose as this would result in completely unlimited Internet access, which the search service provider and/or the search service sponsors would be billed for. Thus, in some embodiments, it is important to limit the “search sequence tree” so that the “branches” of the surf-out sequence do not progress too far from the main “trunk” of the main ambient service. For example, the surf-out sequence “branches” can be limited in many ways, and the above embodiments are provided as examples, but at this point one skilled in the art will recognize that many more specific embodiments are possible, in which an aspect of many of the embodiments described herein is the ability to identify and allow a surf-out sequence that is not on the main ambient service allowed or monitoring list, establish a process for temporarily allowing certain types of surf-out sequence(s), and then properly limiting the surf-out sequence branches using various criteria and techniques.


In some embodiments, the surf-out option is implemented on a service processor (on a device and/or an intermediate networking device) with device assisted services. In some embodiments, the surf-out option is implemented with a combination of a service processor and a service controller. In some embodiments, the surf-out option is implemented with the various service control and monitoring verification techniques.


In some embodiments, the surf-out option is billed to a main ambient service provider or a secondary ambient service partner (e.g., based on a referring URL, such as that provided by a search engine for a search result and/or a sponsored search result). In some embodiments, the surf-out option is restricted to the associated user session. In some embodiments, the surf-out option is restricted to the associated application. In some embodiments, the surf-out option is limited by time, data usage, or any other criteria. In some embodiments, the surf-out option is controlled or restricted based on a user's current standing (e.g., good standing for service usage/billing or other purposes/criteria). In some embodiments, the user's standing is determined based on various criteria (e.g., purchase behavior, ad click through behavior, user account standing, user browsing behavior, user service data usage, reward points, or any other criteria). In some embodiments, in which a search engine is generating the click through for the surf-out session/activities, only sponsored search results for which the search provider is getting paid for displaying the search result are allowed in the ambient service for search out and/or, in some embodiments, only the sponsored search results are displayed at all. In some embodiments, both sponsored search and un-sponsored search are displayed and allowed.


In some embodiments, there is an identifier communicated from the device (e.g., a unique application identifier, an agent header, such as in an HTML header, a cookie, such as in an HTML cookie, or a communication handshake sequence, or other secure token or secure handshake technique) to the ambient service provider (e.g., a web service or web site) that identifies the device communication traffic as being associated with an ambient service. In some embodiments, the ambient service partner can interpret the identifier to ascertain that the communication is being sponsored within an ambient service model. In some embodiments, once the ambient service partner determines that the communication is associated with an ambient service model, any aspect of any combination of the ambient service experience, service interface (e.g., web pages or portal pages) look and feel, service interface (e.g., web pages or portal pages) complexity and/or content, offered content, content resolution, offered advertising, advertising resolution, transaction offers, transaction offer content or resolution, offered service bandwidth, total data transfer delivered, surf-out options, or other aspects of the ambient service experience served up by the ambient service partner can be tailored to optimize the offered ambient service experience. In some embodiments, the ambient service partner will optimize the offered ambient service experience in this way to reduce total bandwidth delivered in cases for which the ambient service partner or some other entity is paying for the ambient service access using, for example, various bill by account techniques or using other techniques.


In some embodiments, the surf-out option is associated with a token (e.g., in a request header or some other secure or encrypted token or cookie associated with the session request) for an ambient service provider or ambient service partner, so that the surf-out session can be billed to that ambient service provider or ambient service partner, respectively. In such embodiments, the ambient service web site can receive a token request and provided that the website provides a valid token then the access to the ambient service session is allowed. In this way, a highly scalable ambient service system can be provided to any web site service partner who subscribes to the token service. In some embodiments, user information is also included in the token request to the web site provider, so that the web site provider can determine if the user is worth paying the ambient service access fees for.


In some embodiments, a token is used to identify, enable, account for, and/or establish billing for the ambient service access associated with a main ambient service and not just the surf-out sequences. In general, whenever a token enabled ambient service embodiment is discussed herein, one of ordinary skill in the art will appreciate that the token ambient service technology can be utilized for either a main ambient service or an ambient service surf-out sequence.


In some embodiments, a proxy server or router is provided, and the ambient service provider monitors, accounts, controls, and/or optimizes the service usage through the proxy server or router (e.g., using the adaptive ambient service profile and/or any of the techniques described herein). In some embodiments, the proxy server or router implements the various techniques described herein (e.g., determines if the requested access is within the ambient service profile or belongs on the monitoring or disallowed lists, whether the requested access is compliant with a surf-out option, whether the user is in good standing, whether the requested access is associated with a referring URL, adapts one or more of the three access lists, and/or whether the requested access is associated with a token for an ambient service provider or ambient service provider). For example, in some embodiments, the proxy server or router manages the secure token protocol for the surf-out option, as described herein. In some embodiments, the proxy server or router manages the bill by account for the various adaptive ambient service techniques and/or the billing of ambient service providers/partners for the adaptive ambient service provided for the surf-out option, as described herein. Each of these various techniques is further described below.


In some embodiments, a proxy network device (e.g., a proxy server or router) is provided, and the ambient service (e.g., service processor and/or service controller) directs the wireless communications device traffic to the proxy network device. In some embodiments, a proxy network device facilitates the ambient service (e.g., and/or a non-ambient service), including, for example, monitoring, accounting, controlling, providing security control, and/or optimizing the service usage through the proxy network device (e.g., using the adaptive ambient service profile and/or other associated service profile and/or any of the techniques described herein).


In some embodiments, a proxy server or router is provided (e.g., by the central provider, by the MVNO, or by the associated ambient service provider, such as an Amazon proxy server/router, or by another associated ambient service provider), and the ambient service (e.g., service processor and/or service controller) directs the wireless communications device traffic destined for the specific ambient service to the proxy server or router that supports that ambient service. In some embodiments, the proxy server or router facilitates the ambient service, including, for example, monitoring the service usage through the proxy server or router (e.g., to count bytes/data service usage levels or any other relevant metric by service/activity using the adaptive ambient service profile and/or any of the techniques described herein).


In some embodiments, a proxy server or router is provided, the service is initially an ambient service that a user subsequently upgrades to another service (e.g., any form of a non-ambient service plan) and/or the device/user initially is configured or selected another service (e.g., any form of a non-ambient service plan that provides for another/non-ambient service(s)). In some embodiments, the service (e.g., service processor and/or service controller) also directs the wireless communications devices to the proxy server or router. In some embodiments, the proxy server or router facilitates the service, including, for example, monitoring/security control the service usage through the proxy server or router (e.g., to count bytes/data service usage levels or any other relevant metric by service/activity using the associated service profile and/or any of the techniques described herein). In some embodiments, the proxy server or router facilitates the service, including, for example, monitoring, accounting, controlling, security control, and/or optimizing the service usage through the proxy server or router (e.g., using the associated service profile and/or any of the techniques described herein).


In some embodiments, one or more service gateways (or router), in some cases in conjunction with a charging gateway, HLR, AAA server, base station, or other network function/element/device (any combination of these elements being a “gateway embodiment”), is provided, and the ambient service provider monitors, accounts, controls, and/or optimizes the service usage through a gateway embodiment (e.g., using the adaptive ambient service profile and/or any of the techniques described herein). In some embodiments, a gateway embodiment implements the various techniques described herein (e.g., determines if the requested access is within the ambient service profile or belongs on the monitoring or disallowed lists, whether the requested access is compliant with a surf-out option, whether the user is in good standing, whether the requested access is associated with a referring URL, adapts one or more of the three access lists, and/or whether the requested access is associated with a token for an ambient service provider or ambient service provider). For example, in some embodiments, a gateway embodiment manages the secure token protocol for the surf-out option, as described herein. In some embodiments, a gateway embodiment manages the bill by account for the various adaptive ambient service techniques and/or the billing of ambient service providers/partners for the adaptive ambient service provided for the surf-out option, as described herein. Each of these various techniques is further described below.


In some embodiments, an adaptive ambient service includes implementing an ambient service profile for assisting control of a communications device use of an ambient service on a wireless network, in which the ambient service profile includes various service policy settings, and in which the ambient service profile is associated with an ambient service plan that provides for initial access to the ambient service with limited service capabilities prior to activation of a new service plan; monitoring use of the ambient service based on the ambient service profile; and adapting the ambient service profile based on the monitored use of the ambient service. In some embodiments, these techniques are performed by the communications device (e.g., using a service processor), a network element/function (e.g., using a service controller, proxy server, and/or other network elements/functions/devices), and/or an intermediate networking communications device and, in some embodiments in various combinations with each other and/or with other functions/elements on the network/in communication with the network. In some embodiments, the service policy settings include one or more of the following: access control settings, traffic control settings, billing system settings, user notification with acknowledgement settings, user notification with synchronized service usage information, user privacy settings, user preference settings, authentication settings, admission control settings, application access settings, content access settings, transaction settings, and network or device management communication settings.


In some embodiments, the ambient service profile is implemented at least in part by a proxy server, in which the monitored use of the ambient service based on the ambient service profile is performed at least in part by the proxy server, and in which the proxy server communicates the ambient service traffic to the communications device. In some embodiments, the ambient service plan allows for access to the ambient service with limited service capabilities that are limited based on one or more of the following: period of time, network address, service type, content type, application type, QOS class, time of day, network capacity (e.g., network busy state), bandwidth, and data usage. In some embodiments, the ambient service plan is a low cost or free trial service plan that is bundled or provided as an option for purchase at a point of sale of the communications device. In some embodiments, the communications device is activated prior to a point of sale of the communications device, and the ambient service plan is associated with the communications device during activation. In some embodiments, the ambient service plan is associated with the communications device during one or more of the following: a manufacture of the communications device, a distribution of the communications device, or a point of sale of the communications device. In some embodiments, the ambient service plan includes an option to purchase a new service plan for the communications device, in which the new service plan includes additional service capabilities. In some embodiments, the ambient service profile is programmable by one or more of the following: a manufacturer, a service provider, a distributor, a virtual service provider, and a device manager.


In some embodiments, the ambient service is a transaction based service, in which service usage for the ambient service by the communications device is not billed, and in which electronic commerce based transactions performed using the communications device are billed as transaction based charges. In some embodiments, the ambient service is a transaction based service, in which electronic commerce based transactions performed using the communications device are billed as transaction based charges, and in which at least a portion of service usage costs are billed to one or more of the following: an advertiser, a transaction provider, a mobile virtual network operator, a virtual service provider, and an ambient service provider.


In some embodiments, the communications device is a mobile communications device or an intermediate networking device, and the ambient service includes one or more Internet based services. In some embodiments, the communications device is a mobile communications device, and the ambient service includes one or more Internet based services, and the mobile communications device includes one or more of the following: a mobile phone, a PDA, an eBook reader, a music device, an entertainment/gaming device, a computer, laptop, a netbook, a tablet, and a home networking system. In some embodiments, the communications device includes a modem, and the processor is located in the modem.


In some embodiments, the implementation of the first service profile is verified based on one or more of the following: device based service usage information and network based service usage information. In some embodiments, the ambient service profile is adapted and/or updated based on updates received from the network.



FIG. 1 illustrates a wireless network architecture for providing adaptive ambient service in accordance with some embodiments. As shown, FIG. 1 includes a 4G/3G/2G wireless network operated by, for example, a central provider. As shown, various wireless devices 100 are in communication with base stations 125 for wireless network communication with the wireless network, and other devices 100 are in communication with Wi-Fi Access Points (APs) or Mesh 702 for wireless communication to Wi-Fi Access CPE 704 in communication with central provider access network 109. In some embodiments, each of the wireless devices 100 includes a service processor 115 (as shown), and each service processor connects through a secure control plane link to a service controller 122. In some embodiments, the network based service usage information (e.g., network based CDRs) is obtained from one or more network elements and/or assisted by device based service usage information (e.g., device assisted CDRs). As shown, an MVNO core network 210 also includes a CDR storage, aggregation, mediation, feed 118, a MVNO billing interface 122, and a MVNO billing system 123 (and other network elements as shown in FIG. 1). Those of ordinary skill in the art will appreciate that various other network architectures can be used for providing adaptive ambient services, and FIG. 1 is illustrative of just one such example network architecture for providing the adaptive ambient service techniques described herein.


In some embodiments, the various techniques for adaptive ambient services are performed (e.g., at least in part) on the device (e.g., device 100) and/or on an intermediate networking device (e.g., using a service processor 115 and an ambient service profile). For example, the various techniques for adaptive ambient services can be performed on a processor of the device, and the ambient service profile can be securely stored locally on the device using various techniques for secure execution and storage.


In some embodiments, the various techniques for adaptive ambient services are performed on the device or on the intermediate networking device with assistance or verification from the network (e.g., a service controller 122 executed on any network element, in which the service controller 122 is in secure communication with the device/intermediate networking device, including the service processor 115 executed on the device/intermediate networking device). In some embodiments, adaptive ambient services are performed on the device or on the intermediate networking device with assistance or verification from the network (e.g., using a service controller for maintaining a centralized set of ambient service allowed access rules and/or ambient service disallowed access rules, and a superset of all ambient service monitored access rules, working cross device population). In some embodiments, the service controller 122 or other network element(s) assist the device for implementing these techniques for adaptive ambient services (e.g., cross device, cross URL/domain usage patterns/monitoring, publishing centralized set of ambient service allowed access rules, ambient service monitored access rules, and/or ambient service disallowed access rules, including, for example, compromised and/or hacked URLs). In some embodiments, the service controller 122 or other network element(s) assist the device for implementing these techniques for adaptive ambient services by verifying the device maintained set of ambient service allowed access rules, ambient service monitored access rules, and/or ambient service disallowed access rules. In some embodiments, the service controller 122 or other network element(s) assist the device for implementing these techniques for adaptive ambient services by verifying the device monitored service usage with CDR service usage using various techniques, for example, such as those described herein. In some embodiments, the service controller 122 or other network element(s) assist the device for implementing these techniques for adaptive ambient services by verifying the device monitored service usage by IP address (e.g., using CDR by traffic destination).


In some embodiments the various techniques for adaptive ambient services are performed on the network (e.g., a gateway, router or any other network element using, for example, deep packet inspection (DPI) on the monitored (non-encrypted) network traffic).


As shown in FIG. 1, a CDR storage, aggregation, mediation, feed 118 (e.g., service usage 118, including a billing aggregation data store and rules engine) is a functional descriptor for, in some embodiments, a device/network level service usage information collection, aggregation, mediation, and reporting function located in one or more of the networking equipment boxes attached to one or more of the sub-networks shown in FIG. 1 (e.g., central provider access network 109 and/or central provider core network 110), which is in communication with the service controller 122, and a central billing interface 127. As shown in FIG. 1, service usage 118 is shown as a function in communication with the central provider core network 110. In some embodiments, the CDR storage, aggregation, mediation, feed 118 function is located elsewhere in the network or partially located in elsewhere or integrated with/as part of other network elements. In some embodiments, CDR storage, aggregation, mediation, feed 118 functionality is located or partially located in the AAA server 121 and/or the mobile wireless center/Home Location Register (HLR) 132 (as shown, in communication with a DNS/DHCP server 126). In some embodiments, service usage 118 functionality is located or partially located in the base station, base station controller and/or base station aggregator, collectively referred to as base station 125 in FIG. 1. In some embodiments, CDR storage, aggregation, mediation, feed 118 functionality is located or partially located in a networking component in the central provider access network 109, a networking component in the core network 110, the central billing system 123, the central billing interface 127, and/or in another network component or function. This discussion on the possible locations for the network based and device based service usage information collection, aggregation, mediation, and reporting function (e.g., CDR storage, aggregation, mediation, feed 118) can be generalized as described herein and as shown in the other figures described herein as would be apparent to one of ordinary skill in the art. Also as shown in FIG. 1, the service controller 122 is in communication with the central billing interface 123 (also sometimes referred to as the external billing management interface or billing communication interface) 127, which is in communication with the central billing system 123. As shown, an order management 180 and subscriber management 182 are also in communication with the central provider core network 110 for facilitating order and subscriber management of services for the devices 100 in accordance with some embodiments.


In some embodiments, the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) provides a device/network level service usage information collection, aggregation, mediation, and reporting function. In some embodiments, the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) collects device generated usage information for one or more devices on the wireless network (e.g., devices 100); and provides the device generated usage information in a syntax and a communication protocol that can be used by the wireless network to augment or replace network generated usage information for the one or more devices on the wireless network. In some embodiments, the syntax is a charging data record (CDR), and the communication protocol is selected from one or more of the following: 3GPP, 3GPP2, or other communication protocols. In some embodiments, the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) includes a service usage data store (e.g., a billing aggregator) and a rules engine for aggregating the collected device generated usage information. In some embodiments, the syntax is a charging data record (CDR), and the network device is a CDR feed aggregator, and the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) also aggregates CDRs for the one or more devices on the wireless network; applies a set of rules to the aggregated CDRs using a rules engine (e.g., bill by account, transactional billing, and/or any other billing or other rules for service usage information collection, aggregation, mediation, and reporting), and communicates a new set of CDRs for the one or more devices on the wireless network to a billing interface or a billing system (e.g., providing a CDR with a billing offset by account/service). In some embodiments, the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) communicates a new set of CDRs for the one or more devices on the wireless network to a billing interface or a billing system. In some embodiments, the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) communicates with a service controller to collect the device generated usage information for the one or more devices on the wireless network. In some embodiments, the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) communicates with a service controller, in which the service controller is in communication with a billing interface or a billing system. In some embodiments, the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) communicates the device generated usage information to a billing interface or a billing system. In some embodiments, the CDR storage, aggregation, mediation, feed (and/or other network elements or combinations of network elements) communicates with a transport gateway and/or a Radio Access Network (RAN) gateway to collect the network generated usage information for the one or more devices on the wireless network. In some embodiments, the service controller 122 communicates the device generated service usage information to the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements).


In some embodiments, the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) performs rules for performing a bill by account aggregation and mediation function. In some embodiments, the service controller 122 in communication with the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) performs a rules engine for aggregating and mediating the device generated usage information. In some embodiments, a rules engine device in communication with the CDR storage, aggregation, mediation, feed 118 (and/or other network elements or combinations of network elements) performs a rules engine for aggregating and mediating the device generated usage information.


In some embodiments, the rules engine is included in (e.g., integrated with/part of) the CDR storage, aggregation, mediation, feed 118. In some embodiments, the rules engine and associated functions, as discussed herein, is a separate function/device. In some embodiments, the service controller 122 performs some or all of these rules engine based functions, as discussed herein, and communicates with the central billing interface 127. In some embodiments, the service controller 122 performs some or all of these rules engine based functions, as discussed herein, and communicates with the central billing system 123.


In some embodiments, duplicate CDRs are sent from the network equipment to the billing system 123 that is used for generating service billing. In some embodiments, duplicate CDRs are filtered to send only those CDRs/records for devices controlled by the service controller and/or service processor (e.g., the managed devices). For example, this approach can provide for the same level of reporting, lower level of reporting, and/or higher level of reporting as compared to the reporting required by the central billing system 123.


