Add-in card to backplane connecting apparatus

Abstract
In one embodiment of the invention, the apparatus includes a socket connector to connect to a backplane to receive an electronic device. The socket connector includes a plurality of pairs of signal contacts to receive signals from the electronic device, and a plurality of ground frames to ground the electronic device. The ground frames are to connect to a ground plane of the electronic device. The socket connector also includes a set of one or more ground pins to connect to the ground plane, wherein each one of the set is between each of the pairs of signal contacts.
Description


BACKGROUND

[0001] 1. Field


[0002] Embodiments of the invention relate to the field of electrical connectors, and more specifically, to add-in card to backplane connectors.


[0003] 2. Background


[0004] Driven by increasing bandwidth demands, computer bus speeds continue to increase. Currently, numerous buses operate at multiple Gigabits per second. These multiple Gigabit buses demand relatively high connector performance. In particular, as bus speeds increase, relatively high connector cross-talk performance becomes increasingly difficult to achieve at relatively reasonable costs. For example, it is typically difficult to achieve 1-3% crosstalk at multiple Gigabit frequencies, while keeping productions costs to a relatively reasonable level.


[0005] Currently, relatively high performance backplane connectors achieve relatively low cross-talk using ground planes and ground pins to isolate electromagnetic fields. For example, pin-and-socket type backplane connectors employ both internal ground planes and ground pins. Beam-and-blade board-to-board type connectors also employ internal ground planes to reduce crosstalk. However, these internal ground plane connectors are not suitable for use in desktop computers because of their relatively high cost and unsuitable form factor.


[0006] Another prior art connector type uses multi-level contacts for reducing crosstalk. FIG. 1 illustrates a prior art socket for receiving prior art add-in cards. In FIG. 1, the socket 100 includes a housing 102. Inside the housing 102, the socket includes a first row of low-level ground contacts 104 for grounding an add-in card. The socket also includes a second row of high-level signal and ground contacts 106. In the second row of contacts, at certain intervals, the high-level signal contacts are separated by high-level ground contacts to reduce crosstalk between the signal contacts.


[0007]
FIG. 2 illustrates a prior art add-in card. In FIG. 2, a prior art add-in card 200 includes two sets of edge fingers 202. Each set of edge fingers 202 includes a row of low-level ground contacts 204, which make contact with the socket's low-level ground contacts 104, when the add-in card 200 is plugged into the socket 100. Each edge finger set also includes a row of high-level signal and ground contacts 206, which mate (i.e., make contact with) with the socket's high-level signal and ground contacts 106, when the add-in card 200 is plugged into the socket 100.


[0008] As shown in FIG. 1, one disadvantage of the prior art socket 100 is that its adjacent signal contacts are not always uniform. As such, delay errors can be introduced into signals passing through the signal contacts 106. Another disadvantage of the prior art socket is that the low-level ground contacts 104 do not provide effective crosstalk protection at high bus speeds.







BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The invention may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the invention. In the drawings:


[0010]
FIG. 1 illustrates a prior art socket for receiving prior art add-in cards.


[0011]
FIG. 2 illustrates a prior art add-in card.


[0012]
FIG. 3 is a cross-sectional view of a connector socket, according to embodiments of the invention;


[0013]
FIG. 4 illustrates a layout of ground pins and signal contacts, according to embodiments of the invention.


[0014]
FIG. 5 is an angled view of a ground frame, according to embodiments of the invention;


[0015]
FIG. 6 is a side view of an add-in card including a ground bar, according to embodiments of the present invention; and


[0016]
FIG. 7 is a computer system including a socket connector and add-in card, according to embodiments of the invention.







DETAILED DESCRIPTION

[0017] In the following description, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.


