Additive manufacturing processes and additively manufactured products

Information

  • Patent Grant
  • 11426818
  • Patent Number
    11,426,818
  • Date Filed
    Friday, August 9, 2019
    5 years ago
  • Date Issued
    Tuesday, August 30, 2022
    2 years ago
  • Inventors
  • Original Assignees
    • The Research Foundation for The State University (Binghamton, NY, US)
  • Examiners
    • Mehta; Ratisha
    Agents
    • Hoffberg & Associates
    • Hoffberg; Steven M.
Abstract
A technique to additively print onto a dissimilar material, especially ceramics and glasses (e.g., semiconductors, graphite, diamond, other metals) is disclosed herein. The technique enables manufacture of heat removal devices and other deposited structures, especially on heat sensitive substrates. It also enables novel composites through additive manufacturing. The process enables rapid bonding, orders-of-magnitude faster than conventional techniques.
Description
FIELD OF THE INVENTION

The present invention relates to the field of additive manufacturing, and more particularly to additive manufacturing by controlled focused energy (e.g., laser or electron-beam) melting of particles, on a dissimilar substrate, specifically glasses and ceramics.


BACKGROUND OF THE INVENTION

Each reference cited herein is expressly incorporated by reference in its entirety, for all purposes.


Additive manufacturing is well known. See the following U.S. patents and published patent applications; U.S. Pat. Nos. 10,000,023; 10,005,227; 10,005,228; 10,005,230; 10,005,237; 10,011,076; 10,011,089; 10,011,352; 10,016,262; 10,016,661; 10,016,942; 10,018,937; 10,022,614; 10,023,739; 10,029,422; 10,029,424; 10,029,461; 10,035,306; 10,035,920; 10,039,195; 10,040,239; 10,040,240; 10,040,250; 10,040,252; 10,040,810; 10,045,835; 10,046,494; 10,046,521; 10,046,524; 10,052,159; 10,052,691; 10,054,530; 10,058,920; 10,059,053; 10,059,057; 10,059,092; 10,059,595; 10,060,217; 10,061,221; 10,064,745; 10,065,270; 10,065,367; 10,065,371; 10,068,863; 10,071,422; 10,076,875; 10,076,876; 10,081,129; 10,086,564; 10,087,556; 10,089,413; 10,091,891; 10,093,039; 10,096,537; 10,099,309; 10,099,427; 10,105,902; 10,105,906; 10,112,345; 10,112,379; 10,118,054; 10,118,337; 10,123,807; 10,124,408; 10,124,410; 10,124,532; 10,124,539; 10,131,088; 10,131,131; 10,132,578; 10,135,109; 10,136,689; 10,137,634; 10,137,636; 10,137,642; 10,144,178; 10,144,205; 10,144,828; 10,144,840; 10,145,271; 10,149,505; 10,150,258; 10,151,049; 10,151,377; 10,153,608; 10,155,882; 10,156,185; 10,157,503; 10,160,061; 10,160,193; 10,172,400; 10,173,945; 10,174,205; 10,174,276; 10,179,640; 10,182,869; 10,183,330; 10,183,443; 10,183,477; 10,189,057; 10,189,114; 10,189,204; 10,189,210; 