In some embodiments, a bill-by-account billing offset is provided. For example, bill-by-account billing offset information can be informed to the central billing system 123 by providing a CDR aggregator feed that aggregates the device based service usage data feed to provide a new set of CDRs for the managed devices to the central billing interface 127 and/or the central billing system 123. In some embodiments, transaction billing is provided using similar techniques. For example, transaction billing log information can be provided to the central billing interface 127 and/or the central billing system 123.


In some embodiments, the rules engine (e.g., performed by the service usage 118 or another network element, as described herein) provides a bill-by-account billing offset. For example, device generated service usage information (e.g., device assisted charging data records (CDRs)) includes a transaction type field (e.g., indicating a type of service for the associated service usage information). The rules engine can apply a rule or a set of rules based on the identified service associated with the device generated usage information to determine a bill-by-account billing offset (e.g., a new CDR can be generated to provide the determined bill-by-account billing offset). For example, the determined bill-by-account billing offset can be provided as a credit to the user's service usage account (e.g., a new CDR can be generated with a negative offset for the user's service usage account, such as for network chatter service usage, or transactional service usage, or for any other purposes based on one or more rules performed by the rules engine).


As another example, for a transactional service, a first new CDR can be generated with a negative offset for the user's service usage account for that transactional service related usage, and a second new CDR can be generated with a positive service usage value to charge that same service usage to the transactional service provider (e.g., Amazon, eBay, or another transactional service provider). In some embodiments, the service controller 122 generates these two new CDRs, and the service usage 118 stores, aggregates, and communicates these two new CDRs to the central billing interface 127. In some embodiments, the service controller 122 generates these two new CDRs, and the service usage 118 stores, aggregates, and communicates these two new CDRs to the central billing interface 127, in which the central billing interface 127 applies rules (e.g., performs the rules engine for determining the bill-by-account billing offset).


In some embodiments, the service controller 122 sends the device generated CDRs to the rules engine (e.g., service usage 118), and the rules engine applies one or more rules, such as those described herein and/or any other billing/service usage related rules as would be apparent to one of ordinary skill in the art. In some embodiments, the service controller 122 generates CDRs similar to other network elements, and the rules (e.g., bill-by-account) are performed in the central billing interface 127. For example, for the service controller 122 to generate CDRs similar to other network elements, in some embodiments, the service controller 122 is provisioned on the wireless network and behaves substantially similar to other CDR generators on the network) as would be apparent to one of ordinary skill in the art.


In some embodiments, the service controller 122 is provisioned as a new type of networking function that is recognized as a valid and secure source for CDRs by the other necessary elements in the network (e.g., the Service Usage History/CDR Aggregation and Mediation Server 118). In some embodiments, where the network necessary apparatus will only recognize CDRs from certain types of networking equipment (e.g. RAN Gateway 410 or Transport Gateway 420), then the Service Controller 122 can provide authentication credentials to the other networking equipment that indicate it is one of the approved types of equipment. In some embodiments, the link between the Service Controller 122 and the necessary CDR aggregation and mediation equipment is secured, authenticated, encrypted and/or signed.


In some embodiments, the CDR storage, aggregation, mediation, feed 118 discards the network based service usage information (e.g., network based CDRs) received from one or more network elements. In these embodiments, the service controller 122 can provide the device based service usage information (e.g., device assisted/based CDRs) to the CDR storage, aggregation, mediation, feed 118 (e.g., the CDR storage, aggregation, mediation, feed 118 can just provide a store, aggregate, and communication function(s)), and the device based service usage information is provided to the central billing interface 127 or the central billing system 123.


In some embodiments, the device assisted/based CDRs and/or new CDRs generated based on execution of a rules engine as described herein is provided only for devices that are managed and/or based on device group, service plan, or any other criteria, categorization, and/or grouping, such as based on ambient service or ambient service provider.



FIG. 2 illustrates a wireless network architecture for providing adaptive ambient service including a proxy server in accordance with some embodiments. As shown, FIG. 2 includes a proxy server 270 in communication with a 4G/3G/2G wireless network operated by, for example, a central provider. In some embodiments, each of the wireless devices 100 includes a service processor 115 (as shown), and each service processor connects through a secure control plane link to a service controller 122. In some embodiments, the network based service usage information (e.g., CDRs) is obtained from Radio Access Network (RAN) gateway(s) 410 and/or transport gateway(s) 420.


Referring now to the 4G/3G/2G access network as shown in FIG. 2, the 4G/3G and 3G/2G base stations/nodes 125 are in communication with a 4G/3G/2G Radio Access Network (RAN) gateway 410 via a radio access network 405, which are in communication with a 4G/3G/2G transport gateway 420 via an access transport network 415. The central provider core network 110 is in network communication with the access transport network 415 (e.g., via a dedicated/leased line, and as shown, via a firewall 124). The Internet 120 is available via a firewall 124 and the transport gateway(s) 420, as shown. Also, as shown, a network apparatus provisioning system 160, order management 180, and subscriber management 182 are in communication with the central provider core network 110. As shown, a AAA server 121, a mobile wireless center/Home Location Register (HLR) 132, a DNS/DHCP 126, and CDR storage, aggregation, mediation, feed 118 are also in communication with the access transport network 415. The central billing system 123 and the central billing interface 127 are shown in communication with the central provider core network 110.


In some embodiments, the various techniques for adaptive ambient services are performed using the proxy server 270. For example, the ambient service provider can provide the proxy server 270, and the ambient service provider monitors, accounts, controls, and/or optimizes the service usage through the proxy server 270 (e.g., using the adaptive ambient service profile and/or any of the techniques described herein). In some embodiments, the central service provider provides the proxy server 270, and the ambient service provider is provided access to monitor, account, control, and/or optimize the service usage through the proxy server 270 (e.g., using the adaptive ambient service profile and/or any of the techniques described herein).



FIG. 3 illustrates a flow diagram for providing adaptive ambient service in accordance with some embodiments. At 302, the process for an adaptive ambient service begins. At 304, whether a requested access is within the ambient service profile, such as within the ambient service allowed access rules, the ambient service monitoring access rules, and/or ambient service disallowed access rules, is determined. At 306, if the requested access is within the ambient service profile, then the appropriate rule is applied, such as the appropriate ambient service allowed access rule, ambient service monitoring access rule, and/or ambient service disallowed access rule. At 308, if not (e.g., the requested access is not within the ambient service profile, such as not categorized within any of the ambient service profile rules), then categorize the requested access as a monitored access. In some embodiments, a requested access that is not otherwise known or categorized in the ambient service profile, is allowed and then monitored (e.g., trusted and then verified through monitoring and other techniques, such as the various other techniques described herein). At 310, if the requested access is categorized as monitored access, then allow the requested access and monitor the requested access. At 312, determine whether the requested access can now be added or blocked based on the monitored access. At 314, if the requested access can now be blocked, then block the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service blocked access rules). Similarly, if the requested access can now be added, then continue to allow the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service allowed access rules). At 316, determine whether to continue to monitor the requested access (e.g., if the requested access is still in progress, and the requested access has not been otherwise categorized as allowed or blocked ambient service access, then continue to monitor), and if so, continue to monitor the requested access at 318 (e.g., if and until a determination of whether to allow and/or block such access using the various techniques described herein). At 320, the process is repeated for the next requested access. At 322, the process is completed.



FIG. 4 illustrates another flow diagram for providing adaptive ambient service in accordance with some embodiments. At 402, the process for an adaptive ambient service begins. At 404, whether a requested access is associated with the ambient service is determined. As described herein with respect to FIG. 4, there are various techniques for testing the association of the requested access with the ambient service. For example, at 406, whether the requested access is within the ambient service profile, such as within the ambient service allowed access rules, the ambient service monitoring access rules (also sometimes referred to herein as monitored access rules), and/or ambient service disallowed access rules, is determined. At 408, whether the requested access to an application is tested to determine whether the application is associated with the ambient service and whether the application is currently executing. At 410, whether the requested access is within the same traffic flow as other ambient services traffic is determined (e.g., using various device based, device assisted and/or network based (such as DPI) traffic monitoring techniques). Various other techniques can also be employed for testing the association of the requested access with the ambient service. For example, incoming traffic can be tagged (e.g., using a referred URL or an HREF or an IMAGE HTML tag); and/or the domain object management (DOM) tree can be analyzed to determine a links model of a requested web page or other techniques can be utilized to determine the links model of the requested web page. As another example, the content of the requested access (e.g., web page content) can be analyzed to determine if it is associated with the ambient service (e.g., using various content relevancy techniques). As another example, a reverse lookup to the requested network destination (e.g., URL, associated domain, sub-domain, ad server domain, or other destination or source) can be determined to test the association of the requested access with the ambient service. At 412, based on the above testing of the association of the requested access with the ambient service, determine whether the requested access can now be added or blocked based on the monitored access. At 414, if the requested access can now be blocked, then block the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service blocked access rules). Similarly, if the requested access can now be added, then continue to allow the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service allowed access rules). At 416, determine whether to continue to monitor/test the association of the requested access with the ambient service (e.g., if the requested access is still in progress, and the requested access has not been otherwise categorized as allowed or blocked ambient service access, then continue to perform the testing analysis), and if so, continue to perform the monitor/testing analysis of the requested access at 418. At 420, the process is repeated for the next requested access. At 422, the process is completed.



FIG. 5 illustrates another flow diagram for providing adaptive ambient service in accordance with some embodiments. At 502, the process for an adaptive ambient service begins. At 504, traffic patterns of ambient service usage are analyzed. As described herein with respect to FIG. 5, there are various techniques for testing and analyzing the ambient service usage traffic patterns to determine whether the access should be allowed, blocked, or is otherwise deemed suspicious or otherwise not known/categorized, and thus, should be monitored (e.g., using the monitoring access rules). For example, at 506, expected ambient service usage is compared with the actual ambient service usage (e.g., using various ambient service usage monitoring techniques, as described herein and/or using other techniques). In some embodiments, the expected versus actual ambient service usage is analyzed and can be further categorized as described below. At 508, the ambient service traffic usage is analyzed and categorized. In some embodiments, the ambient service traffic usage is categorized by one or more of the following: total traffic, by application, by destination (e.g., URL, domain, sub-domain, or other unique identifier), by traffic flow, by network socket, by time of day, by ambient service profile categorization (e.g., ambient service allowed access, ambient service monitored access, and/or ambient service blocked/disallowed access rules), by web browsing traffic patterns, by content download patterns, and/or using any other categorizations or patterns. In some embodiments, the ambient service traffic usage is aggregated (e.g., across user or user group), and statistical analysis techniques are used to identify categories of allowable or suspect or should be disallowed access service usage requests/patterns (e.g., very infrequently requested access for high data bandwidth ambient service usage can be deemed suspect or automatically categorized as disallowed). At 510, the ambient service traffic usage is correlated with various ambient traffic profiles. For example, buying patterns can be correlated with content download patterns (e.g., a power use categorization versus a seldom/never purchases user categorization can be used to provide different ambient service profiles and/or throttling techniques based on such categorizations for the various ambient service users).


Various other techniques can also be employed for testing the ambient service usage traffic to provide adaptive ambient services as will now be apparent to one of ordinary skill in the art in view of the embodiments and examples described herein. At 512, based on the above testing of the association of the requested access with the ambient service, determine whether the requested access can now be added or blocked based on the monitored access. At 514, if the requested access can now be blocked, then block the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service blocked access rules). Similarly, if the requested access can now be added, then continue to allow the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service allowed access rules). At 516, determine whether to continue to monitor/test the association of the requested access with the ambient service (e.g., if the requested access is still in progress, and the requested access has not been otherwise categorized as allowed or blocked ambient service access, then continue to perform the testing analysis), and if so, continue to perform the monitor/testing analysis of the requested access at 518. At 520, the process is repeated for the next requested access. At 522, the process is completed.



FIG. 6 illustrates another flow diagram for providing adaptive ambient service in accordance with some embodiments. In some embodiments, a combination of various techniques are used for providing adaptive ambient services, such as those described below with respect to FIG. 6. In some embodiments, a subset of these various techniques are employed using various combinations of such techniques or individual techniques. At 602, the process for an adaptive ambient service begins. At 604, whether a requested access is associated with the ambient service is determined (e.g., as similarly described above with respect to FIG. 4). At 606, the ambient service usage is analyzed (e.g., as similarly described above with respect to FIG. 5). At 608, the ambient service is queried to verify the requested access (e.g., if the requested access is not in the ambient service profile or otherwise suspicious or covered by a monitored access rule, then the ambient service can be queried for more information as to whether this requested access is associated with the ambient service usage or should otherwise be allowed). In some embodiments, various requested accesses can be allowed for certain users or for certain requests to allow for monitoring or testing but denied for other users/requests. In some embodiments, the device or intermediate networking device based ambient service profile settings (e.g., local ambient service profile rules, categorizations, settings, and/or other data) are provided to the ambient service provider for further analysis and to correlate various access requests with the ambient service (e.g., monitored access requests can be confirmed as approved or not, that is associated with the ambient service or otherwise permissible, or not, as deemed by the ambient service provider using various techniques). At 610, the source of the requested access is analyzed. In some embodiments, the source of the requested access is itself tested using various techniques (e.g., search engine/web crawler techniques or DOM techniques to determine whether certain web based requests are associated with the ambient service; or to verify with a secondary source such as an ad server; or to verify ownership of certain network domains by the ambient service provider or associated advertiser).


Various other techniques can also be employed for providing adaptive ambient services as will now be apparent to one of ordinary skill in the art in view of the embodiments and examples described herein. At 612, based on the above testing of the association of the requested access with the ambient service, determine whether the requested access can now be added or blocked based on the monitored access. At 614, if the requested access can now be blocked, then block the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service blocked access rules). Similarly, if the requested access can now be added, then continue to allow the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service allowed access rules). At 616, determine whether to continue to monitor/test the association of the requested access with the ambient service (e.g., if the requested access is still in progress, and the requested access has not been otherwise categorized as allowed or blocked ambient service access, then continue to perform the testing analysis), and if so, continue to perform the monitor/testing analysis of the requested access at 618. At 620, the process is repeated for the next requested access. At 622, the process is completed.



FIG. 7 illustrates a flow diagram for providing adaptive ambient service for a surf-out option in accordance with some embodiments. At 702, the process for an adaptive ambient service begins. At 704, whether a requested access is associated with the ambient service is determined. As described herein with respect to FIG. 7, there are various techniques for testing the association of the requested access with the ambient service. For example, at 706, whether the requested access is within the ambient service profile, such as within the ambient service allowed access rules, the ambient service monitored access rules, and/or ambient service disallowed access rules, is determined. At 708, whether the requested access to an application is tested to determine whether the application is associated with the ambient service and whether the application is currently executing. At 710, whether the requested access is within a surf-out option is determined (e.g., using various surf-out option based techniques as described herein). At 712, based on the determination of the association of the requested access with the ambient service (e.g., using various association techniques, as described herein), determine whether the requested access can now be added or blocked based on the monitored access. At 714, if the requested access can now be blocked, then block the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service blocked access rules). Similarly, if the requested access can now be added, then continue to allow the requested access and update the ambient service profile accordingly (e.g., add the requested access to the ambient service allowed access rules). At 716, determine whether to continue to monitor/test the association of the requested access with the ambient service (e.g., if the requested access is still in progress, and the requested access has not been otherwise categorized as allowed or blocked ambient service access, then continue to perform the testing analysis), and if so, continue to perform the monitor/testing analysis of the requested access at 718. At 720, the process is repeated for the next requested access. At 722, the process is completed.


In some embodiments, it may not be possible to accurately identify every network service access attempt or service usage (e.g., or traffic access) as belonging to a given service usage partition (e.g., a given ambient service usage, background network chatter usage, user service plan usage, emergency service usage, and/or other type of service usage). As used herein, the terms service usage partition, service usage recording partition, service charging bucket, and micro-CDRs are used interchangeably. Accordingly, it is desirable to provide a service charging bucket for traffic that is allowed and not definitively identified as belonging to a known service charging bucket. This allows for techniques to employ an “allow but verify” approach to traffic that is likely to be legitimately associated with an ambient service or a user service or a network service that is intended to be allowed, but is not definitively identified as being associated with an allowed service.


As an example, there may be a web site access associated with an ambient service that does not have a reference identifier or other traffic parameter that allows the service processor to associate it with the correct ambient service. In this case, a set of rules can be applied to determine if it is likely that the web site access is a legitimate access given the access control policies that are in place, and if it is the access can be allowed and the traffic usage either recorded in the ambient service charging bucket that it is suspected to be associated with, or the traffic usage can be charged to a network chatter service usage bucket, or the traffic usage can be charged to the user service usage bucket, or the traffic usage may be recorded in a “not classified but allowed” service charging bucket. In some embodiments, in which such traffic is charged to the “not classified but allowed” service usage charging bucket, additional verification measures are employed to ensure that the amount of traffic that is not classified but allowed does not grow too large or become a back-door for service usage errors. For example, the access control policy rules for allowing unclassified traffic can be relatively loose as long as the amount of service usage charges accumulating in the not classified charging bucket remains within certain bounds, and/or the rate of service usage charged to the not classified bucket remains within certain bounds, but if the not classified traffic becomes large or the rate of not classified traffic growth becomes large then the rules governing when to allow not classified traffic can be tightened.


As another example, a browser application can access a web site that is known to be an ambient service website, and that web site might serve back a series of traffic flows, some of which are associated with the ambient service website through URL identifiers that are known to be part of the website, and other traffic can be associated with the ambient service website by virtue of a referring website tag or header, and some traffic can be returned to the same application with a relatively close time proximity to the other traffic as being identified as ambient traffic. In this example, as long as the not classified traffic service charging bucket does not exceed a given pre-set policy limit on its size, and/or does not grow faster than a given pre-set policy rate, and/or is received within a certain pre-set policy period of time difference from the time that other ambient service charging bucket traffic is received, then the not classified traffic is continued to be allowed. However, if the not classified traffic amount or rate of growth exceeds the pre-set policy limits, or if the period of time between when verified ambient service traffic is received and the not classified traffic is received exceeds policy limits, then the not classified traffic can be blocked or other action can be taken to further analyze the not classified traffic.


In some embodiments, it is important to provide a hierarchy of service usage charging rules for the various service usage partitions on a device. As an example, for a given service plan there can be two ambient service charging buckets, a network chatter (e.g., or network overhead) service charging bucket, and a user service plan service charging bucket and it is desirable to make sure that no ambient services or network overhead service or unclassified service is charged to the user service plan, and it is also desirable to ensure that all known ambient service traffic is charged to the appropriate ambient service partner, and it is desirable to ensure that no network overhead service or unclassified service is charged to ambient service partners. In such situations, a service charging bucket hierarchy can be provided as follows: determine if a traffic flow (e.g., or socket) is associated with network overhead, and if so allow it and charge that service bucket, then determine if a traffic flow (or socket) is associated with ambient service #1, and if so allow it and charge that service bucket, then determine if a traffic flow (or socket) is associated with ambient service #2, and if so allow it and charge that service bucket, then determine if a traffic flow (or socket) is associated with not classified traffic, and if so allow it and charge that service bucket, then if the traffic is not associated with any of the above service charging buckets allow it and charge it to the user service plan charging bucket. In another example, if the user has not yet chosen to pay for a user service plan, then the same hierarchical access control and service charging policy can be used except the final step would be: then if the traffic is not associated with any of the above service charging buckets block the traffic. Hierarchical service charging bucket identification such as depicted in these examples can be a crucial aspect of a robust access control policy and/or service charging policy system. Many other access control policy hierarchies and service charging bucket policy hierarchies will now be apparent to one of ordinary skill in the art.