[0018]
FIG. 3 is a cross-sectional view of a connector socket, according to embodiments of the invention. The connector socket 300 is to be connected to a backplane, motherboard, or other circuit board, as described in more detail below. As shown in FIG. 3, the connector socket 300 includes a socket housing 302, which provides structural support for the components contained therein. The socket housing 302 can be made from any suitable material. For example, in one embodiment of the invention, the housing is made of thermoplastics. The connector socket housing 302 contains signal contacts 304, which send and/or receive signals to/from an add-in card. In one embodiment of the invention, the signal contacts 304 receive differential signals. A differential signal is a signal that is phase shifted one hundred eighty degrees and carried on two separate conductors. Moreover, differential signals are typically transmitted together over conductors having substantially the same length. The signal contacts 304 can be made from any suitable conductive material. For example, the signal contacts 304 can be made from copper alloys or other suitable conducting metals, plated with gold or other surface finishing materials. In one embodiment of the invention, the signal contacts 304 are surface-mounted to a backplane. For example, the signal contacts 304 are soldered to a backplane mounting pad. A backplane mounting pad can be an exposed metal surface of the backplane (e.g., a section of the backplane where solder mask has been etched away to expose a metal surface) with suitable finishing for solderability. In one embodiment of the invention, the backplane mounting pad can be connected to a high-speed signal line that runs on the surface of the backplane. Alternatively, the backplane mounting pad can be connected to a signal line disposed within the backplane using vias. Vias are conducting lines in form of through-holes that run transverse to the mounting plane, connecting surface lines, pads, etc. to lines, pads, etc. contained within the backplane.


[0019] The connector socket 300 also includes ground frames 308, which are disposed within the socket housing 302. The ground frames 308 are to be connected to a backplane's ground plane 306 to ground the ground frame 308. As shown in FIG. 3, in one embodiment of the invention, the ground frames 308 act as shields to isolate the signal contacts 304, preventing crosstalk between opposing signal contacts 304 (i.e., preventing crosstalk between the signal contacts 304 on the left with those on the right). The ground frames 308 also aid in keeping the impedance of the socket connector 300 substantially constant. In one embodiment of the invention, the ground frames 308 are shaped to provide a substantially constant geometry in relation to the signal contacts 304. The ground frames 308 will be described in more detail below, with reference to FIG. 5.


[0020] An add-in card 310 is shown in FIG. 3 to illustrate how the signal contacts 304 and the ground frames 308 contact the add-in card 310, although it is not part of the connector socket 300. As shown in FIG. 3, the signal contacts 304 are taller than the ground frames 308; therefore the signal contacts 304 and ground frames 308 mate with the add-in card 308 at different heights. The socket 300 also includes ground pins, which are not illustrated in FIG. 3. In one embodiment of the invention, the ground pins are identical in form to the signal contacts 304. That is, the ground pins are identically disposed within the socket housing 302 and are of an identical size. Alternatively, the ground pins may not be identical to the signal contacts 304. In one embodiment of the invention, the ground pins are to make contact with the add-in card 310 at the same height as the signal contacts 304. The ground pins are interspersed between the signal contacts 304, as shown in FIG. 4.


[0021]
FIG. 4 illustrates a layout of ground pins and signal contacts, according to embodiments of the invention. FIG. 4 will be described with reference to the exemplary socket connector of FIG. 3. As shown in FIG. 4, in one embodiment of the invention, each ground pin 402 separates a pair of signal contacts 304. In an alternative embodiment of the invention, there is more than one ground pin separating the signal contacts. In one embodiment of the invention, each pair of signal contacts 304 transmits and/or receives differential signals, as noted above. The ground pins 402 are to be connected to the ground plane 306 (not shown). In one embodiment of the invention, the ground pins 402 are made of copper alloy platted with gold, while other embodiments of the invention call for other suitable materials. Different embodiments of the invention call for varying numbers of signal contacts 304 and ground pins 402.


[0022]
FIG. 5 is an angled view of a ground frame, according to embodiments of the invention. In FIG. 5, the ground frame 308 is shown outside the socket housing 302. FIG. 5 will be described with reference to the exemplary socket of FIG. 3. In one embodiment of the invention, the ground frame 308 is approximately one inch long. However, the ground frame 308 can be longer or shorter, according to alternative embodiments of the invention. In one embodiment of the invention, referring to FIG. 4, each ground frame 308 spans the length of two ground pins 402 and two of signal contacts 304. As shown in FIG. 5, the ground frame 308 includes a ground frame body 502, which is the largest component of the ground frame 308.


[0023] As shown in FIG. 5, in one embodiment of the invention, the ground frame body 502 is contoured into an hourglass-like shape to form a contact area 504. The contact area 504, which is to make contact with an add-in card 310, is located along the ground frame body's inner surface. According to alternative embodiments of the invention, the ground frame 308 can be any suitable shape, so long as it can make suitable contact with appropriate areas of the add-in card 310.