10,189,239; 10,190,244; 10,190,955; 10,195,629; 10,195,693; 10,200,834; 10,201,409; 10,201,931; 4,748,085; 4,863,538; 4,938,816; 4,944,817; 5,053,090; 5,076,869; 5,132,143; 5,147,587; 5,155,321; 5,155,324; 5,156,697; 5,182,170; 5,207,371; 5,281,789; 5,296,062; 5,316,580; 5,382,308; 5,431,967; 5,433,280; 5,544,550; 5,597,589; 5,616,294; 5,622,577; 5,639,070; 5,730,925; 5,957,006; 6,046,426; 6,085,122; 6,143,378; 6,144,008; 6,202,734; 6,215,093; 6,261,493; 6,341,952; 6,391,251; 6,397,922; 6,454,811; 6,459,069; 6,476,343; 6,583,379; 6,596,224; 6,629,559; 6,676,892; 6,730,252; 6,756,561; 6,767,499; 6,811,744; 6,814,823; 6,830,643; 6,925,346; 6,930,278; 6,995,334; 7,020,539; 7,034,246; 7,043,330; 7,045,738; 7,212,095; 7,305,367; 7,537,664; 7,695,248; 7,705,264; 7,716,802; 7,777,155; 7,968,026; 8,021,138; 8,071,007; 8,124,245; 8,211,226; 8,268,099; 8,268,100; 8,326,024; 8,359,744; 8,372,330; 8,375,581; 8,383,985; 8,387,229; 8,394,168; 8,457,930; 8,479,393; 8,480,754; 8,488,994; 8,509,933; 8,513,562; 8,535,049; 8,546,717; 8,556,981; 8,556,983; 8,575,513; 8,598,523; 8,606,540; 8,610,761; 8,617,661; 8,623,026; 8,642,965; 8,666,142; 8,671,726; 8,678,802; 8,685,520; 8,690,472; 8,691,333; 8,718,522; 8,728,387; 8,728,807; 8,735,773; 8,740,598; 8,746,013; 8,753,105; 8,775,133; 8,790,858; 8,801,418; 8,809,780; 8,821,060; 8,822,875; 8,826,511; 8,828,311; 8,844,877; 8,875,976; 8,879,957; 8,906,107; 8,915,728; 8,916,085; 8,926,706; 8,931,171; 8,931,880; 8,952,678; 8,974,539; 8,985,497; 8,986,234; 8,992,703; 9,020,788; 9,023,566; 9,029,058; 9,034,048; 9,061,465; 9,073,150; 9,073,260; 9,073,261; 9,073,262; 9,075,409; 9,079,248; 9,079,355; 9,079,386; 9,090,428; 9,102,099; 9,107,725; 9,112,272; 9,114,478; 9,114,567; 9,120,270; 9,126,365; 9,126,367; 9,133,429; 9,141,015; 9,144,940; 9,144,961; 9,149,952; 9,149,988; 9,156,205; 9,156,240; 9,157,465; 9,157,735; 9,168,697; 9,180,010; 9,186,270; 9,186,846; 9,186,848; 9,192,990; 9,192,999; 9,196,760; 9,199,044; 9,199,345; 9,204,945; 9,205,204; 9,211,669; 9,221,100; 9,222,932; 9,227,339; 9,227,365; 9,228,859; 9,233,506; 9,248,611; 9,254,535; 9,269,520; 9,278,483; 9,279,328; 9,283,593; 9,296,039; 9,296,129; 9,302,338; 9,308,583; 9,308,691; 9,310,188; 9,315,043; 9,320,620; 9,326,780; 9,327,056; 9,327,350; 9,327,447; 9,327,452; 9,327,453; 9,332,251; 9,341,467; 9,346,116; 9,346,127; 9,347,770; 9,352,421; 9,358,350; 9,364,888; 9,369,259; 9,370,896; 9,375,298; 9,375,782; 9,387,079; 9,390,312; 9,399,256; 9,399,264; 9,399,321; 9,403,235; 9,406,483; 9,414,501; 9,415,438; 9,419,502; 9,421,715; 9,423,756; 9,439,767; 9,440,397; 9,442,105; 9,442,395; 9,446,475; 9,452,474; 9,452,489; 9,453,142; 9,456,777; 9,456,901; 9,457,428; 9,457,521; 9,460,557; 9,463,506; 9,481,931; 