In some embodiments, the not classified traffic is charged according to service charging rules that rely on the most likely candidate service charging bucket for the traffic. As another example, if the not classified traffic is being delivered to the same application as other known ambient service traffic and the time difference between delivery of the known ambient service traffic and the not classified traffic is small, then the not classified traffic can be charged to the ambient service in accordance with a pre-set charging policy rule specifying these conditions. Other embodiments that will now be apparent to one of ordinary skill in the art. For example, another charging rule for not classified traffic could be to perform a pro-rata allocation of the not classified traffic to all of the other service charging buckets with the pro-rata allocation being based on the percentage of the total traffic used by the device for each service charging bucket. As another example, the not classified traffic can be charged to a subset of the service charging buckets for the device (e.g., all ambient services plus the network overhead service) in accordance with the pro-rata share for each service included in the pro-rata split.


In some embodiments, the user service plan agreement is structured so that the user acknowledges that ambient services in which the access connection to the service is sponsored, paid for, and/or partially subsidized by an entity other than the user are a benefit to the user, and/or the user acknowledges that there is no inherent right to free ambient services, and that the service usage accounting system may not always properly characterize usage for a sponsored or subsidized ambient service (e.g., or some other specialized service) in the correct accounting service charging bucket, and, thus, the user service plan account can be charged and/or billed with some of this traffic. By having the user acknowledge a service use agreement of this form then some ambient traffic can be charged to the user service plan account, including, for example, allowed but not classified traffic, excess ambient service usage beyond pre-set policy limits, ambient service usage during busy network periods or on congested network resources, and/or other criteria/measures. In some embodiments, the user might be notified that they are being charged for service activities that are sometimes subsidized or free to the user. As discussed above, it is important to ensure that a not classified service charging bucket does not become a back door for service charging errors or hacking. It will now be apparent to one of ordinary skill in the art that the not classified service usage charges can be verified in a variety of manners, including, for example, observing the size of the not classified service charging bucket as compared to other service usage charges on the device (e.g., total device service usage, ambient service usage, user bucket service usage, and/or other criteria/measures), capping the not classified bucket, and/or capping the rate of growth of the not classified bucket.


In some embodiments, it is important to verify not only that the total device service usage amount is correct, but that the service usage is being reported in the proper service charging buckets. For example, if the service processor software can be hacked so that it correctly reports the total service usage, but reports user service plan traffic under one or more ambient service buckets, then simply verifying that the total amount of service usage is correct will not be sufficient to prevent the device from obtaining free user service that can be charged to ambient service partners. There are a variety of direct and indirect embodiments to accomplish this verification of service charging bucket divisions. For example, in direct verification embodiments, one or more alternative measures of service usage are employed to cross-check the accuracy of the service charging bucket divisions. In indirect embodiments one of two classes of verification are employed: the size and rate of growth for service charging buckets is analyzed and compared to a pre-set group of policies to detect and/or modify service charging bucket growth that is out of policy; and/or the proper operation of the service processor elements involved in service charging bucket partitioning is verified.


Various embodiments involving direct verification of service charging bucket usage and/or accounting include the use of network based service usage measures such as CDRs, IPDRs, flow data records (e.g., FDRs—detailed reports of service usage for each service flow, such as network socket connection, opened and used to transmit data to or from the device), accounting records, interim accounting records or other similar usage records to verify that the device is within service policy and/or the device based service usage reports are accurate. Use of such network generated service usage records to directly verify service charging and/or proper service usage policy adherence are described herein. When network address destination and/or source information is available in these records, as described herein, this can be used in some embodiments to verify the service charging bucket accounting provided by the device service processor. In some embodiments, some types of service usage records include real-time data but not necessarily all of the useful information needed to help verify service charging bucket accounting, while other types of service usage records provide more detail (e.g., IP address for destination and source) but do not always arrive in real-time. For example, in some embodiments, FDRs are created each time a new service flow (e.g., network socket connection) is opened and then closed. At the time the service flow is closed, a (e.g., possibly time stamped) data usage record indicating source address, destination address and amount of data transmitted is created and sent to a charging aggregation function in the network. The charging aggregation function can then forward the FDRs to the service controller for verification or direct accounting of service charging bucket accounting. By comparing the FDR addresses with known ambient service traffic address associations, the partitioning of service charging buckets between one or more ambient services and other services such as a user service plan service charging bucket may be verified. However, in some cases it can be a long period of time for an FDR to be generated when a device service flow (e.g., socket) remains open for a long period of time, as in the case for example with a long file download, a peer to peer connection with a socket keep alive, or a proxy server service with a socket keep alive. In such cases, it can be disadvantageous to have large amounts of data to be transferred without an FDR to confirm device service processor based reports, and in some cases this can provide an opportunity for service processor service reporting hacks. This can be remedied in a variety of ways by using other network reported service usage information to augment the FDR information. For example, start and stop accounting records can sometimes be obtained in some embodiments from a network element such as a service gateway or the AAA servers (e.g., or other network equipment elements depending on the network architecture). Although start and stop records do not possess the detail of service usage information that FDRs, CDRs, IPDRs, interim accounting records or other service usage records posses, they do inform the service controller that a device is either connected to the network or has stopped connecting. If a device is connected to the network and is not transmitting device usage reports or heartbeats, then the service controller is alerted that an error or hacking condition is likely. As another example of how two or more types of network reported service usage information may be used to create a better real time or near real-time check on device service usage, if both FDRs and start/stop accounting records are available, the service controller can send a stop-then-resume service command to the device (e.g., or alternatively send a stop then resume service command to a network equipment element), which will cause the device to terminate all open service flows before re-initiating them, and once the service flows are stopped then the FDR flow records will be completed and transmitted for any service flows that were in process but unreported when the stop service command was issued. This will cause any long term open socket file transfers to be reported in the FDR flow records thus plugging the potential back door hole in the FDR service usage accounting verification method.


As another example showing how multiple types of network generated service usage accounting records may be used to complement each other and strengthen the verification of service charging bucket accounting partitions, interim data records can be used with FDRs. Interim data records are available in accordance with some embodiments, in which the interim data records are generated on a regularly scheduled basis by a network element (e.g., gateway, base station, HLR, AAA, and/or other network element/function). Interim data records are typically near real time records that report the aggregate traffic usage for the device as of a point in time, but often do not include traffic address information or other traffic details. In embodiments in which both interim accounting records and FDRs are available, when the interim accounting records are indicating service usage that is not being reported in the FDR stream this is evidence that a device has one or more long term socket connections that are open and are not terminating. In this case, the service controller can verify that the device based usage reports are properly accounting for the total amount of service usage reported by the interim accounting records, and/or the service controller can force an FDR report for the open sockets by issuing a stop-resume service command as similarly discussed above.


As described herein, other embodiments involving direct verification of service charging bucket accounting can be provided. One example is to route ambient service traffic to a proxy server or router programmed to support only the network access allowed for the ambient service and to account for the ambient service usage. Additional proxy servers or routers can be similarly programmed for each ambient service that is part of the device service plan, and in some embodiments, another proxy server or router is programmed to support traffic control and account for the user service plan service access. By comparing the service usage accounting for each of these proxy servers or routers, the device generated service charging bucket accounting can be directly verified. In some embodiments, the usage accounting provided by the proxy servers or routers is used directly for service usage accounting.


In some embodiments, ambient service partner feedback is used to verify service charging bucket accounting. For example, web servers used by ambient service partners to provide ambient services can identify a user device based on header information embedded in the HTML, traffic, and then account for either the service used by the device during the ambient service sessions or account for the number of transactions the user completes. If service usage is recorded, then it can be reported to the service controller and be used directly to verify ambient service charging bucket accounting. If transactions are all that are recorded, then this can be reported to the service controller and the amount of ambient service used by the device can be compared with the number of transactions completed to determine if the ambient service usage is reasonable or should be throttled or blocked. It will now be apparent to one of ordinary skill in the art that other embodiments can be provided that employ more than one type of network generated service usage records to verify service usage accounting and/or verify service charging bucket accounting.


Other embodiments involving indirect methods for verifying or controlling service charging bucket accounting include monitoring the size and/or growth rate of ambient service usage. In some embodiments, the access control policy rules call for restricting a given ambient service access when the amount of service usage charges accumulating in the ambient service charging bucket exceed a pre-set policy limit, and/or when the rate of service usage for the ambient service exceeds a pre-set policy limit. For example, once these limits are reached, the ambient service can be throttled back for a period of time, blocked for a period of time, or charged to the user service plan charging bucket. In some embodiments, before these actions are taken the user UI can be used to notify the user of the service policy enforcement action. In some embodiments, indirect verification of service charging bucket accounting includes the various techniques described herein for verifying proper operation of the service processor agent software and/or protecting the service processor agent software from errors, manipulation, or hacking.


In some embodiments, the device service processor directs traffic destined for a given ambient service to a proxy server or router programmed to support that ambient service, and any traffic control policies and/or access control policies for the ambient service are implemented in the proxy server or router. For example, in such embodiments the proxy server or router can be programmed to only allow access to one or more ambient services that are authorized by the device service plan, with the proxy server or router controlling device access so that other network destinations cannot be reached. Continuing this example embodiment, the proxy server or router can account for the ambient service usage in an ambient service charging bucket as discussed elsewhere. In such proxy server or router ambient service control embodiments, the same traffic association techniques described elsewhere that allow incoming traffic associated with an ambient service website or other service to be identified, allowed or blocked, potentially throttled, and accounted for in a service charging bucket can be implemented in the proxy server or router programming. Such proxy server or router embodiments can also implement user service plan service charging buckets, user service plan traffic controls, and user service plan access control as discussed herein. In some embodiments, the proxy server or router analyzes the HTML traffic content of the traffic flows as described herein to perform such associations, traffic control and/or service usage accounting. Similarly, in some embodiments, a proxy server or router can provide the “surf-out” capabilities described herein by performing the same surf-out traffic associations (e.g., HTML branch reference associations and/or other branch associations) described herein. It will now be apparent to one of ordinary skill in the art that many of the adaptive ambient service control and service usage charging functions described herein for a service processor can be readily implemented with a proxy server or router that is appropriately programmed.


In some embodiments, routing of device traffic for one or more ambient services and/or user service plan services to a proxy server or router is accomplished by the device service processor using the device service processor traffic control embodiments described herein. In some embodiments, routing of device traffic for one or more ambient services and/or user service plan services to a proxy server or router is accomplished by dedicated network equipment such as the gateways (e.g. SGSN, GGSN, PDSN, or PDN), home agents, HLRs or base stations, with the network equipment being provisioned by a service controller (e.g., or other interchangeable network element with similar functions for this purpose) to direct the device traffic to the proxy server or router. In some embodiments, the ambient service traffic or the user service plan traffic is controlled by the proxy server according to a service plan policy set supplied by the service controller (e.g., or equivalent network function for this purpose). The traffic control service policy thus implemented by the proxy server can control traffic based on one or more of the following: period of time, network address, service type, content type, application type, QoS class, time of day, network busy state, bandwidth, and data usage.


In some embodiments, a proxy server or router is used to verify accounting for a given service, for example, an ambient service. In some embodiments, this is accomplished by the device service processor directing the desired service flows to a proxy server or router programmed to handle the desired service flows, with the proxy server or router being programmed to only allow access to valid network destinations allowed by the access control policies for the desired service, and the proxy server or router also being programmed to account for the traffic usage for the desired services. In some embodiments, the proxy service usage accounting may then be used to verify device based service usage accounting reported by the service processor. In some embodiments, the accounting thus reported by the proxy server or router can be used directly to account for service usage, such as ambient service usage or user service plan service usage.


In some embodiments, in which a proxy server is used for device service usage accounting, the proxy server maintains a link to the device service notification UI via a secure communication link, such as the heartbeat device link described herein. For example, the proxy server or router can keep track of device service usage versus service plan usage caps/limits and notify the user device UI through the device communication link (e.g., heartbeat link) between the service controller and the device. In some embodiments, the proxy server/router communicates with a device UI in a variety of ways, such as follows: UI connection through a device link (e.g., heartbeat link), through a device link connected to a service controller (e.g., or other network element with similar function for this purpose), presenting a proxy web page to the device, providing a pop-up page to the device, and/or installing a special portal mini-browser on the device that communicates with the proxy server/router. In some embodiments, the UI connection to the proxy server/router is used as a user notification channel to communicate usage notification information, service plan choices, or any of the multiple services UI embodiments described herein.


In some embodiments for the proxy server/router techniques for implementing service traffic/access controls and/or service charting bucket accounting, it is desirable to have the same information that is available to the service processor on the device, including, for example, application associated with the traffic, network busy state, QoS level, or other information about the service activity that is available at the device. For example, such information can be used to help determine traffic control rules and/or special services credit is due (e.g., ambient services credit). In some embodiments, information available on the device can be communicated to the proxy server/router and associated with traffic flows or service usage activities in a variety of ways. For example, side information can be transmitted to the proxy server/router that associates a traffic flow or service activity flow with information available on the device but not readily available in the traffic flow or service activity flow itself. In some embodiments, such side information may be communicated over a dedicated control channel (e.g., the device control link or heartbeat link), or in a standard network connection that in some embodiments can be secure (e.g., TLS/SSL, or a secure tunnel). In some embodiments, the side information available on the device can be communicated to the proxy server/router via embedded information in data (e.g., header and/or stuffing special fields in the communications packets). In some embodiments, the side information available on the device can be communicated to the proxy server/router by associating a given secure link or tunnel with the side information. In some embodiments, the side information is collected in a device agent or device API agent that monitors traffic flows, collects the side information for those traffic flows, and transmits the information associated with a given flow to a proxy server/router. It will now be apparent to one of ordinary skill in the art that other techniques can be used to communicate side information available on the device to a proxy server/router.


For example, just as the hierarchy of charging rules can be important for implementations in which the service processor is creating the service charging bucket accounting, it can also important in implementations that use a proxy server or router for service charging bucket accounting. Accordingly, various embodiments described herein for creating a hierarchy of service usage charging rules can be applied to proxy server or proxy router embodiments. It will be apparent to one of ordinary skill in the art that the service charging bucket embodiments and traffic control and access control embodiments described herein for allowed but not classified buckets apply equally to the proxy server/router embodiments. For example, pre-defined service policy rules can be programmed into the proxy server/router to control the traffic flows and/or place usage limits or access limits on an ambient service, or a user service plan service. It will also now be apparent to one of ordinary skill in the art that the embodiments described herein disclosing an initial allowed service access list, temporarily allowing additional service activities until they are determined to be allowed or not allowed, expanding the allowed service activity list, maintaining a not allowed service activity list and expanding the not allowed service activity list also apply equally to proxy server/router embodiments. Similarly, it will now be apparent to one of ordinary skill in the art that the proxy/server router embodiments can be employed to directly generate the service charging bucket (or micro-CDR) usage reports used to provide further detail and/or billing capabilities for service usage. In some embodiments, in which the device service processor directs traffic to a proxy server/router, there are advantageous design feature embodiments available that can reduce the need to provision network to detect and force specialized device service traffic to the appropriate proxy server/router. For example, this can be done by creating a “usage credit” system for the services supported by the proxy server/outer. Total service usage is counted on the one hand by the device service processor, or by other network equipment, or by both. Credit on the other hand for ambient service or other specialized access service usage that is not charged to the user is then provided for services that the device directs through the proxy server/router destination (e.g., URL or route hop) supporting the particular ambient service or other specialized access service. If the device correctly directs traffic to the proxy server/router, then the counting and/or access rules are correctly implemented by the proxy server/router. The service can be thus controlled and/or accounted for. When the service is accounted for, the proxy server/router reports the service charging bucket accounting back to the service controller (e.g., or other network equipment responsible for service charging bucket/micro CDR mediation) and the user service plan service charging bucket account can be credited for the services. Traffic that reaches the proxy server/router is controlled by the access rules and/or traffic control rules and/or QoS control rules of the proxy server/router programming, so there is no question regarding the type of service that is supported with the service charging buckets that are reported to mediation functions (e.g., mediation functions can be performed by one or more of service controller, usage mediation, billing, AAA, and/or HLR/home agent). As the proxy server/router is in the network and can be physically secured and protected from hacking, there is high confidence that the service control and/or charging rules intended for ambient services or some other specialized service are properly implemented and that the proxy server/router connection is being used for the intended service and not some other unintended hacked service. If the device is somehow hacked or otherwise in error so that the traffic is not directed through the appropriate proxy server/router, then the proxy server/router does not log the traffic in micro CDRs/buckets and no specialized service usage credit is sent to the mediation functions, so there is no usage credit deducted from the device user service plan service usage totals. Thus, the user pays for the services when the device is hacked to avoid the proxy server/router. The user account service agreement can specify that if the user tampers with software and traffic is not routed to servers then credit will not be provided and user plan will be charged.


In some proxy server/router embodiments, the usage credit is sometimes recorded by the proxy server/router detecting which device is performing the access. Device identification can be accomplished in a variety of ways including a header/tag inserted into the traffic by the device, a route in the network specified for that device, a secure link (e.g., TLS/SSL, IP Sec, or other secure tunnel), a unique device IP address or other credential (e.g., where proxy server/router has access to an active IP address look up function), a unique proxy server/router address and/or socket for the device.


In some embodiments, the coordination of the device service controller traffic control elements with a proxy server/outer can make it simpler to locate, install, provision and operate the proxy servers. The proxy server/routers do not need to be located “in line” with the access network because it is the device's responsibility to make sure the traffic is routed to the servers/routers or else there is not credit and the user account is charged. In some embodiments, this makes it unnecessary or reduces the need to force device traffic routes in carrier network. In some embodiments, the proxy server/routers can be located in carrier network or on the Internet. If the proxy server/routers are on Internet, then traffic can be authenticated in a firewall before being passed to server/routers to enhance security to attack.


In some embodiments, the service charging bucket recording software in the proxy server/router can be programmed into an ambient service partners network equipment directly thus eliminating the need for special apparatus. The ambient service partners equipment (e.g., a web server, load balancer or router) can recognize the device using one of the techniques described above, aggregate the device service charging bucket accounting, and periodically send the usage accounting to the service controller or other network service usage mediation function.