[0024] The ground frame 308 also includes gaps 508 between the ground frame body 502 and its end pieces 510. In an alternative embodiment of the invention, the ground frame body 502 does not include the gaps 508 and end pieces 510 (i.e., the ground frame body is one continuous structure without gaps). The ground frame 308 also includes mounting tails 506 attached to the ground frame body 502. As shown in FIG. 5, the mounting tails 506 are located underneath the base of the ground frame body 502. In one embodiment of the invention, the ground frame 308 is inexpensively made from a single piece of sheet metal, where parts of the ground frame body 502 have been cut and shaped into the mounting tails 506. In one embodiment of the invention, the sheet metal is a copper alloy. In one embodiment of the invention, the contact area 504 is plated with gold, tin, or other suitable conductive material. The mounting tails 506 are to be connected to a ground plane 306 of a backplane, motherboard, or other circuit board, as noted above. In one embodiment of the invention, the mounting tails 506 are to be through-hole soldered to the backplane, connecting the ground frame 308 to the backplane's ground plane 306. In one embodiment of the invention, the ground frame 308 is through-hole soldered to the backplane by the paste-in-hole process. In an alternative embodiment of the invention, the ground frame 308 is mounted to the backplane by a press-fit process. Different embodiments of the invention call for varying numbers of ground frames 308.


[0025]
FIG. 6 is a side view of an add-in card including a ground bar, according to embodiments of the invention. FIG. 6 will be described with reference to the exemplary socket connector of FIGS. 3 and 4. As shown in FIG. 6, the add-in card 600 includes a number of pairs of signal pads 602 to transmit and/or receive signals to/from a backplane. In one embodiment of the invention, the signal pads 602 transmit and/or receive differential signals. In particular, the signal pads 602 are to mate with the signal contacts 304 of the connector socket 300.


[0026] The add-in card 600 also includes a ground bar 604, which is connected to a ground plane (not shown) disposed within the add-in card 600. In one embodiment of the invention the ground bar 604 is connected to the add-in card ground plane by vias 610. In one embodiment of the invention, a via 610 is located at every place a where a ground pad 608 is connected to the ground bar 604. Alternatively, the vias can be at the top of the ground pads 608 or spaced at other points on the ground bar 604. As shown in FIG. 6, in one embodiment of the invention, the ground bar 604 is one continuous piece of metal. In an alternative embodiment of the invention, the ground bar 604 includes a number of interconnected metal pads. The add-in card 600 also includes ground pads 608, which are perpendicularly oriented relative to the ground bar 604, as shown in FIG. 6. The ground pads 608 are connected to the ground bar 604. In one embodiment of the invention, the ground pads 608 are made of copper alloy platted with gold. However, alternative embodiments of the invention call for other suitable materials. The ground pads 608 help to substantially reduce crosstalk on the same side of the add-in card 600. In particular, when the ground pads 608 mate with the ground pins 404, the connection isolates the signal contacts 304, substantially reducing crosstalk between adjacent pairs of signal contacts 304.


[0027]
FIG. 7 illustrates an exemplary system comprising a socket connector and add-in card, according to embodiments of the invention. Although described in the context of system 700, the present invention may be implemented in any suitable computer system comprising one or more integrated circuits.


[0028] As illustrated in FIG. 7, computer system 700 comprises a circuit board 701, on which the following components are arranged. The computer system includes processor(s) 702. Computer system 700 also includes a memory 732, processor bus 710 and input/output controller hub (ICH) 740. The processor(s) 702, memory 732 and ICH 740 are coupled to the processor bus 710. The processor(s) 702 may comprise any suitable processor architecture and for one embodiment of the invention comprise an Intel® Architecture used, for example, in the Pentium® family of processors available from Intel® Corporation of Santa Clara, Calif. For other embodiments of the invention, computer system 700 may comprise one, two, three, or more processors, any of which may execute a set of instructions that are in accordance with embodiments of the present invention.


[0029] The memory 732 stores data (e.g., image data) and/or instructions, and may comprise any suitable memory, such as a dynamic random access memory (DRAM), for example. A graphics controller 734 controls the display of information display device 736.


[0030] The input/output controller hub (ICH) 740 provides an interface to I/O devices or peripheral components for computer system 700. The ICH 740 may comprise any suitable interface controllers to provide for any suitable communication link to the processor(s) 702, memory 732 and/or to any suitable device or component in communication with the ICH 740. For one embodiment of the invention, the ICH 740 provides suitable arbitration and buffering for each interface. The ICH 740 is also connected to an add-in card 400. In one embodiment of the invention, the add-in card 400 is connected to the circuit board 701 with a socket connector 300.