Programming and/or provisioning the types of ambient services, user service plan services and/or specialized services disclosed in various embodiments described herein can be a complex process. In some embodiments, a simplified user programming interface, also referred to herein as a service design interface, is used to program the necessary policy settings for such services is desirable. For example, a service design interface is provided that organizes and/or categorizes the various policy settings that are required to set up an ambient service (e.g., or other service) including one or more of the following: a policy list of service activities that are allowed under the ambient service (e.g., or other service), access control policies, rules for implementing and/or adapting an allowed list of network destinations, rules for implementing and/or adapting a blocked list of network destinations, service charging bucket policies, user notification policies, service control, and/or service charging bucket verification policies, actions to be taken upon verification errors. In some embodiments, the required information for one or more of these policy sets is formatted into a UI that organizes and simplifies the programming of the policies. In some embodiments, the UI is partly graphical to help the user understand the information and what settings need to be defined in order to define the service. In some embodiments, the UI is created with an XML, interface. In some embodiments, the UI is offered via a secure web connection. In some embodiments, a basic service policy for an ambient service (e.g., or another service) is created that includes one or more of the above service policy settings, and then this service policy set becomes a list or an object that can be replicated and used in multiple service plan policy set definitions (e.g., “dragged and dropped” in a graphical UI). In some embodiments, the resulting set of policies created in this service design interface are then distributed to the necessary policy control elements in the network and/or on the device that act in coordination to implement the service policy set for a given device group. For example, if a service processor is used in conjunction with a service controller, then the service design interface can load the service policy settings subsets that need to be programmed on the service controller and the device service processor into the service controller, and the service controller loads the service controller policy settings subset into the service controller components that control the policies and loads the device policy settings subset to the devices that belong to that device group. In embodiments in which a proxy server/router is used to help control and account for services, in some embodiments, the service design interface loads the service policy settings subsets that need to be programmed on the proxy server/router into the proxy server/router. In embodiments where other network equipment (e.g., gateways, base stations, service usage recording/aggregation/feed equipment, AAA, home agent/HLR, mediation system, and/or billing system) need to be provisioned or programmed, in some embodiments, the service design interface also loads the appropriate device group policy subsets to each of the equipment elements. Accordingly, various techniques can be used as described herein to greatly simplify the complex task of translating a service policy set or service plan into all the myriad equipment and/or device settings, programming, and/or provisioning commands required to correctly implement the service. It will now be apparent to one of ordinary skill in the art that various of these techniques can similarly be used for the VSP service design interface.


Those of ordinary skill in the art will appreciate that various other rules can be provided for the rules engine as described herein. Those of ordinary skill in the art will also appreciate that the functions described herein can be implemented using various other network architectures and network implementations (e.g., using various other networking protocols and corresponding network equipment and techniques).


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.


INCORPORATION BY REFERENCE

This application incorporates by reference the following US patent applications for all purposes: application Ser. No. 12/695,020, entitled ADAPTIVE AMBIENT SERVICES, filed Jan. 27, 2010; application Ser. No. 12/380,780, entitled AUTOMATED DEVICE PROVISIONING AND ACTIVATION, filed Mar. 2, 2009; provisional Application No. 61/206,354, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD, filed Jan. 28, 2009; provisional Application No. 61/206,944, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD, filed Feb. 4, 2009; provisional Application No. 61/207,393, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD, filed Feb. 10, 2009; provisional Application No. 61/207,739, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD, filed Feb. 13, 2009; provisional Application No. 61/275,208, entitled ADAPTIVE AMBIENT SERVICES, filed Aug. 25, 2009; and provisional Application No. 61/237,753, entitled ADAPTIVE AMBIENT SERVICES, filed Aug. 28, 2009.

Claims
  • 1. A proxy server for providing a wireless ambient service to a mobile end-user device operating on a Wireless Wide Area Network (WWAN), the proxy server comprising: a processor configured to: receive wireless ambient service Internet access requests from the mobile end-user device operating on the WWAN;apply an ambient service policy to the wireless ambient service Internet access requests to (i) allow a first one of the Internet access requests based on a primary policy of the ambient service policy, and (ii) allow a second one of the Internet access requests, not allowable by the primary policy, based on a secondary policy of the ambient service policy and an association with the first one of the Internet access requests;responsive to the second one of the Internet access requests, obtain at least some Internet data from an Internet destination other than the proxy server; andserve the at least some Internet data responsive to the second one of the Internet access requests to the mobile end-user device.
  • 2. The proxy server of claim 1, wherein the mobile end-user device operates on the WWAN of a wireless service provider network, and the proxy server operates outside of the wireless service provider network.
  • 3. The proxy server of claim 1, wherein the processor is further configured to: when a third one of the Internet access requests is not allowable by the ambient service policy, serve a notification result to the mobile end-user device.
  • 4. The proxy server of claim 3, wherein the notification result comprises a service activation page.
  • 5. The proxy server of claim 1, wherein the processor is further configured to: limit use of the wireless ambient service by the mobile end-user device to access content allowed by the secondary policy.
  • 6. The proxy server of claim 5, wherein limiting the use of the wireless ambient service comprises limiting a total time allowed for the mobile end-user device to access the content allowed by the secondary policy.
  • 7. The proxy server of claim 5, wherein limiting the use of the wireless ambient service comprises limiting an amount of wireless data that the mobile end-user device can use to access the content allowed by the secondary policy.
  • 8. The proxy server of claim 5, wherein limiting the use of the wireless ambient service comprises limiting a number of new user actions, new web pages, new uniform resource locators, new domains, new sub-domains, or new addresses that the mobile end-user device can utilize to access the content allowed by the secondary policy.
  • 9. The proxy server of claim 5, wherein limiting the use of the wireless ambient service comprises resetting a policy limit when the mobile end-user device initiates a third one of the Internet access requests allowed by the primary policy.
  • 10. The proxy server of claim 1, wherein the association with the first one of the Internet access requests comprises an association between the second one of the Internet access requests and a device application.
  • 11. A method for use by a proxy server for providing a wireless ambient service to a mobile end-user device operating on a Wireless Wide Area Network (WWAN), the method comprising: receiving wireless ambient service Internet access requests from the mobile end-user device operating on the WWAN;applying an ambient service policy to the wireless ambient service Internet access requests to (i) allow a first one of the Internet access requests based on a primary policy of the ambient service policy, and (ii) allow a second one of the Internet access requests, not allowable by the primary policy, based on a secondary policy of the ambient service policy and an association with the first one of the Internet access requests;responsive to the second one of the Internet access requests, obtaining at least some Internet data from an Internet destination other than the proxy server; andserving the at least some Internet data responsive to the second one of the Internet access requests to the mobile end-user device.
  • 12. The method of claim 11, wherein the mobile end-user device operates on the WWAN of a wireless service provider network, and the proxy server operates outside of the wireless service provider network.
  • 13. The method of claim 11, further comprising: when a third one of the Internet access requests is not allowable by the ambient service policy, serving a notification result to the mobile end-user device.
  • 14. The method of claim 13, wherein the notification result comprises a service activation page.
  • 15. The method of claim 11, further comprising: limiting use of the wireless ambient service by the mobile end-user device to access content allowed by the secondary policy.
  • 16. The method of claim 15, wherein limiting the use of the wireless ambient service comprises limiting a total time allowed for the mobile end-user device to access the content allowed by the secondary policy.
  • 17. The method of claim 15, wherein limiting the use of the wireless ambient service comprises limiting an amount of wireless data that the mobile end-user device can use to access the content allowed by the secondary policy.
  • 18. The method of claim 15, wherein limiting the use of the wireless ambient service comprises limiting a number of new user actions, new web pages, new uniform resource locators, new domains, new sub-domains, or new addresses that the mobile end-user device can utilize to access the content allowed by the secondary policy.
  • 19. The method of claim 15, wherein limiting the use of the wireless ambient service comprises resetting a policy limit when the mobile end-user device initiates a third one of the Internet access requests allowed by the primary policy.
  • 20. The method of claim 11, wherein the association with the first one of the Internet access requests comprises an association between the second one of the Internet access requests and a device application associated with the ambient service.
US Referenced Citations (1506)
Number Name Date Kind
5131020 Liebesny et al. Jul 1992 A
5283904 Carson et al. Feb 1994 A
5325532 Crosswy et al. Jun 1994 A
5572528 Shuen Nov 1996 A
5577100 McGregor et al. Nov 1996 A
5594777 Makkonen et al. Jan 1997 A
5617539 Ludwig et al. Apr 1997 A
5630159 Zancho May 1997 A
5633484 Zancho et al. May 1997 A
5633868 Baldwin et al. May 1997 A
5754953 Briancon et al. May 1998 A
5774532 Gottlieb et al. Jun 1998 A
5794142 Vanttila et al. Aug 1998 A
5814798 Zancho Sep 1998 A
5889477 Fastenrath Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5903845 Buhrmann et al. May 1999 A
5915008 Dulman Jun 1999 A
5915226 Martineau Jun 1999 A
5933778 Buhrmann et al. Aug 1999 A
5940472 Newman et al. Aug 1999 A
5974439 Bollella Oct 1999 A
5983270 Abraham et al. Nov 1999 A
6035281 Crosskey et al. Mar 2000 A
6038452 Strawczynski et al. Mar 2000 A
6038540 Krist et al. Mar 2000 A
6047268 Bartoli et al. Apr 2000 A
6058434 Wilt et al. May 2000 A
6061571 Tamura May 2000 A
6064878 Denker et al. May 2000 A
6078953 Vaid et al. Jun 2000 A
6081591 Skoog Jun 2000 A
6098878 Dent et al. Aug 2000 A
6104700 Haddock et al. Aug 2000 A
6115823 Velasco et al. Sep 2000 A
6119933 Wong et al. Sep 2000 A
6125391 Meltzer et al. Sep 2000 A
6141565 Feuerstein et al. Oct 2000 A
6141686 Jackowski et al. Oct 2000 A
6148336 Thomas et al. Nov 2000 A
6154738 Call Nov 2000 A
6157636 Voit et al. Dec 2000 A
6185576 McIntosh Feb 2001 B1
6198915 McGregor et al. Mar 2001 B1
6219786 Cunningham et al. Apr 2001 B1
6226277 Chuah May 2001 B1
6246870 Dent et al. Jun 2001 B1
6263055 Garland et al. Jul 2001 B1
6292828 Williams Sep 2001 B1
6317584 Abu-Amara et al. Nov 2001 B1
6370139 Redmond Apr 2002 B2
6381316 Joyce et al. Apr 2002 B2
6393014 Daly et al. May 2002 B1
6397259 Lincke et al. May 2002 B1
6401113 Lazaridis et al. Jun 2002 B2
6418147 Wiedeman Jul 2002 B1
6438575 Khan et al. Aug 2002 B1
6445777 Clark Sep 2002 B1
6449479 Sanchez Sep 2002 B1
6466984 Naveh et al. Oct 2002 B1
6477670 Ahmadvand Nov 2002 B1
6502131 Vaid et al. Dec 2002 B1
6505114 Luciani Jan 2003 B2
6510152 Gerszberg et al. Jan 2003 B1
6522629 Anderson, Sr. Feb 2003 B1
6532235 Benson et al. Mar 2003 B1
6532579 Sato et al. Mar 2003 B2
6535855 Cahill et al. Mar 2003 B1
6535949 Parker Mar 2003 B1
6539082 Lowe et al. Mar 2003 B1
6542500 Gerszberg et al. Apr 2003 B1
6542992 Peirce et al. Apr 2003 B1
6546016 Gerszberg et al. Apr 2003 B1
6563806 Yano et al. May 2003 B1
6570974 Gerszberg et al. May 2003 B1
6574321 Cox et al. Jun 2003 B1
6574465 Marsh et al. Jun 2003 B2
6578076 Putzolu Jun 2003 B1
6581092 Motoyama Jun 2003 B1
6591098 Shieh et al. Jul 2003 B1
6598034 Kloth Jul 2003 B1
6601040 Kolls Jul 2003 B1
6603969 Vuoristo et al. Aug 2003 B1
6603975 Inouchi et al. Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6615034 Alloune et al. Sep 2003 B1
6628934 Rosenberg et al. Sep 2003 B2
6631122 Arunachalam et al. Oct 2003 B1
6636721 Threadgill et al. Oct 2003 B2
6639975 O'Neal et al. Oct 2003 B1
6640097 Corrigan et al. Oct 2003 B2
6640334 Rasmussen Oct 2003 B1
6650887 McGregor et al. Nov 2003 B2
6651101 Gai et al. Nov 2003 B1
6654786 Fox et al. Nov 2003 B1
6654814 Britton et al. Nov 2003 B1
6658254 Purdy et al. Dec 2003 B1
6662014 Walsh Dec 2003 B1
6678516 Nordman et al. Jan 2004 B2
6683853 Kannas et al. Jan 2004 B1
6684244 Goldman et al. Jan 2004 B1
6690918 Evans et al. Feb 2004 B2
6694362 Secor et al. Feb 2004 B1
6697821 Ziff et al. Feb 2004 B2
6725031 Watler et al. Apr 2004 B2
6725256 Albal et al. Apr 2004 B1
6732176 Stewart et al. May 2004 B1
6735206 Oki et al. May 2004 B1
6748195 Phillips Jun 2004 B1
6748437 Mankude et al. Jun 2004 B1
6751296 Albal et al. Jun 2004 B1
6754470 Hendrickson et al. Jun 2004 B2
6757717 Goldstein Jun 2004 B1
6760417 Wallenius Jul 2004 B1
6763000 Walsh Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6765864 Natarajan et al. Jul 2004 B1
6765925 Sawyer et al. Jul 2004 B1
6782412 Brophy et al. Aug 2004 B2
6785889 Williams Aug 2004 B1
6792461 Hericourt Sep 2004 B1
6829596 Frazee Dec 2004 B1
6829696 Balmer et al. Dec 2004 B1
6839340 Voit et al. Jan 2005 B1
6842628 Arnold et al. Jan 2005 B1
6873988 Herrmann et al. Mar 2005 B2
6876653 Ambe et al. Apr 2005 B2
6879825 Daly Apr 2005 B1
6882718 Smith Apr 2005 B1
6885997 Roberts Apr 2005 B1
6901440 Bimm et al. May 2005 B1
6920455 Weschler Jul 2005 B1
6922562 Ward et al. Jul 2005 B2
6928280 Xanthos et al. Aug 2005 B1
6934249 Bertin et al. Aug 2005 B1
6934751 Jayapalan et al. Aug 2005 B2
6947723 Gumani et al. Sep 2005 B1
6947985 Hegli et al. Sep 2005 B2
6952428 Necka et al. Oct 2005 B1
6957067 Iyer et al. Oct 2005 B1
6959202 Heinonen et al. Oct 2005 B2
6959393 Hollis et al. Oct 2005 B2
6965667 Frabandt et al. Nov 2005 B2
6965872 Grdina Nov 2005 B1
6967958 Ono et al. Nov 2005 B2
6970692 Tysor Nov 2005 B2
6970927 Stewart et al. Nov 2005 B1
6982733 McNally et al. Jan 2006 B1
6983370 Eaton et al. Jan 2006 B2
6996062 Freed et al. Feb 2006 B1
6996076 Forbes et al. Feb 2006 B1
6996393 Pyhalammi et al. Feb 2006 B2
6998985 Reisman et al. Feb 2006 B2
7002920 Ayyagari et al. Feb 2006 B1
7007295 Rose et al. Feb 2006 B1
7013469 Smith et al. Mar 2006 B2
7017189 DeMello et al. Mar 2006 B1
7024200 McKenna et al. Apr 2006 B2
7024460 Koopmas et al. Apr 2006 B2
7027055 Anderson et al. Apr 2006 B2
7027408 Nabkel et al. Apr 2006 B2
7031733 Alminana et al. Apr 2006 B2
7032072 Quinn et al. Apr 2006 B1
7039027 Bridgelall May 2006 B2
7039037 Wang et al. May 2006 B2
7039403 Wong May 2006 B2
7039713 Van Gunter et al. May 2006 B1
7042988 Juitt et al. May 2006 B2
7043225 Patel et al. May 2006 B1
7043226 Yamauchi May 2006 B2
7043268 Yukie et al. May 2006 B2
7047276 Liu et al. May 2006 B2
7058022 Carolan et al. Jun 2006 B1
7058968 Rowland et al. Jun 2006 B2
7068600 Cain Jun 2006 B2
7069248 Huber Jun 2006 B2
7082422 Zirngibl et al. Jul 2006 B1
7084775 Smith Aug 2006 B1
7092696 Hosain et al. Aug 2006 B1
7095754 Benveniste Aug 2006 B2
7102620 Harries et al. Sep 2006 B2
7110753 Campen Sep 2006 B2
7113780 Mckenna et al. Sep 2006 B2
7113997 Jayapalan et al. Sep 2006 B2
7120133 Joo et al. Oct 2006 B1
7133386 Holur et al. Nov 2006 B2
7133695 Beyda Nov 2006 B2
7136361 Benveniste Nov 2006 B2
7139569 Kato Nov 2006 B2
7142876 Trossen et al. Nov 2006 B2
7149229 Leung Dec 2006 B1
7149521 Sundar et al. Dec 2006 B2
7151764 Heinonen et al. Dec 2006 B1
7158792 Cook et al. Jan 2007 B1
7162237 Silver et al. Jan 2007 B1
7165040 Ehrman et al. Jan 2007 B2
7167078 Pourchot Jan 2007 B2
7174156 Mangal Feb 2007 B1
7174174 Boris et al. Feb 2007 B2
7177919 Truong et al. Feb 2007 B1
7180855 Lin Feb 2007 B1
7181017 Nagel et al. Feb 2007 B1
7191248 Chattopadhyay et al. Mar 2007 B2
7197321 Erskine et al. Mar 2007 B2
7200112 Sundar et al. Apr 2007 B2
7200551 Senez Apr 2007 B1
7203169 Okholm et al. Apr 2007 B1
7203721 Ben-Efraim et al. Apr 2007 B1
7203752 Rice et al. Apr 2007 B2
7212491 Koga May 2007 B2
7219123 Fiechter et al. May 2007 B1
7222190 Klinker et al. May 2007 B2
7222304 Beaton et al. May 2007 B2
7224968 Dobson et al. May 2007 B2
7228354 Chambliss et al. Jun 2007 B2
7236780 Benco Jun 2007 B2
7242668 Kan et al. Jul 2007 B2
7242920 Morris Jul 2007 B2
7245901 McGregor et al. Jul 2007 B2
7248570 Bahl et al. Jul 2007 B2
7251218 Jorgensen Jul 2007 B2
7260382 Lamb et al. Aug 2007 B1
7266371 Amin et al. Sep 2007 B1
7269157 Klinker et al. Sep 2007 B2
7271765 Stilp et al. Sep 2007 B2
7272660 Powers et al. Sep 2007 B1
7280816 Fratti et al. Oct 2007 B2
7280818 Clayton Oct 2007 B2
7283561 Picher-Dempsey Oct 2007 B1
7283963 Fitzpatrick et al. Oct 2007 B1
7286834 Walter Oct 2007 B2
7286848 Vireday et al. Oct 2007 B2
7289489 Kung et al. Oct 2007 B1
7290283 Copeland, III Oct 2007 B2
7310424 Gehring et al. Dec 2007 B2
7313237 Bahl et al. Dec 2007 B2
7315892 Freimuth et al. Jan 2008 B2
7317699 Godfrey et al. Jan 2008 B2
7318050 Musgrave Jan 2008 B1
7318111 Zhao Jan 2008 B2
7320029 Rinne et al. Jan 2008 B2
7322044 Hrastar Jan 2008 B2
7324447 Morford Jan 2008 B1
7325037 Lawson Jan 2008 B2
7336960 Zavalkovsky et al. Feb 2008 B2
7340772 Panasyuk et al. Mar 2008 B2
7346410 Uchiyama Mar 2008 B2
7349695 Oommen et al. Mar 2008 B2
7353533 Wright et al. Apr 2008 B2
7356011 Waters et al. Apr 2008 B1
7356337 Florence Apr 2008 B2
7366497 Nagata Apr 2008 B2
7366654 Moore Apr 2008 B2
7366934 Narayan et al. Apr 2008 B1
7369848 Jiang May 2008 B2
7369856 Ovadia May 2008 B2
7373136 Watler et al. May 2008 B2
7373179 Stine et al. May 2008 B2
7379731 Natsuno et al. May 2008 B2
7388950 Elsey et al. Jun 2008 B2
7389412 Sharma et al. Jun 2008 B2
7391724 Makoski et al. Jun 2008 B2
7395056 Petermann Jul 2008 B2
7395244 Kingsford Jul 2008 B1
7401338 Bowen et al. Jul 2008 B1
7403763 Maes Jul 2008 B2
7409447 Assadzadeh Aug 2008 B1
7409569 Illowsky et al. Aug 2008 B2
7411930 Montojo et al. Aug 2008 B2
7418253 Kavanah Aug 2008 B2
7418257 Kim Aug 2008 B2
7421004 Feher Sep 2008 B2
7423971 Mohaban et al. Sep 2008 B1
7428750 Dunn et al. Sep 2008 B1
7433362 Mallya et al. Oct 2008 B2
7436816 Mehta et al. Oct 2008 B2
7440433 Rink et al. Oct 2008 B2
7444669 Bahl et al. Oct 2008 B1
7450591 Korling et al. Nov 2008 B2
7450927 Creswell et al. Nov 2008 B1
7454191 Dawson et al. Nov 2008 B2
7457265 Julka et al. Nov 2008 B2
7457870 Lownsbrough et al. Nov 2008 B1
7460837 Diener Dec 2008 B2
7466652 Lau et al. Dec 2008 B2
7467160 McIntyre Dec 2008 B2
7472189 Mallya et al. Dec 2008 B2
7478420 Wright et al. Jan 2009 B2
7486185 Culpepper et al. Feb 2009 B2
7486658 Kumar Feb 2009 B2
7493659 Wu et al. Feb 2009 B1
7496652 Pezzutti Feb 2009 B2
7499438 Hinman et al. Mar 2009 B2
7499537 Elsey et al. Mar 2009 B2
7502672 Kolls Mar 2009 B1
7505756 Bahl Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7508799 Sumner et al. Mar 2009 B2
7512128 DiMambro et al. Mar 2009 B2
7512131 Svensson et al. Mar 2009 B2
7515608 Yuan et al. Apr 2009 B2
7515926 Bu et al. Apr 2009 B2
7516219 Moghaddam et al. Apr 2009 B2
7522549 Karaoguz et al. Apr 2009 B2
7522576 Du et al. Apr 2009 B2
7526541 Roese et al. Apr 2009 B2
7529204 Bourlas et al. May 2009 B2
7535880 Hinman et al. May 2009 B1
7536695 Alam et al. May 2009 B2
7539132 Werner et al. May 2009 B2
7539862 Edgett et al. May 2009 B2
7540408 Levine et al. Jun 2009 B2
7545782 Rayment et al. Jun 2009 B2
7546460 Maes Jun 2009 B2
7546629 Albert et al. Jun 2009 B2
7548875 Mikkelsen et al. Jun 2009 B2
7548976 Bahl et al. Jun 2009 B2
7551921 Petermann Jun 2009 B2
7551922 Roskowski et al. Jun 2009 B2
7554983 Muppala Jun 2009 B1
7555757 Smith et al. Jun 2009 B2
7561899 Lee Jul 2009 B2
7562213 Timms Jul 2009 B1
7564799 Holland et al. Jul 2009 B2
7565141 Macaluso Jul 2009 B2
7574509 Nixon et al. Aug 2009 B2
7574731 Fascenda Aug 2009 B2
7577431 Jiang Aug 2009 B2
7580356 Mishra et al. Aug 2009 B1
7580857 VanFleet et al. Aug 2009 B2
7583964 Wong Sep 2009 B2
7584298 Klinker et al. Sep 2009 B2
7585217 Lutnick et al. Sep 2009 B2
7586871 Hamilton et al. Sep 2009 B2
7593417 Wang et al. Sep 2009 B2
7593730 Khandelwal et al. Sep 2009 B2
7596373 Mcgregor et al. Sep 2009 B2