[0031] For one embodiment of the invention, the ICH 740 provides an interface to one or more suitable integrated drive electronics (IDE) drives 742, such as a hard disk drive (HDD) or compact disc read only memory (CD ROM) drive for example, to store data and/or instructions for example, one or more suitable universal serial bus (USB) devices through one or more USB ports 744. For one embodiment of the invention, the ICH 740 also provides an interface to a keyboard 751, a mouse 752, a floppy disk drive 755, one or more suitable devices through one or more parallel ports 753 (e.g., a printer), and one or more suitable devices through one or more serial ports 754.


[0032] Thus an add-in card to backplane connecting apparatus has been described. While the invention has been described in terms of several embodiments, those skilled in the art will recognize that the invention is not limited to the embodiments described, can be practiced with modification and alteration within the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting.


Claims
  • 1. An apparatus comprising: a socket connector to connect to a backplane and to receive an electronic device, the socket connector including, a plurality of pairs of signal contacts to receive signals from the electronic device; a set of one or more ground frames to connect to a ground plane of the backplane; and a plurality of ground pins to connect to the ground plane, wherein one of the ground pins is between each of the pairs of signal contacts.
  • 2. The apparatus of claim 1, wherein each of the ground frames is approximately one inch long.
  • 3. The apparatus of claim 1, wherein the electronic device is an add-in card.
  • 4. The apparatus of claim 3, wherein the ground frames are to be through-hole soldered to the add-in card.
  • 5. The apparatus of claim 1, wherein the ground frames are formed from sheet metal.
  • 6. The apparatus of claim 1, wherein the signal contacts are to receive differential signals.
  • 7. An apparatus comprising: an add-in card including, a plurality of pairs of signal pads to transmit signals; a ground bar connected to a ground plane of the add-in card; and a plurality of ground pads connected to the ground bar, wherein one of the ground pads is between each of the pairs of signal pads.
  • 8. The apparatus of claim 7, wherein the signal pads transmit differential signals.
  • 9. The apparatus of claim 7, wherein the ground bar is to be connected to the ground plane by a set of one or more vias.
  • 10. An apparatus comprising: a first set of one or more of ground frames connected to a backplane; a ground bar connected to an add-in card, the ground bar coupled to the set of ground frames; a plurality of pairs of signal contacts connected to the backplane, wherein each pair of signal contacts is separated by a ground pin, wherein the ground pin is connected to the backplane; a plurality of pairs of signal pads coupled to the add-in card, wherein the pairs of signal pads are coupled to the pairs of signal contacts; and a plurality of ground pads coupled to the ground bar, wherein the ground pads are coupled to the ground pins, and wherein one of the ground pads is between each pair of the signal pads.
  • 11. The apparatus of claim 10, wherein the ground bar is connected to a first ground plane of the add-in card.
  • 12. The apparatus of claim 10, where the ground frames are connected to a second ground plane of the backplane.
  • 13. The apparatus of claim 10, wherein the backplane includes a processor.
  • 14. The apparatus of claim 10, wherein the ground frames are approximately one inch long.
  • 15. A system comprising: a circuit board; a random access memory unit coupled to the circuit board; a processor coupled to the circuit board and coupled to the random access memory unit; a socket connector coupled to the circuit board, the socket connector including, a plurality of pairs of signal contacts to receive signals from an electronic device; a set of one or more ground frames coupled to a ground plane of the circuit board; and a plurality of ground pins coupled to the ground plane, wherein one of the ground pins is between each of the pairs of signal contacts.
  • 16. The system of claim 15, wherein the ground frames are approximately one inch long.
  • 17. The system of claim 15, wherein the electronic device is an add-in card.
  • 18. The system of claim 15, wherein the ground frames are though-hole soldered to the circuit board.
  • 19. The system of claim 15, wherein the ground frames are formed from sheet metal.
  • 20. The system of claim 15 further comprising: an add-in card coupled to the socket connector, the add-in card including, a plurality of pairs of signal pads to transmit signals; a ground bar; and a plurality of ground pads connected to the ground bar, wherein one of the ground pads is between each of the pairs of signal pads.
  • 21. A method compising: receiving differential signals from an add-in card, wherein the differential signals are received by a plurality of pairs of signal contacts disposed within a socket connector, wherein the socket connector is coupled with a circuit board, wherein each of the pairs of signal contacts is separated by a ground pin; and grounding electricity through a set of one or more ground frames disposed within the socket connector, wherein the ground frames are connected to a ground plane of the circuit board.
  • 22. The method of claim 21, wherein the ground frames are approximately one inch long.
  • 23. The method of claim 22, wherein the ground frames are formed from sheet metal.