7599288 Cole et al. Oct 2009 B2
7599714 Kuzminskiy Oct 2009 B2
7602746 Calhoun et al. Oct 2009 B2
7606918 Holzman et al. Oct 2009 B2
7607041 Kraemer et al. Oct 2009 B2
7609650 Roskowski et al. Oct 2009 B2
7609700 Ying et al. Oct 2009 B1
7610047 Hicks, III et al. Oct 2009 B2
7610057 Bahl et al. Oct 2009 B2
7610328 Haase et al. Oct 2009 B2
7610396 Taglienti et al. Oct 2009 B2
7614051 Glaum et al. Nov 2009 B2
7616962 Oswal et al. Nov 2009 B2
7617516 Huslak et al. Nov 2009 B2
7620041 Dunn et al. Nov 2009 B2
7620065 Falardeau Nov 2009 B2
7620162 Aaron et al. Nov 2009 B2
7620383 Taglienti et al. Nov 2009 B2
7627314 Carlson et al. Dec 2009 B2
7627600 Citron et al. Dec 2009 B2
7627767 Sherman et al. Dec 2009 B2
7627872 Hebeler et al. Dec 2009 B2
7633438 Tysowski Dec 2009 B2
7634388 Archer et al. Dec 2009 B2
7636574 Poosala Dec 2009 B2
7636626 Oesterling et al. Dec 2009 B2
7643411 Andreasen et al. Jan 2010 B2
7644151 Jerrim et al. Jan 2010 B2
7644267 Ylikoski et al. Jan 2010 B2
7644414 Smith et al. Jan 2010 B2
7647047 Moghaddam et al. Jan 2010 B2
7650137 Jobs et al. Jan 2010 B2
7653394 McMillin Jan 2010 B2
7656271 Ehrman et al. Feb 2010 B2
7657920 Arseneau et al. Feb 2010 B2
7660419 Ho Feb 2010 B1
7661124 Ramanathan et al. Feb 2010 B2
7664494 Jiang Feb 2010 B2
7668176 Chuah Feb 2010 B2
7668612 Okkonen Feb 2010 B1
7668903 Edwards et al. Feb 2010 B2
7668966 Klinker et al. Feb 2010 B2
7676673 Weller et al. Mar 2010 B2
7680086 Eglin Mar 2010 B2
7681226 Kraemer et al. Mar 2010 B2
7684370 Kezys Mar 2010 B2
7685131 Batra et al. Mar 2010 B2
7685254 Pandya Mar 2010 B2
7685530 Sherrard et al. Mar 2010 B2
7688792 Babbar et al. Mar 2010 B2
7693107 De Froment Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7697540 Haddad et al. Apr 2010 B2
7710932 Muthuswamy et al. May 2010 B2
7711848 Maes May 2010 B2
7719966 Luft et al. May 2010 B2
7720206 Devolites et al. May 2010 B2
7720464 Batta May 2010 B2
7720505 Gopi May 2010 B2
7720960 Pruss et al. May 2010 B2
7721296 Ricagni May 2010 B2
7724716 Fadell May 2010 B2
7725570 Lewis May 2010 B1
7729326 Sekhar Jun 2010 B2
7730123 Erickson et al. Jun 2010 B1
7734784 Araujo et al. Jun 2010 B1
7742406 Muppala Jun 2010 B1
7746854 Ambe et al. Jun 2010 B2
7747240 Briscoe et al. Jun 2010 B1
7747699 Prueitt et al. Jun 2010 B2
7747730 Harlow Jun 2010 B1
7752330 Olsen et al. Jul 2010 B2
7756056 Kim et al. Jul 2010 B2
7756534 Anupam et al. Jul 2010 B2
7756757 Oakes, III Jul 2010 B1
7760137 Martucci et al. Jul 2010 B2
7760711 Kung et al. Jul 2010 B1
7760861 Croak et al. Jul 2010 B1
7765294 Edwards et al. Jul 2010 B2
7769397 Funato et al. Aug 2010 B2
7770785 Jha et al. Aug 2010 B2
7774323 Helfman Aug 2010 B2
7774412 Schnepel Aug 2010 B1
7774456 Lownsbrough et al. Aug 2010 B1
7778176 Morford Aug 2010 B2
7778643 Laroia et al. Aug 2010 B2
7792257 Vanier et al. Sep 2010 B1
7792538 Kozisek Sep 2010 B2
7792708 Alva Sep 2010 B2
7797019 Friedmann Sep 2010 B2
7797060 Grgic et al. Sep 2010 B2
7797204 Balent Sep 2010 B2
7797401 Stewart et al. Sep 2010 B2
7801523 Kenderov Sep 2010 B1
7801783 Kende et al. Sep 2010 B2
7801985 Pitkow et al. Sep 2010 B1
7802724 Nohr Sep 2010 B1
7805140 Friday et al. Sep 2010 B2
7805522 Schlüter et al. Sep 2010 B2
7805606 Birger et al. Sep 2010 B2
7809351 Panda et al. Oct 2010 B1
7809372 Rajaniemi Oct 2010 B2
7813746 Rajkotia Oct 2010 B2
7817615 Breau et al. Oct 2010 B1
7817983 Cassett et al. Oct 2010 B2
7822837 Urban et al. Oct 2010 B1
7822849 Titus Oct 2010 B2
7826427 Sood et al. Nov 2010 B2
7826607 De Carvalho Resende et al. Nov 2010 B1
7835275 Swan et al. Nov 2010 B1
7843831 Morrill et al. Nov 2010 B2
7843843 Papp, III et al. Nov 2010 B1
7844034 Oh et al. Nov 2010 B1
7844728 Anderson et al. Nov 2010 B2
7848768 Omori et al. Dec 2010 B2
7849161 Koch et al. Dec 2010 B2
7849170 Hargens et al. Dec 2010 B1
7849477 Cristofalo et al. Dec 2010 B2
7853255 Karaoguz et al. Dec 2010 B2
7853656 Yach et al. Dec 2010 B2
7856226 Wong et al. Dec 2010 B2
7860088 Lioy Dec 2010 B2
7865182 Macaluso Jan 2011 B2
7865187 Ramer et al. Jan 2011 B2
7868778 Kenwright Jan 2011 B2
7873001 Silver Jan 2011 B2
7873344 Bowser et al. Jan 2011 B2
7873346 Petersson et al. Jan 2011 B2
7873540 Arumugam Jan 2011 B2
7873705 Kalish Jan 2011 B2
7877090 Maes Jan 2011 B2
7881199 Krstulich Feb 2011 B2
7881697 Baker et al. Feb 2011 B2
7882029 White Feb 2011 B2
7882247 Sturniolo et al. Feb 2011 B2
7882560 Kraemer et al. Feb 2011 B2
7886047 Potluri Feb 2011 B1
7889384 Armentrout et al. Feb 2011 B2
7890084 Dudziak et al. Feb 2011 B1
7890111 Bugenhagen Feb 2011 B2
7894431 Goring et al. Feb 2011 B2
7899039 Andreasen et al. Mar 2011 B2
7899438 Baker et al. Mar 2011 B2
7903553 Liu Mar 2011 B2
7907970 Park et al. Mar 2011 B2
7908358 Prasad et al. Mar 2011 B1
7911975 Droz et al. Mar 2011 B2
7912025 Pattenden et al. Mar 2011 B2
7912056 Brassem Mar 2011 B1
7920529 Mahler et al. Apr 2011 B1
7921463 Sood et al. Apr 2011 B2
7925740 Nath et al. Apr 2011 B2
7925778 Wijnands et al. Apr 2011 B1
7929959 DeAtley et al. Apr 2011 B2
7929960 Martin et al. Apr 2011 B2
7929973 Zavalkovsky et al. Apr 2011 B2
7930327 Craft et al. Apr 2011 B2
7930446 Kesselman et al. Apr 2011 B2
7930553 Satarasinghe et al. Apr 2011 B2
7933274 Verma et al. Apr 2011 B2
7936736 Proctor, Jr. et al. May 2011 B2
7937069 Rassam May 2011 B2
7937450 Janik May 2011 B2
7940685 Breslau et al. May 2011 B1
7940751 Hansen May 2011 B2
7941184 Prendergast et al. May 2011 B2
7944948 Chow et al. May 2011 B2
7945238 Baker et al. May 2011 B2
7945240 Klock et al. May 2011 B1
7945945 Graham et al. May 2011 B2
7948952 Hurtta et al. May 2011 B2
7948953 Melkote et al. May 2011 B2
7948968 Voit et al. May 2011 B2
7949529 Weider et al. May 2011 B2
7953808 Sharp et al. May 2011 B2
7953877 Vemula et al. May 2011 B2
7957020 Mine et al. Jun 2011 B2
7957381 Clermidy et al. Jun 2011 B2
7957511 Drudis et al. Jun 2011 B2
7958029 Bobich et al. Jun 2011 B1
7962622 Friend et al. Jun 2011 B2
7965983 Swan et al. Jun 2011 B1
7966405 Sundaresan et al. Jun 2011 B2
7969950 Iyer et al. Jun 2011 B2
7970350 Sheynman Jun 2011 B2
7970426 Poe et al. Jun 2011 B2
7974624 Gallagher et al. Jul 2011 B2
7975184 Goff et al. Jul 2011 B2
7978627 Taylor et al. Jul 2011 B2
7978686 Goyal et al. Jul 2011 B2
7979069 Hupp et al. Jul 2011 B2
7979889 Gladstone et al. Jul 2011 B2
7979896 McMurtry et al. Jul 2011 B2
7984130 Bogineni et al. Jul 2011 B2
7984511 Kocher et al. Jul 2011 B2
7986935 D'Souza et al. Jul 2011 B1
7987496 Bryce et al. Jul 2011 B2
7987510 Kocher et al. Jul 2011 B2
3000276 Scherzer et al. Aug 2011 A1
3000318 Wiley et al. Aug 2011 A1
3005009 McKee et al. Aug 2011 A1
3005459 Balsillie Aug 2011 A1
7990049 Shioya Aug 2011 B2
8005726 Bao Aug 2011 B1
8005913 Carlander Aug 2011 B1
8005988 Maes Aug 2011 B2
8010080 Thenthiruperai et al. Aug 2011 B1
8010081 Roskowski Aug 2011 B1
8010082 Sutaria et al. Aug 2011 B2
8010990 Ferguson et al. Aug 2011 B2
8015133 Wu et al. Sep 2011 B1
8015234 Lum et al. Sep 2011 B2
8015249 Nayak et al. Sep 2011 B2
8019687 Wang et al. Sep 2011 B2
8019820 Son et al. Sep 2011 B2
8019846 Roelens et al. Sep 2011 B2
8019868 Rao et al. Sep 2011 B2
8019886 Harrang et al. Sep 2011 B2
8023425 Raleigh Sep 2011 B2
8024397 Erickson et al. Sep 2011 B1
8024424 Freimuth et al. Sep 2011 B2
8027339 Short et al. Sep 2011 B2
8031601 Feroz et al. Oct 2011 B2
8032168 Ikaheimo Oct 2011 B2
8032409 Mikurak Oct 2011 B1
8032899 Archer et al. Oct 2011 B2
8036387 Kudelski et al. Oct 2011 B2
8036600 Garrett et al. Oct 2011 B2
8044792 Orr et al. Oct 2011 B2
8045973 Chambers Oct 2011 B2
8046449 Yoshiuchi Oct 2011 B2
8050275 Iyer Nov 2011 B1
8050690 Neeraj Nov 2011 B2
8050705 Sicher et al. Nov 2011 B2
8059530 Cole Nov 2011 B1
8060017 Schlicht et al. Nov 2011 B2
8060463 Spiegel Nov 2011 B1
8060603 Caunter et al. Nov 2011 B2
8064418 Maki Nov 2011 B2
8064896 Bell et al. Nov 2011 B2
8065365 Saxena et al. Nov 2011 B2
8068824 Shan et al. Nov 2011 B2
8068829 Lemond et al. Nov 2011 B2
8073427 Koch et al. Dec 2011 B2
8073721 Lewis Dec 2011 B1
8078140 Baker et al. Dec 2011 B2
8078163 Lemond et al. Dec 2011 B2
8082459 Araujo, Jr. Dec 2011 B2
8085808 Brusca et al. Dec 2011 B2
8086398 Sanchez et al. Dec 2011 B2
8086497 Oakes, III Dec 2011 B1
8086791 Caulkins Dec 2011 B2
8090359 Proctor, Jr. et al. Jan 2012 B2
8090361 Hagan Jan 2012 B2
8090616 Proctor, Jr. et al. Jan 2012 B2
8091087 Ali et al. Jan 2012 B2
8094551 Huber et al. Jan 2012 B2
8095112 Chow et al. Jan 2012 B2
8095124 Balia Jan 2012 B2
8095640 Guingo et al. Jan 2012 B2
8095666 Schmidt et al. Jan 2012 B2
8098579 Ray et al. Jan 2012 B2
8099077 Chowdhury et al. Jan 2012 B2
8099517 Jia et al. Jan 2012 B2
8102814 Rahman et al. Jan 2012 B2
8103285 Kalhan Jan 2012 B2
8104080 Burns et al. Jan 2012 B2
8107953 Zimmerman et al. Jan 2012 B2
8108520 Ruutu et al. Jan 2012 B2
8108680 Murray Jan 2012 B2
8112435 Epstein et al. Feb 2012 B2
8116223 Tian et al. Feb 2012 B2
8116749 Proctor, Jr. et al. Feb 2012 B2
8116781 Chen et al. Feb 2012 B2
8122128 Burke, II et al. Feb 2012 B2
8122249 Falk et al. Feb 2012 B2
8125897 Ray et al. Feb 2012 B2
8126123 Cai et al. Feb 2012 B2
8126396 Bennett Feb 2012 B2
8126476 Vardi et al. Feb 2012 B2
8126722 Robb et al. Feb 2012 B2
8130793 Edwards et al. Mar 2012 B2
8131256 Martti et al. Mar 2012 B2
8131281 Hildner et al. Mar 2012 B1
8131840 Denker Mar 2012 B1
8131858 Agulnik et al. Mar 2012 B2
8132256 Bari Mar 2012 B2
8134954 Godfrey et al. Mar 2012 B2
8135388 Gailloux et al. Mar 2012 B1
8135392 Marcelling et al. Mar 2012 B2
8135657 Kapoor et al. Mar 2012 B2
8140690 Ly et al. Mar 2012 B2
8144591 Ghai et al. Mar 2012 B2
8145194 Yoshikawa et al. Mar 2012 B2
8146142 Lortz et al. Mar 2012 B2
8149748 Bata et al. Apr 2012 B2
8149823 Turcan et al. Apr 2012 B2
8150394 Bianconi et al. Apr 2012 B2
8150431 Wolovitz et al. Apr 2012 B2
8151205 Follmann et al. Apr 2012 B2
8155155 Chow et al. Apr 2012 B1
8155620 Wang et al. Apr 2012 B2
8155666 Alizadeh-Shabdiz Apr 2012 B2
8155670 Fullam et al. Apr 2012 B2
8156206 Kiley et al. Apr 2012 B2
8159520 Dhanoa et al. Apr 2012 B1
8160015 Rashid et al. Apr 2012 B2
8160056 Van der Merwe et al. Apr 2012 B2
8160598 Savoor Apr 2012 B2
8165576 Raju et al. Apr 2012 B2
8166040 Brindisi et al. Apr 2012 B2
8166554 John Apr 2012 B2
8170553 Bennett May 2012 B2
8174378 Richman et al. May 2012 B2
8174970 Adamczyk et al. May 2012 B2
8175574 Panda et al. May 2012 B1
8180333 Wells et al. May 2012 B1
8180881 Seo et al. May 2012 B2
8180886 Overcash et al. May 2012 B2
8184530 Swan et al. May 2012 B1
8184590 Rosenblatt May 2012 B2
8185088 Klein et al. May 2012 B2
8185093 Jheng et al. May 2012 B2
8185127 Cai et al. May 2012 B1
8185152 Goldner May 2012 B1
8185158 Tamura et al. May 2012 B2
8190087 Fisher et al. May 2012 B2
8190122 Alexander et al. May 2012 B1
8190675 Tribbett May 2012 B2
8191106 Choyi et al. May 2012 B2
8191116 Gazzard May 2012 B1
8191124 Wynn et al. May 2012 B2
8194549 Huber et al. Jun 2012 B2
8194553 Liang et al. Jun 2012 B2
8194572 Horvath et al. Jun 2012 B2
8194581 Schroeder et al. Jun 2012 B1
8195093 Garrett et al. Jun 2012 B2
8195153 Frencel et al. Jun 2012 B1
8195163 Gisby et al. Jun 2012 B2
8195661 Kalavade Jun 2012 B2
8196199 Hrastar et al. Jun 2012 B2
8200163 Hoffman Jun 2012 B2
8200200 Belser et al. Jun 2012 B1
8200509 Kenedy et al. Jun 2012 B2
8200775 Moore Jun 2012 B2
8200818 Freund et al. Jun 2012 B2
8204190 Bang et al. Jun 2012 B2
8204505 Jin et al. Jun 2012 B2
8208788 Ando et al. Jun 2012 B2
8208919 Kotecha Jun 2012 B2
8213296 Shannon et al. Jul 2012 B2
8213363 Ying et al. Jul 2012 B2
8214536 Zhao Jul 2012 B2
8214890 Kirovski et al. Jul 2012 B2
8219134 Maharajh et al. Jul 2012 B2
8223655 Heinz et al. Jul 2012 B2
8223741 Bartlett et al. Jul 2012 B1
8224382 Bultman Jul 2012 B2
8224773 Spiegel Jul 2012 B2
8228818 Chase et al. Jul 2012 B2
8229394 Karlberg Jul 2012 B2
8229914 Ramer et al. Jul 2012 B2
8233433 Kalhan Jul 2012 B2
8233883 De Froment Jul 2012 B2
8233895 Tysowski Jul 2012 B2
8234583 Sloo et al. Jul 2012 B2
8238287 Gopi et al. Aug 2012 B1
8238913 Bhattacharyya et al. Aug 2012 B1
8239520 Grah Aug 2012 B2
8242959 Mia et al. Aug 2012 B2
8244241 Montemurro Aug 2012 B2
8249601 Emberson et al. Aug 2012 B2
8254880 Aaltonen et al. Aug 2012 B2
8254915 Kozisek Aug 2012 B2
8255515 Melman et al. Aug 2012 B1
8255534 Assadzadeh Aug 2012 B2
8255689 Kim et al. Aug 2012 B2
8259692 Bajko Sep 2012 B2
8260252 Agarwal Sep 2012 B2
8264965 Dolganow et al. Sep 2012 B2
8265004 Toutonghi Sep 2012 B2
8266249 Hu Sep 2012 B2
8266681 Deshpande et al. Sep 2012 B2
8270955 Ramer et al. Sep 2012 B2
8270972 Otting et al. Sep 2012 B2
8271025 Brisebois et al. Sep 2012 B2
8271045 Parolkar et al. Sep 2012 B2
8271049 Silver et al. Sep 2012 B2
8271992 Chatley et al. Sep 2012 B2
8275415 Huslak Sep 2012 B2
8275830 Raleigh Sep 2012 B2
8279067 Berger et al. Oct 2012 B2
8279864 Wood Oct 2012 B2
8280354 Smith et al. Oct 2012 B2
8284740 O'Connor Oct 2012 B2
8285249 Baker et al. Oct 2012 B2
8285992 Mathur et al. Oct 2012 B2
8290820 Plastina et al. Oct 2012 B2
8291238 Ginter et al. Oct 2012 B2
8291439 Jethi et al. Oct 2012 B2
8296404 McDysan et al. Oct 2012 B2
8300575 Willars Oct 2012 B2
8306518 Gailloux Nov 2012 B1
8306741 Tu Nov 2012 B2
8307067 Ryan Nov 2012 B2
8307404 Vinberg Nov 2012 B2
8310943 Mehta et al. Nov 2012 B2
8315198 Corneille et al. Nov 2012 B2
8315593 Gallant et al. Nov 2012 B2
8315594 Mauser et al. Nov 2012 B1
8315718 Caffrey et al. Nov 2012 B2
8315999 Chatley et al. Nov 2012 B2
8320244 Muqattash et al. Nov 2012 B2
8320949 Matta Nov 2012 B2
8325638 Jin et al. Dec 2012 B2
8325906 Fullarton et al. Dec 2012 B2
8326319 Davis Dec 2012 B2
8326828 Zhou et al. Dec 2012 B2
8331223 Hill et al. Dec 2012 B2
8331293 Sood Dec 2012 B2
8332375 Chatley et al. Dec 2012 B2
8339991 Biswas et al. Dec 2012 B2
8340625 Johnson et al. Dec 2012 B1
8340628 Taylor et al. Dec 2012 B2
8340678 Pandey Dec 2012 B1
8340718 Colonna et al. Dec 2012 B2
8346210 Balsan et al. Jan 2013 B2
8346225 Raleigh Jan 2013 B2
8346923 Rowles et al. Jan 2013 B2
8347104 Pathiyal Jan 2013 B2
8347362 Cai et al. Jan 2013 B2
8347378 Merkin et al. Jan 2013 B2
8350700 Fast et al. Jan 2013 B2
8351592 Freeny, Jr. et al. Jan 2013 B2
8351898 Raleigh Jan 2013 B2
8352360 De Judicibus et al. Jan 2013 B2
8352980 Howcroft Jan 2013 B2
8353001 Herrod Jan 2013 B2
8355570 Karsanbhai et al. Jan 2013 B2
8355696 Olding et al. Jan 2013 B1
8356336 Johnston et al. Jan 2013 B2
8358638 Scherzer et al. Jan 2013 B2
8358975 Bahl et al. Jan 2013 B2
8363658 Delker et al. Jan 2013 B1
8363799 Gruchala et al. Jan 2013 B2
8364089 Phillips Jan 2013 B2
8364806 Short et al. Jan 2013 B2
8369274 Sawai Feb 2013 B2
8370477 Short et al. Feb 2013 B2
8370483 Choong et al. Feb 2013 B2
8374090 Morrill et al. Feb 2013 B2
8374592 Proctor, Jr. et al. Feb 2013 B2
8375128 Tofighbakhsh et al. Feb 2013 B2
8375136 Roman et al. Feb 2013 B2
8380247 Engstrom Feb 2013 B2
8385199 Coward et al. Feb 2013 B1
8385896 Proctor, Jr. et al. Feb 2013 B2
8385964 Haney Feb 2013 B2
8385975 Forutanpour et al. Feb 2013 B2
8386386 Zhu Feb 2013 B1
8391262 Maki et al. Mar 2013 B2
8391834 Raleigh Mar 2013 B2
8392982 Harris et al. Mar 2013 B2
8396458 Raleigh Mar 2013 B2
8396929 Helfman et al. Mar 2013 B2
8401968 Schattauer et al. Mar 2013 B1
8402165 Deu-Ngoc et al. Mar 2013 B2
8402540 Kapoor et al. Mar 2013 B2
8406427 Chand et al. Mar 2013 B2
8406736 Das et al. Mar 2013 B2
8407763 Weller et al. Mar 2013 B2
8411587 Curtis et al. Apr 2013 B2
8411691 Aggarwal Apr 2013 B2
8412798 Wang Apr 2013 B1
8413245 Kraemer et al. Apr 2013 B2
8418168 Tyhurst et al. Apr 2013 B2
8422988 Keshav Apr 2013 B1
8423016 Buckley et al. Apr 2013 B2
8429403 Moret et al. Apr 2013 B2
8437734 Ray et al. May 2013 B2
8442015 Behzad et al. May 2013 B2
8446831 Kwan et al. May 2013 B2
8447324 Shuman et al. May 2013 B2
8447607 Weider et al. May 2013 B2
8447980 Godfrey et al. May 2013 B2
8448015 Gerhart May 2013 B2
8452858 Wu et al. May 2013 B2
8457603 El-Kadri et al. Jun 2013 B2
8461958 Saenz et al. Jun 2013 B2
8463194 Erlenback et al. Jun 2013 B2
8463232 Tuli et al. Jun 2013 B2
8468337 Gaur et al. Jun 2013 B2
8472371 Bari et al. Jun 2013 B1
8477778 Lehmann, Jr. et al. Jul 2013 B2
8478840 Skutela et al. Jul 2013 B2
8483057 Cuervo Jul 2013 B2
8483135 Cai et al. Jul 2013 B2
8483694 Lewis et al. Jul 2013 B2
8484327 Werner et al. Jul 2013 B2
8488597 Nie et al. Jul 2013 B2
8489110 Frank et al. Jul 2013 B2
8489720 Morford et al. Jul 2013 B1
8494559 Malmi Jul 2013 B1
8495181 Venkatraman et al. Jul 2013 B2
8495207 Lee Jul 2013 B2
8495227 Kaminsky et al. Jul 2013 B2
8495360 Falk et al. Jul 2013 B2
8495700 Shahbazi Jul 2013 B2
8495743 Kraemer et al. Jul 2013 B2
8499087 Hu Jul 2013 B2
RE44412 Naqvi et al. Aug 2013 E
8500533 Lutnick et al. Aug 2013 B2
8503358 Hanson et al. Aug 2013 B2
8503455 Heikens Aug 2013 B2
8504032 Lott et al. Aug 2013 B2
8504574 Dvorak et al. Aug 2013 B2
8504687 Maffione et al. Aug 2013 B2
8504690 Shah et al. Aug 2013 B2
8504729 Pezzutti Aug 2013 B2
8505073 Taglienti et al. Aug 2013 B2
8509082 Heinz et al. Aug 2013 B2
8514927 Sundararajan et al. Aug 2013 B2
8516552 Raleigh Aug 2013 B2
8520589 Bhatt et al. Aug 2013 B2
8520595 Yadav et al. Aug 2013 B2
8521110 Rofougaran Aug 2013 B2
8521775 Poh et al. Aug 2013 B1
8522039 Hyndman et al. Aug 2013 B2
8522249 Beaule Aug 2013 B2
8522337 Adusumilli et al. Aug 2013 B2
8523547 Pekrul Sep 2013 B2
8526329 Mahany et al. Sep 2013 B2
8526350 Xue et al. Sep 2013 B2
8527013 Guba et al. Sep 2013 B2
8527410 Markki et al. Sep 2013 B2
8527662 Biswas et al. Sep 2013 B2
8528068 Weglein et al. Sep 2013 B1
8531954 McNaughton et al. Sep 2013 B2
8531995 Khan et al. Sep 2013 B2
8532610 Manning Cassett et al. Sep 2013 B2
8533775 Alcorn et al. Sep 2013 B2
8535160 Lutnick et al. Sep 2013 B2
8538394 Zimmerman et al. Sep 2013 B2
8538421 Brisebois et al. Sep 2013 B2
8538458 Haney Sep 2013 B2
8539544 Garimella et al. Sep 2013 B2
8543265 Ekhaguere et al. Sep 2013 B2
8543814 Laitinen et al. Sep 2013 B2
8544105 Mclean et al. Sep 2013 B2
8548427 Chow et al. Oct 2013 B2
8549173 Wu et al. Oct 2013 B1
8554876 Winsor Oct 2013 B2
8559369 Barkan Oct 2013 B2
8561138 Rothman et al. Oct 2013 B2
8565746 Hoffman Oct 2013 B2
8566236 Busch Oct 2013 B2
8571474 Chavez et al. Oct 2013 B2
8571501 Miller et al. Oct 2013 B2
8571598 Valavi Oct 2013 B2
8571993 Kocher et al. Oct 2013 B2
8572117 Rappaport Oct 2013 B2
8572256 Babbar Oct 2013 B2
8583499 De Judicibus et al. Nov 2013 B2
8588240 Ramankutty et al. Nov 2013 B2
8589955 Roundtree et al. Nov 2013 B2
8594665 Anschutz Nov 2013 B2
8595186 Mandyam et al. Nov 2013 B1
8600895 Felsher Dec 2013 B2
8601125 Huang et al. Dec 2013 B2
8605691 Soomro et al. Dec 2013 B2
8615507 Varadarajulu et al. Dec 2013 B2
8619735 Montemurro et al. Dec 2013 B2
8620257 Qiu et al. Dec 2013 B2
8630630 Raleigh Jan 2014 B2
8630925 Bystrom et al. Jan 2014 B2
8631428 Scott et al. Jan 2014 B2
8634425 Gorti et al. Jan 2014 B2
8635164 Rosenhaf et al. Jan 2014 B2
8639215 McGregor et al. Jan 2014 B2
8644702 Kalajan Feb 2014 B1
8644813 Gailloux et al. Feb 2014 B1
8645518 David Feb 2014 B2
8655357 Gazzard et al. Feb 2014 B1
8656472 McMurtry et al. Feb 2014 B2
8660853 Robb et al. Feb 2014 B2
8666395 Silver Mar 2014 B2
8667542 Bertz et al. Mar 2014 B1
8670334 Keohane et al. Mar 2014 B2
8675852 Maes Mar 2014 B2
8676682 Kalliola Mar 2014 B2
8676925 Liu et al. Mar 2014 B1
8693323 McDysan Apr 2014 B1
8694772 Kao et al. Apr 2014 B2
8700729 Dua Apr 2014 B2
8701015 Bonnat Apr 2014 B2
8705361 Venkataraman et al. Apr 2014 B2
8706863 Fadell Apr 2014 B2
8713535 Malhotra et al. Apr 2014 B2
8713641 Pagan et al. Apr 2014 B1
8719397 Levi et al. May 2014 B2
8719423 Wyld May 2014 B2
8724486 Seto et al. May 2014 B2
8725899 Short et al. May 2014 B2
8730842 Collins et al. May 2014 B2
8731519 Flynn et al. May 2014 B2
8732808 Sewall et al. May 2014 B2
8739035 Trethewey May 2014 B2
8744339 Halfmann et al. Jun 2014 B2
8761711 Grignani et al. Jun 2014 B2
8780857 Balasubramanian et al. Jul 2014 B2
8787249 Giaretta et al. Jul 2014 B2
8792857 Cai et al. Jul 2014 B2
8793304 Lu et al. Jul 2014 B2
8798610 Prakash et al. Aug 2014 B2
8799440 Zhou et al. Aug 2014 B2
8804695 Branam Aug 2014 B2
8811338 Jin et al. Aug 2014 B2
8811991 Jain et al. Aug 2014 B2
8818394 Bienas et al. Aug 2014 B2
8819253 Simeloff et al. Aug 2014 B2
8825109 Montemurro et al. Sep 2014 B2
8826411 Moen et al. Sep 2014 B2
8831561 Sutaria et al. Sep 2014 B2
8838752 Lor et al. Sep 2014 B2
8843849 Neil et al. Sep 2014 B2
8845415 Lutnick et al. Sep 2014 B2
8849297 Balasubramanian Sep 2014 B2
8855620 Sievers et al. Oct 2014 B2
8862751 Faccin et al. Oct 2014 B2
8863111 Selitser et al. Oct 2014 B2
8875042 LeJeune et al. Oct 2014 B2
8880047 Konicek et al. Nov 2014 B2
8891483 Connelly et al. Nov 2014 B2
8898748 Burks et al. Nov 2014 B2
8908516 Tzamaloukas et al. Dec 2014 B2
8929374 Tonsing et al. Jan 2015 B2
8930238 Coffman et al. Jan 2015 B2
8930551 Pandya et al. Jan 2015 B2
8943551 Ganapathy et al. Jan 2015 B2
8948726 Smith et al. Feb 2015 B2
8949382 Cornett et al. Feb 2015 B2
8949597 Reeves et al. Feb 2015 B1
8955038 Nicodemus et al. Feb 2015 B2
8966018 Bugwadia et al. Feb 2015 B2
8971912 Chou et al. Mar 2015 B2
8977284 Reed Mar 2015 B2
8995952 Baker et al. Mar 2015 B1
9002342 Tenhunen et al. Apr 2015 B2
9014973 Ruckart Apr 2015 B2
9015331 Lai et al. Apr 2015 B2
9026100 Castro et al. May 2015 B2
9030934 Shah et al. May 2015 B2
9049010 Jueneman et al. Jun 2015 B2
9064275 Lu et al. Jun 2015 B1
9105031 Shen et al. Aug 2015 B2
9111088 Ghai et al. Aug 2015 B2
9137286 Yuan Sep 2015 B1
9172553 Dawes et al. Oct 2015 B2
9177455 Remer Nov 2015 B2
9204282 Raleigh Dec 2015 B2
9282460 Souissi Mar 2016 B2
9286469 Kraemer et al. Mar 2016 B2
9286604 Aabye et al. Mar 2016 B2
9313708 Nam et al. Apr 2016 B2
9325737 Gutowski et al. Apr 2016 B2
9326173 Luft Apr 2016 B2
9344557 Gruchala et al. May 2016 B2
9363285 Kitamura Jun 2016 B2
9367680 Mahaffey et al. Jun 2016 B2
9413546 Meier et al. Aug 2016 B2
9418381 Ahuja et al. Aug 2016 B2
9451450 Fleischman Sep 2016 B2
9459767 Cockcroft et al. Oct 2016 B2
9501803 Bilac et al. Nov 2016 B2
9544397 Raleigh et al. Jan 2017 B2
9589117 Ali et al. Mar 2017 B2
9609459 Raleigh Mar 2017 B2
9712476 Boynton et al. Jul 2017 B2
9942796 Raleigh Apr 2018 B2
9986413 Raleigh May 2018 B2
10285025 Baker et al. May 2019 B1
10326800 Raleigh et al. Jun 2019 B2
10492102 Raleigh et al. Nov 2019 B2
10582375 Raleigh Mar 2020 B2
10779177 Raleigh Sep 2020 B2
10855559 Raleigh Dec 2020 B2
20010048738 Baniak et al. Dec 2001 A1
20010053694 Igarashi et al. Dec 2001 A1
20020013844 Garrett et al. Jan 2002 A1
20020022472 Watler et al. Feb 2002 A1
20020022483 Thompson et al. Feb 2002 A1
20020049074 Eisinger et al. Apr 2002 A1
20020099848 Lee Jul 2002 A1
20020116338 Gonthier et al. Aug 2002 A1
20020120370 Parupudi et al. Aug 2002 A1
20020120540 Kende et al. Aug 2002 A1
20020131404 Mehta et al. Sep 2002 A1
20020138599 Dilman et al. Sep 2002 A1
20020138601 Piponius et al. Sep 2002 A1
20020154751 Thompson et al. Oct 2002 A1
20020161601 Nauer et al. Oct 2002 A1
20020164983 Raviv et al. Nov 2002 A1
20020176377 Hamilton Nov 2002 A1
20020188732 Buckman et al. Dec 2002 A1
20020191573 Whitehill et al. Dec 2002 A1
20020199001 Wenocur et al. Dec 2002 A1
20030004937 Kaita et al. Jan 2003 A1
20030005112 Krautkremer Jan 2003 A1
20030013434 Rosenberg et al. Jan 2003 A1
20030018524 Fishman et al. Jan 2003 A1
20030028623 Hennessey et al. Feb 2003 A1
20030046396 Richter et al. Mar 2003 A1
20030050070 Mashinsky et al. Mar 2003 A1
20030050837 Kim Mar 2003 A1
20030076369 Resner Apr 2003 A1
20030084321 Tarquini et al. May 2003 A1
20030088671 Klinker et al. May 2003 A1
20030133408 Cheng et al. Jul 2003 A1
20030134650 Sundar et al. Jul 2003 A1
20030159030 Evans Aug 2003 A1
20030161265 Cao et al. Aug 2003 A1
20030171112 Lupper et al. Sep 2003 A1
20030182420 Jones et al. Sep 2003 A1
20030182435 Redlich et al. Sep 2003 A1
20030184793 Pineau Oct 2003 A1
20030188006 Bard Oct 2003 A1
20030188117 Yoshino et al. Oct 2003 A1
20030220984 Jones et al. Nov 2003 A1
20030224781 Milford et al. Dec 2003 A1
20030229900 Reisman Dec 2003 A1
20030233332 Keeler et al. Dec 2003 A1
20030236745 Hartsell et al. Dec 2003 A1
20040019539 Raman et al. Jan 2004 A1
20040019564 Goldthwaite et al. Jan 2004 A1
20040021697 Beaton et al. Feb 2004 A1
20040024756 Rickard Feb 2004 A1
20040030705 Bowman-Amuah Feb 2004 A1
20040039792 Nakanishi Feb 2004 A1
20040044623 Wake et al. Mar 2004 A1
20040047358 Chen et al. Mar 2004 A1
20040054779 Takeshima et al. Mar 2004 A1
20040073672 Fascenda Apr 2004 A1
20040082346 Skytt et al. Apr 2004 A1
20040098715 Aghera et al. May 2004 A1
20040102182 Reith et al. May 2004 A1
20040103193 Pandya et al. May 2004 A1
20040107360 Herrmann et al. Jun 2004 A1
20040116140 Babbar et al. Jun 2004 A1
20040127200 Shaw et al. Jul 2004 A1
20040127208 Nair et al. Jul 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040132427 Lee et al. Jul 2004 A1
20040133668 Nicholas, III Jul 2004 A1
20040137890 Kalke Jul 2004 A1
20040165596 Garcia et al. Aug 2004 A1
20040167958 Stewart et al. Aug 2004 A1
20040168052 Clisham et al. Aug 2004 A1
20040170191 Guo et al. Sep 2004 A1
20040176104 Arcens Sep 2004 A1
20040198331 Coward et al. Oct 2004 A1
20040203755 Brunet et al. Oct 2004 A1
20040203833 Rathunde et al. Oct 2004 A1
20040225561 Hertzberg et al. Nov 2004 A1
20040225898 Frost et al. Nov 2004 A1
20040236547 Rappaport et al. Nov 2004 A1
20040243680 Mayer Dec 2004 A1
20040243992 Gustafson et al. Dec 2004 A1
20040249918 Sunshine Dec 2004 A1
20040255145 Chow Dec 2004 A1
20040259534 Chaudhari et al. Dec 2004 A1
20040260766 Barros et al. Dec 2004 A1
20040267872 Serdy et al. Dec 2004 A1
20050007993 Chambers et al. Jan 2005 A1
20050009499 Koster Jan 2005 A1
20050021995 Lal et al. Jan 2005 A1
20050041617 Huotari et al. Feb 2005 A1
20050048950 Morper Mar 2005 A1
20050055291 Bevente et al. Mar 2005 A1
20050055309 Williams et al. Mar 2005 A1
20050055595 Frazer et al. Mar 2005 A1
20050060266 DeMello et al. Mar 2005 A1
20050060525 Schwartz et al. Mar 2005 A1
20050075115 Corneille et al. Apr 2005 A1
20050079863 Macaluso Apr 2005 A1
20050091505 Riley et al. Apr 2005 A1
20050096024 Bicker et al. May 2005 A1
20050097516 Donnelly et al. May 2005 A1
20050107091 Vannithamby et al. May 2005 A1
20050108075 Douglis et al. May 2005 A1
20050111463 Leung et al. May 2005 A1
20050128967 Scobbie Jun 2005 A1
20050135264 Popoff et al. Jun 2005 A1
20050163320 Brown et al. Jul 2005 A1
20050166043 Zhang et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050186948 Gallagher et al. Aug 2005 A1
20050198377 Ferguson et al. Sep 2005 A1
20050216421 Barry et al. Sep 2005 A1
20050228985 Ylikoski et al. Oct 2005 A1
20050238046 Hassan et al. Oct 2005 A1
20050239447 Holzman et al. Oct 2005 A1
20050245241 Durand et al. Nov 2005 A1
20050246282 Naslund et al. Nov 2005 A1
20050250508 Guo et al. Nov 2005 A1
20050250536 Deng et al. Nov 2005 A1
20050254435 Moakley et al. Nov 2005 A1
20050266825 Clayton Dec 2005 A1
20050266880 Gupta Dec 2005 A1
20060014519 Marsh et al. Jan 2006 A1
20060019632 Cunningham et al. Jan 2006 A1
20060020787 Choyi et al. Jan 2006 A1
20060026679 Zakas Feb 2006 A1
20060030306 Kuhn Feb 2006 A1
20060034256 Addagatla et al. Feb 2006 A1
20060035631 White et al. Feb 2006 A1
20060040642 Boris et al. Feb 2006 A1
20060045245 Aaron et al. Mar 2006 A1
20060048223 Lee et al. Mar 2006 A1
20060068796 Millen et al. Mar 2006 A1
20060072451 Ross Apr 2006 A1
20060072550 Davis et al. Apr 2006 A1
20060072646 Feher Apr 2006 A1
20060075506 Sanda et al. Apr 2006 A1
20060085543 Hrastar et al. Apr 2006 A1
20060093107 Chien May 2006 A1
20060095517 O'Connor et al. May 2006 A1
20060098627 Karaoguz et al. May 2006 A1
20060099970 Morgan et al. May 2006 A1
20060101507 Camenisch May 2006 A1
20060112016 Ishibashi May 2006 A1
20060114821 Willey et al. Jun 2006 A1
20060114832 Hamilton et al. Jun 2006 A1
20060126562 Liu Jun 2006 A1
20060135144 Jothipragasam Jun 2006 A1
20060136882 Noonan et al. Jun 2006 A1
20060143066 Calabria Jun 2006 A1
20060143098 Lazaridis Jun 2006 A1
20060156398 Ross et al. Jul 2006 A1
20060160536 Chou Jul 2006 A1
20060165060 Dua Jul 2006 A1
20060168128 Sistla et al. Jul 2006 A1
20060173959 Mckelvie et al. Aug 2006 A1
20060174035 Tufail Aug 2006 A1
20060178917 Merriam et al. Aug 2006 A1
20060178918 Mikurak Aug 2006 A1
20060182137 Zhou et al. Aug 2006 A1
20060183462 Kolehmainen Aug 2006 A1
20060190314 Hernandez Aug 2006 A1
20060190987 Ohta et al. Aug 2006 A1
20060193280 Lee et al. Aug 2006 A1
20060199608 Dunn et al. Sep 2006 A1
20060200663 Thornton Sep 2006 A1
20060206709 Labrou et al. Sep 2006 A1
20060206904 Watkins et al. Sep 2006 A1
20060218395 Maes Sep 2006 A1
20060233108 Krishnan Oct 2006 A1
20060233166 Bou-Diab et al. Oct 2006 A1
20060236095 Smith et al. Oct 2006 A1
20060242685 Heard et al. Oct 2006 A1
20060258341 Miller et al. Nov 2006 A1
20060274706 Chen et al. Dec 2006 A1
20060277590 Limont et al. Dec 2006 A1
20060291419 McConnell et al. Dec 2006 A1
20060291477 Croak et al. Dec 2006 A1
20070005795 Gonzalez Jan 2007 A1
20070019670 Falardeau Jan 2007 A1
20070022289 Alt et al. Jan 2007 A1
20070025301 Petersson et al. Feb 2007 A1
20070033194 Srinivas et al. Feb 2007 A1
20070033197 Scherzer et al. Feb 2007 A1
20070035390 Thomas et al. Feb 2007 A1
20070036312 Cai et al. Feb 2007 A1
20070055694 Ruge et al. Mar 2007 A1
20070060200 Boris et al. Mar 2007 A1
20070061243 Ramer et al. Mar 2007 A1
20070061800 Cheng et al. Mar 2007 A1
20070061878 Hagiu et al. Mar 2007 A1
20070073899 Judge et al. Mar 2007 A1
20070076616 Ngo et al. Apr 2007 A1
20070093243 Kapadekar et al. Apr 2007 A1
20070100981 Adamczyk et al. May 2007 A1
20070101426 Lee et al. May 2007 A1
20070104126 Calhoun et al. May 2007 A1
20070104169 Polson May 2007 A1
20070109983 Shankar et al. May 2007 A1
20070111740 Wandel May 2007 A1
20070130283 Klein et al. Jun 2007 A1
20070130315 Friend et al. Jun 2007 A1
20070140113 Gemelos Jun 2007 A1
20070140145 Kumar et al. Jun 2007 A1
20070140275 Bowman et al. Jun 2007 A1
20070143824 Shahbazi Jun 2007 A1
20070147317 Smith et al. Jun 2007 A1
20070147324 McGary Jun 2007 A1
20070155365 Kim et al. Jul 2007 A1
20070165630 Rasanen et al. Jul 2007 A1
20070168499 Chu Jul 2007 A1
20070171856 Bruce et al. Jul 2007 A1
20070174490 Choi et al. Jul 2007 A1
20070191006 Carpenter Aug 2007 A1
20070192460 Choi et al. Aug 2007 A1
20070198656 Mazzaferri et al. Aug 2007 A1
20070201502 Abramson Aug 2007 A1
20070213054 Han Sep 2007 A1
20070220251 Rosenberg et al. Sep 2007 A1
20070226225 Yiu et al. Sep 2007 A1
20070226775 Andreasen et al. Sep 2007 A1
20070234402 Khosravi et al. Oct 2007 A1
20070243862 Coskun et al. Oct 2007 A1
20070248100 Zuberi et al. Oct 2007 A1
20070254646 Sokondar Nov 2007 A1
20070254675 Zorlu Ozer et al. Nov 2007 A1
20070255769 Agrawal et al. Nov 2007 A1
20070255797 Dunn et al. Nov 2007 A1
20070255848 Sewall et al. Nov 2007 A1
20070257767 Beeson Nov 2007 A1
20070259656 Jeong Nov 2007 A1
20070259673 Willars et al. Nov 2007 A1
20070263558 Salomone Nov 2007 A1
20070266422 Germano et al. Nov 2007 A1
20070274327 Kaarela et al. Nov 2007 A1
20070280453 Kelley Dec 2007 A1
20070282896 Wydroug et al. Dec 2007 A1
20070293191 Mir et al. Dec 2007 A1
20070294395 Strub et al. Dec 2007 A1
20070294410 Pandya et al. Dec 2007 A1
20070297378 Poyhonen et al. Dec 2007 A1
20070298764 Clayton Dec 2007 A1
20070299965 Nieh et al. Dec 2007 A1
20070300252 Acharya et al. Dec 2007 A1
20080005285 Robinson et al. Jan 2008 A1
20080005561 Brown et al. Jan 2008 A1
20080010379 Zhao Jan 2008 A1
20080010452 Holtzman et al. Jan 2008 A1
20080018494 Waite et al. Jan 2008 A1
20080020738 Ho et al. Jan 2008 A1
20080022354 Grewal et al. Jan 2008 A1
20080025230 Patel et al. Jan 2008 A1
20080032715 Jia et al. Feb 2008 A1
20080034063 Yee Feb 2008 A1
20080034419 Mullick et al. Feb 2008 A1
20080039102 Sewall et al. Feb 2008 A1
20080049630 Kozisek et al. Feb 2008 A1
20080050715 Golczewski et al. Feb 2008 A1
20080051076 O'Shaughnessy et al. Feb 2008 A1
20080052387 Heinz et al. Feb 2008 A1
20080056273 Pelletier et al. Mar 2008 A1
20080059474 Lim Mar 2008 A1
20080059743 Bychkov et al. Mar 2008 A1
20080060066 Wynn et al. Mar 2008 A1
20080062900 Rao Mar 2008 A1
20080064367 Nath et al. Mar 2008 A1
20080066149 Lim Mar 2008 A1
20080066150 Lim Mar 2008 A1
20080066181 Haveson et al. Mar 2008 A1
20080070550 Hose Mar 2008 A1
20080077705 Li et al. Mar 2008 A1
20080080457 Cole Apr 2008 A1
20080081606 Cole Apr 2008 A1
20080082643 Storrie et al. Apr 2008 A1
20080083013 Soliman et al. Apr 2008 A1
20080085707 Fadell Apr 2008 A1
20080089295 Keeler et al. Apr 2008 A1
20080089303 Wirtanen et al. Apr 2008 A1
20080095339 Elliott et al. Apr 2008 A1
20080096559 Phillips et al. Apr 2008 A1
20080098062 Balia Apr 2008 A1
20080109679 Wright et al. May 2008 A1
20080120129 Seubert et al. May 2008 A1
20080120174 Li May 2008 A1
20080120668 Yau May 2008 A1
20080120688 Oiu et al. May 2008 A1
20080125079 O'Neil et al. May 2008 A1
20080126287 Cox et al. May 2008 A1
20080127304 Ginter et al. May 2008 A1
20080130534 Tomioka Jun 2008 A1
20080130656 Kim et al. Jun 2008 A1
20080132201 Karlberg Jun 2008 A1
20080132268 Choi-Grogan et al. Jun 2008 A1
20080133727 Belqasmi Jun 2008 A1
20080134330 Kapoor et al. Jun 2008 A1
20080139210 Gisby et al. Jun 2008 A1
20080147454 Walker et al. Jun 2008 A1
20080160958 Abichandani et al. Jul 2008 A1
20080162637 Adamczyk et al. Jul 2008 A1
20080162704 Poplett et al. Jul 2008 A1
20080164304 Narasimhan et al. Jul 2008 A1
20080166993 Gautier et al. Jul 2008 A1
20080167027 Gautier et al. Jul 2008 A1
20080167033 Beckers Jul 2008 A1
20080168275 DeAtley et al. Jul 2008 A1
20080168523 Ansari et al. Jul 2008 A1
20080177998 Apsangi et al. Jul 2008 A1
20080178300 Brown et al. Jul 2008 A1
20080181117 Acke et al. Jul 2008 A1
20080183812 Paul et al. Jul 2008 A1
20080184127 Rafey et al. Jul 2008 A1
20080189760 Rosenberg et al. Aug 2008 A1
20080201266 Chua et al. Aug 2008 A1
20080207167 Bugenhagen Aug 2008 A1
20080212470 Castaneda et al. Sep 2008 A1
20080212751 Chung Sep 2008 A1
20080219268 Dennison Sep 2008 A1
20080221951 Forth et al. Sep 2008 A1
20080222692 Andersson et al. Sep 2008 A1
20080225748 Khemani et al. Sep 2008 A1
20080229385 Feder et al. Sep 2008 A1
20080229388 Maes Sep 2008 A1
20080235511 O'Brien et al. Sep 2008 A1
20080240373 Wilhelm Oct 2008 A1
20080250053 Aaltonen et al. Oct 2008 A1
20080256593 Vinberg et al. Oct 2008 A1
20080259924 Gooch et al. Oct 2008 A1
20080262798 Kim et al. Oct 2008 A1
20080263348 Zaltsman et al. Oct 2008 A1
20080268813 Maes Oct 2008 A1
20080270212 Blight et al. Oct 2008 A1
20080279216 Sharif-Ahmadi et al. Nov 2008 A1
20080282319 Fontijn et al. Nov 2008 A1
20080291872 Henriksson Nov 2008 A1
20080293395 Mathews et al. Nov 2008 A1
20080298230 Luft et al. Dec 2008 A1
20080305793 Gallagher et al. Dec 2008 A1
20080311885 Dawson et al. Dec 2008 A1
20080313315 Karaoguz et al. Dec 2008 A1
20080313730 Iftimie et al. Dec 2008 A1
20080316923 Fedders et al. Dec 2008 A1
20080318547 Ballou et al. Dec 2008 A1
20080318550 DeAtley Dec 2008 A1
20080319879 Carroll et al. Dec 2008 A1
20080320497 Tarkoma et al. Dec 2008 A1
20090005000 Baker et al. Jan 2009 A1
20090005005 Forstall et al. Jan 2009 A1
20090006116 Baker et al. Jan 2009 A1
20090006200 Baker et al. Jan 2009 A1
20090006229 Sweeney et al. Jan 2009 A1
20090013157 Beaule Jan 2009 A1
20090016310 Rasal Jan 2009 A1
20090017809 Jethi et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090042536 Bernard et al. Feb 2009 A1
20090044185 Krivopaltsev Feb 2009 A1
20090046707 Smires et al. Feb 2009 A1
20090046723 Rahman et al. Feb 2009 A1
20090047989 Harmon et al. Feb 2009 A1
20090048913 Shenfield et al. Feb 2009 A1
20090049156 Aronsson et al. Feb 2009 A1
20090049518 Roman et al. Feb 2009 A1
20090054030 Golds Feb 2009 A1
20090065571 Jain Mar 2009 A1
20090066999 Ito Mar 2009 A1
20090067372 Shah et al. Mar 2009 A1
20090068984 Burnett Mar 2009 A1
20090070379 Rappaport Mar 2009 A1
20090077622 Baum et al. Mar 2009 A1
20090079699 Sun Mar 2009 A1
20090113514 Hu Apr 2009 A1
20090125619 Antani May 2009 A1
20090132860 Liu et al. May 2009 A1
20090149154 Bhasin et al. Jun 2009 A1
20090157792 Fiatal Jun 2009 A1
20090163173 Williams Jun 2009 A1
20090172077 Roxburgh et al. Jul 2009 A1
20090180391 Petersen et al. Jul 2009 A1
20090181662 Fleischman et al. Jul 2009 A1
20090197585 Aaron Aug 2009 A1
20090197612 Kiiskinen Aug 2009 A1
20090203352 Fordon et al. Aug 2009 A1
20090217065 Araujo, Jr. Aug 2009 A1
20090217364 Salmela et al. Aug 2009 A1
20090219170 Clark et al. Sep 2009 A1
20090248883 Suryanarayana et al. Oct 2009 A1
20090254857 Romine et al. Oct 2009 A1
20090257379 Robinson et al. Oct 2009 A1
20090262715 Juang Oct 2009 A1
20090271514 Thomas et al. Oct 2009 A1
20090282127 Leblanc et al. Nov 2009 A1
20090286507 O'Neil et al. Nov 2009 A1
20090287921 Zhu et al. Nov 2009 A1
20090288140 Huber et al. Nov 2009 A1
20090291665 Gaskarth et al. Nov 2009 A1
20090299857 Brubaker Dec 2009 A1
20090307696 Vals et al. Dec 2009 A1
20090307746 Di et al. Dec 2009 A1
20090315735 Bhavani et al. Dec 2009 A1
20090320110 Nicolson et al. Dec 2009 A1
20100017506 Fadell Jan 2010 A1
20100020822 Zerillo et al. Jan 2010 A1
20100027469 Gurajala et al. Feb 2010 A1
20100027559 Lin et al. Feb 2010 A1
20100030890 Dutta et al. Feb 2010 A1
20100041364 Lott et al. Feb 2010 A1
20100041365 Lott et al. Feb 2010 A1
20100041391 Spivey et al. Feb 2010 A1
20100042675 Fujii Feb 2010 A1
20100043068 Varadhan et al. Feb 2010 A1
20100069074 Kodialam et al. Mar 2010 A1
20100071053 Ansari et al. Mar 2010 A1
20100075666 Gamer Mar 2010 A1
20100077035 Li et al. Mar 2010 A1
20100080202 Hanson Apr 2010 A1
20100082431 Ramer et al. Apr 2010 A1
20100088387 Calamera Apr 2010 A1
20100103820 Fuller et al. Apr 2010 A1
20100113020 Subramanian et al. May 2010 A1
20100121744 Belz et al. May 2010 A1
20100131584 Johnson May 2010 A1
20100142478 Forssell et al. Jun 2010 A1
20100144310 Bedingfield Jun 2010 A1
20100151866 Karpov et al. Jun 2010 A1
20100153781 Hanna Jun 2010 A1
20100167696 Smith et al. Jul 2010 A1
20100183132 Satyavolu et al. Jul 2010 A1
20100188975 Raleigh Jul 2010 A1
20100188990 Raleigh Jul 2010 A1
20100188992 Raleigh Jul 2010 A1
20100188994 Raleigh Jul 2010 A1
20100190469 Vanderveen et al. Jul 2010 A1
20100191576 Raleigh Jul 2010 A1
20100191612 Raleigh Jul 2010 A1
20100191846 Raleigh Jul 2010 A1
20100192170 Raleigh Jul 2010 A1
20100192212 Raleigh Jul 2010 A1
20100195503 Raleigh Aug 2010 A1
20100197268 Raleigh Aug 2010 A1
20100198698 Raleigh et al. Aug 2010 A1
20100198939 Raleigh Aug 2010 A1
20100235329 Koren et al. Sep 2010 A1
20100241544 Benson et al. Sep 2010 A1
20100248719 Scholaert Sep 2010 A1
20100284327 Miklos Nov 2010 A1
20100284388 Fantini et al. Nov 2010 A1
20100287599 He et al. Nov 2010 A1
20100311402 Srinivasan et al. Dec 2010 A1
20100325420 Kanekar Dec 2010 A1
20110004917 Saisa et al. Jan 2011 A1
20110013569 Scherzer et al. Jan 2011 A1
20110019574 Malomsoky et al. Jan 2011 A1
20110081881 Baker et al. Apr 2011 A1
20110082790 Baker et al. Apr 2011 A1
20110110309 Bennett May 2011 A1
20110126141 King et al. May 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110159818 Scherzer et al. Jun 2011 A1
20110173678 Kaippallimalil et al. Jul 2011 A1
20110177811 Heckman et al. Jul 2011 A1
20110182220 Black et al. Jul 2011 A1
20110185202 Black et al. Jul 2011 A1
20110244837 Murata et al. Oct 2011 A1
20110249668 Milligan et al. Oct 2011 A1
20110264923 Kocher et al. Oct 2011 A1
20110277019 Pritchard, Jr. Nov 2011 A1
20120011017 Wolcott et al. Jan 2012 A1
20120020296 Scherzer et al. Jan 2012 A1
20120144025 Melander et al. Jun 2012 A1
20120166364 Ahmad et al. Jun 2012 A1
20120196644 Scherzer et al. Aug 2012 A1
20120238287 Scherzer Sep 2012 A1
20130029653 Baker et al. Jan 2013 A1
20130058274 Scherzer et al. Mar 2013 A1
20130065555 Baker et al. Mar 2013 A1
20130072177 Ross et al. Mar 2013 A1
20130084835 Scherzer et al. Apr 2013 A1
20130144789 Aaltonen et al. Jun 2013 A1
20130225151 King et al. Aug 2013 A1
20130326356 Zheng et al. Dec 2013 A9
20140073291 Hildner et al. Mar 2014 A1
20140241342 Constantinof Aug 2014 A1
20150181628 Haverinen et al. Jun 2015 A1
Foreign Referenced Citations (105)
Number Date Country
2688553 Dec 2008 CA
1310401 Aug 2001 CN
1345154 Apr 2002 CN
1508734 Jun 2004 CN
1538730 Oct 2004 CN
1567818 Jan 2005 CN
101035308 Mar 2006 CN
1801829 Jul 2006 CN
1802839 Jul 2006 CN
1889777 Jul 2006 CN
101155343 Sep 2006 CN
1867024 Nov 2006 CN
1878160 Dec 2006 CN
1937511 Mar 2007 CN
101123553 Sep 2007 CN
101080055 Nov 2007 CN
101115248 Jan 2008 CN
101127988 Feb 2008 CN
101183958 May 2008 CN
101335666 Dec 2008 CN
101341764 Jan 2009 CN
101815275 Aug 2010 CN
1098490 May 2001 EP
1247411 Oct 2002 EP
1289326 Mar 2003 EP
1463238 Sep 2004 EP
1503548 Feb 2005 EP
1545114 Jun 2005 EP
1739518 Jan 2007 EP
1772988 Apr 2007 EP
1850575 Oct 2007 EP
1887732 Feb 2008 EP
1942698 Jul 2008 EP
1978772 Oct 2008 EP
2007065 Dec 2008 EP
2026514 Feb 2009 EP
3148713 Mar 2001 JP
2005339247 Dec 2005 JP
2006041989 Feb 2006 JP
2006155263 Jun 2006 JP
2006197137 Jul 2006 JP
2006344007 Dec 2006 JP
2007318354 Dec 2007 JP
2008301121 Dec 2008 JP
2009111919 May 2009 JP
2009212707 Sep 2009 JP
2009218773 Sep 2009 JP
2009232107 Oct 2009 JP
20040053858 Jun 2004 KR
100658566 81 May 2010 KR
1998058505 Dec 1998 WO
1999027723 Jun 1999 WO
1999065185 May 2001 WO
0208863 Jan 2002 WO
2002045315 Jun 2002 WO
2002067616 Aug 2002 WO
2002093877 Nov 2002 WO
03017065 Feb 2003 WO
2003014891 Feb 2003 WO
2003017063 Feb 2003 WO
2003017065 Feb 2003 WO
2003058880 Jul 2003 WO
2004028070 Apr 2004 WO
2004064306 Jul 2004 WO
2004095753 Jan 2005 WO
2005008995 Jan 2005 WO
2005053335 Jun 2005 WO
2005083934 Sep 2005 WO
2006004467 Jan 2006 WO
2006004784 Jan 2006 WO
2006012610 Feb 2006 WO
2006050758 May 2006 WO
2006077481 Jul 2006 WO
2006093961 Sep 2006 WO
2006120558 Nov 2006 WO
2006130960 Dec 2006 WO
2007001833 Jan 2007 WO
2007014630 Feb 2007 WO
2007018363 Feb 2007 WO
2007053848 May 2007 WO
2007068288 Jun 2007 WO
2007097786 Aug 2007 WO
2007107701 Sep 2007 WO
2007120310 Oct 2007 WO
2007124279 Nov 2007 WO
2007126352 Nov 2007 WO
2007129180 Nov 2007 WO
2007133844 Nov 2007 WO
2004077797 Feb 2008 WO
2008017837 Feb 2008 WO
2008051379 May 2008 WO
2008066419 Jun 2008 WO
2008080139 Jul 2008 WO
2008080430 Jul 2008 WO
2008099802 Aug 2008 WO
2009002949 Dec 2008 WO
2009008817 Jan 2009 WO
2009002949 Mar 2009 WO
2006073837 Apr 2009 WO
2007069245 Apr 2009 WO
2009091295 Jul 2009 WO
2010088413 Aug 2010 WO
2010128391 Nov 2010 WO
2010128391 Jan 2011 WO
2011002450 Jan 2011 WO
Non-Patent Literature Citations (63)
Entry
Rivadeneyra et al., “A communication architecture to access data services through GSM,” San Sebastian, Spain, 1998.
Ruckus Wireless—White Paper; “Smarter Wi-Fi for Mobile Operator Infrastructures” 2010.
Sabat, “The evolving mobile wireless value chain and market structure,” Nov. 2002.
Sadeh et al., “Understanding and Capturing People's Privacy Policies in a Mobile Social Networking Application,” ISR School of Computer Science, Carnegie Mellon University, 2007.
Schiller et al., “Location-Based Services,” The Morgan Kaufmann Series in Data Management Systems, 2004.
Sharkey, “Coding for Life-Battery Life, That Is,” May 27, 2009.
Steglich, Stephan, “1-Centric User Interaction,” Nov. 21, 2003.
Sun et al., “Towards Connectivity Management Adaptability: Context Awareness in Policy Representation and End-to-end Evaluation Algorithm,” Dept. of Electrical and Information Engineering, Univ. of Oulu, Finland, 2004.
Van Eijk, et al., “GigaMobile, Agent Technology for Designing Personalized Mobile Service Brokerage,” Jul. 1, 2002.
VerizonWireless.com news, “Verizon Wireless Adds to Portfolio of Cosumer-Friendly Tools With Introduction of Usage Controls, Usage Controls and Chaperone 2.0 Offer Parents Full Family Security Solution,” Aug. 18, 2008.
Windows? Power Management, published Apr. 2009.
Wireless Broadband Alliance, “WISPr 2.0, Apr. 8, 2010”; Doc. Ref. No. WBA/RM/WISPr, Version 01.00.
Zhu et al., “A Survey of Quality of Service in IEEE 802.11 Networks,” IEEE Wireless Communications, Aug. 2004.
“Ads and movies on the run,” the Gold Coast Bulletin, Southport, Qld, Jan. 29, 2008.
“ASA/PIX: Allow Split Tunneling for VPN Clients on the ASA Configuration Example,” Document ID 70917, Jan. 10, 2008.
“Communication Concepts for Mobile Agent Systems,” by Joachim Baumann et al.; Inst. of Parallel and Distributed High-Performance Systems, Univ. of Stuttgart, Germany, pp. 123-135, 1997.
“End to End QoS Solution for Real-time Multimedia Application;” Computer Engineering and Applications, 2007, 43 (4):155-159, by Tan Zu-guo, Wang Wen-juan; Information and Science School, Zhanjian Normal College, Zhan jiang, Guangdong 524048, China.
“Jentro Technologies launches Zenlet platform to accelerate location-based content delivery to mobile devices,” The Mobile Internet, Boston, MA, Feb. 2008.
“The Construction of Intelligent Residential District in Use of Cable Television Network,” Shandong Science, vol. 13, No. 2, Jun. 2000.
3rd Generation Partnership Project, “Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access,” Release 8, Document No. 3GPP TS 23.401, V8.4.0, Dec. 2008.
3rd Generation Partnership Project, “Technical Specification Group Services and System Aspects; Policy and Charging Control Architecture,” Release 8, Document No. 3GPP TS 23 203, V8.4.0, Dec. 2008.
Accuris Networks, “The Business Value of Mobile Data Offload—a White Paper”, 2010.
Ahmed et al., “A Context-Aware Vertical Handover Decision Algorithm for Multimode Mobile Terminals and Its Performance,” BenQ Mobile, Munich Germany; University of Klagenfurt, Klagenfurt, Austria; 2006.
Alonistioti et al., “Intelligent Architectures Enabling Flexible Service Provision and Adaptability,” 2002.
Amazon Technologies, Inc., “Kindle™ User's Guide,” 3rd Edition, Copyright 2004-2009.
Android Cupcake excerpts, The Android Open Source Project, Feb. 10, 2009.
Anton, B. et al., “Best Current Practices for Wireless Internet Service Provider (WISP) Roaming”; Release Date Feb. 2003, Version 1.0; Wi-Fi Alliance—Wireless ISP Roaming (WISPr).
Blackberry Mobile Data System, version 4.1, Technical Overview, 2006.
Byrd, “Open Secure Wireless,” May 5, 2010.
Chandrasekhar et al., “Femtocell Networks: A Survey,” Jun. 28, 2008.
Chaouchi et al., “Policy Based Networking in the Integration Effort of 4G Networks and Services,” 2004 IEEE.
Cisco Systems, Inc., “Cisco Mobile Exchange (CMX) Solution Guide: Chapter 2—Overview of GSM, GPRS, and UMTS,” Nov. 4, 2008.
Client Guide for Symantec Endpoint Protection and Symantec Network Access Control, 2007.
Dikaiakos et al., “A Distributed Middleware Infrastructure for Personalized Services,” Nov. 24, 2003.
Dixon et al., Triple Play Digital Services: Comcast and Verizon (Digital Phone, Television, and Internet), Aug. 2007.
Droid Wall 1.3.7 description 20100428 obtained from https://www.freewarelovers.com/android/apps/droid-wall.
Ehnert, “Small application to monitor IP trafic on a Blackberry—1.01.03 ”, Mar. 27, 2008; http://www.ehnert.net/MiniMoni/.
European Commission, “Data Roaming Tariffs—Transparency Measures,” obtained from EUROPA—Europe's Information Society Thematic Portal website, Jun. 24, 2011: “http://ec.europa.eu/information_society/activities/roaming/data/measures/index_en.htm.”.
Farooq et al., “An IEEE 802.16 WiMax Module for the NS-3 Simulator,” Mar. 2-6, 2009.
Fujitsu, “Server Push Technology Survey and Bidirectional Communication in HTTP Browser,” Jan. 9, 2008 (JP).
Han et al., “Information Collection Services for Qos-Aware Mobile Applications,” 2005.
Hartmann et al., “Agent-Based Banking Transactions & Information Retrieval—What About Performance Issues?” 1999.
Hewlett-Packard Development Company, LP, “IP Multimedia Services Charging,” white paper, Jan. 2006.
Hossain et al., “Gain-Based Selection of Ambient Media Services in Pervasive Environments,” Mobile Networks and Applications. Oct. 3, 2008.
Jing et al., “Client-Server Computing in Mobile Environments,” GTE Labs. Inc., Purdue University, ACM Computing Surveys, vol. 31, No. 2, Jun. 1999.
Kasper et al., “Subscriber Authentication in mobile cellular Networks with virtual software SIM Credentials using Trusted Computing,” Fraunhofer-Institute for Secure Information Technology SIT, Darmstadt, Germany; ICACT 2008.
Kassar et al., “An overview of vertical handover decision strategies in heterogeneous wireless networks,” ScienceDirect, University Pierre & Marie Curie, Paris, France, Jun. 5, 2007.
Kim, “Free wireless a high-wire act; MetroFi needs to draw enough ads to make service add profits,” San Francisco Chronicle, Aug. 21, 2006.
Knight et al., “Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standarization Efforts,” IEEE Communications Magazine, Jun. 2004.
Koutsopoulou et al., “Charging, Accounting and Billing Management Schemes In Mobile Telecommunication Networks and the Internet,” IEEE Communications Surveys & Tutorials, First Quarter 2004, vol. 6, No. 1.
Koutsopoulou et al., “Middleware Platform for the Support of Charging Reconfiguration Actions,” 2005.
Kuntze et al., “Trustworthy content push,” Fraunhofer-Institute for Secure Information Technology SIT; Germany; WCNC 2007 proceedings, IEEE.
Kyriakakos et al., “Ubiquitous Service Provision in Next Generation Mobile Networks,” Proceedings of the 13th IST Mobile and Wireless Communications Summit, Lyon, France, Jun. 2004.
Li, Yu, “Dedicated E-Reading Device: The State of the Art and The Challenges,” Scroll, vol. 1, No. 1, 2008.
Loopt User Guide, metroPCS, Jul. 17, 2008.
Muntermann et al., “Potentiale und Sicherheitsanforderungen mobiler Finanzinformationsdienste und deren Systeminfrastrukturen,” Chair of Mobile Commerce & Multilateral Security, Goethe Univ. Frankfurt, 2004.
NetLimiter Lite 4.0.19.0; http://www.heise.de/download/netlimiter-lite-3617703.html from vol. 14/2007.
Nilsson et al., “A Novel MAC Scheme for Solving the QoS Parameter Adjustment Problem in IEEE802.11e EDCA,” Feb. 2006.
Nuzman et al., “A compund model for TCP connection arrivals for LAN and WAN applications,” Oct. 22, 2002.
Open Mobile Alliance (OMA), Push Architecture, Candidate Version 2.2; Oct. 2, 2007; OMA-AD-Push-V2_2-20071002-C.
Oppliger, Rolf, “Internet Security: Firewalls and Bey,” Communications of the ACM, May 1997, vol. 40. No. 5.
Rao et al., “Evolution of Mobile Location-Based Services,” Communication of the ACM, Dec. 2003.
Richtel, “Cellphone consumerism; If even a debit card is too slow, now you have a new way to act on impulse [National Edition],” National Post, Canada, Oct. 2, 2007.
Related Publications (1)
Number Date Country
20210152441 A1 May 2021 US
Provisional Applications (6)
Number Date Country
61237753 Aug 2009 US
61275208 Aug 2009 US
61207739 Feb 2009 US
61207393 Feb 2009 US
61206944 Feb 2009 US
61206354 Jan 2009 US
Continuations (6)
Number Date Country
Parent 16272198 Feb 2019 US
Child 17106648 US
Parent 15400768 Jan 2017 US
Child 16272198 US
Parent 14612073 Feb 2015 US
Child 15400768 US
Parent 14256593 Apr 2014 US
Child 14612073 US
Parent 13588965 Aug 2012 US
Child 14256593 US
Parent 12695020 Jan 2010 US
Child 13588965 US
Continuation in Parts (1)
Number Date Country
Parent 12380780 Mar 2009 US
Child 12695020 US