9,482,103; 9,482,974; 9,486,878; 9,486,944; 9,486,964; 9,499,779; 9,507,061; 9,507,274; 9,508,667; 9,511,543; 9,511,547; 9,512,544; 9,517,134; 9,523,934; 9,527,165; 9,527,240; 9,527,242; 9,527,244; 9,527,246; 9,528,705; 9,528,902; 9,533,350; 9,533,372; 9,533,450; 9,533,485; 9,533,526; 9,543,116; 9,545,669; 9,555,475; 9,555,612; 9,556,415; 9,557,331; 9,557,661; 9,561,622; 9,561,623; 9,566,758; 9,570,789; 9,573,193; 9,573,224; 9,573,225; 9,578,695; 9,579,718; 9,579,829; 9,579,851; 9,583,856; 9,586,285; 9,586,290; 9,586,298; 9,586,364; 9,587,317; 9,592,530; 9,598,606; 9,603,711; 9,604,280; 9,617,865; 9,623,512; 9,625,156; 9,626,608; 9,636,229; 9,636,769; 9,636,770; 9,636,775; 9,636,868; 9,642,727; 9,643,281; 9,643,361; 9,649,690; 9,656,429; 9,662,840; 9,664,504; 9,664,505; 9,669,583; 9,676,145; 9,676,159; 9,676,963; 9,682,166; 9,688,028; 9,690,286; 9,694,423; 9,694,545; 9,696,142; 9,707,717; 9,708,440; 9,713,843; 9,714,318; 9,715,563; 9,718,127; 9,720,363; 9,721,384; 9,721,755; 9,731,377; 9,732,239; 9,737,934; 9,744,722; 9,744,730; 9,751,610; 9,757,802; 9,764,418; 9,764,515; 9,765,727; 9,770,758; 9,770,760; 9,770,866; 9,771,400; 9,771,629; 9,772,621; 9,775,680; 9,776,243; 9,776,282; 9,776,376; 9,777,385; 9,782,932; 9,782,935; 9,783,718; 9,783,885; 9,785,064; 9,788,600; 9,795,541; 9,796,048; 9,802,253; 9,808,991; 9,815,118; 9,815,139; 9,815,268; 9,821,399; 9,821,411; 9,821,546; 9,822,045; 9,827,754; 9,828,679; 9,833,839; 9,833,949; 9,833,987; 9,836,883; 9,838,018; 9,839,977; 9,849,510; 9,849,543; 9,850,172; 9,855,369; 9,855,625; 9,855,698; 9,861,452; 9,862,146; 9,868,255; 9,869,734; 9,873,180; 9,873,228; 9,873,281; 9,873,761; 9,877,790; 9,878,497; 9,882,111; 9,885,987; 9,890,091; 9,896,944; 9,897,513; 9,902,112; 9,902,588; 9,903,214; 9,903,574; 9,904,223; 9,915,583; 9,919,111; 9,919,112; 9,919,273; 9,919,360; 9,919,361; 9,919,479; 9,920,433; 9,922,759; 9,925,714; 9,925,724; 9,926,427; 9,931,695; 9,931,697; 9,931,814; 9,932,841; 9,933,718; 9,937,580; 9,943,981; 9,944,021; 9,945,032; 9,950,367; 9,950,465; 9,953,899; 9,956,047; 9,956,048; 9,956,107; 9,956,612; 9,9567,25; 9,956,727; 9,959,613; 9,962,767; 9,969,000; 9,969,153; 9,969,930; 9,970,824; 9,975,179; 9,975,199; 9,975,296; 9,975,323; 9,981,425; 9,982,164; 9,982,684; 9,987,798; 9,987,804; 9,988,720; 9,993,976; 9,993,982; 9,994,339; 9,996,981; 9,999,920; 20010008230; 20010008317; 20020015654; 20030114936; 20030116542; 20030206820; 20040056022; 20040099996; 20040133298; 20040191106; 20050133527; 20050174208; 20060032838; 20060081571; 20060147332; 20060166159; 20060185473; 20070134096; 20070141375; 20070142914; 20070151087; 20070183918; 20070203584; 20080008894; 20080052904; 20080201008; 20080210413; 20080213718; 20080317951; 20090206065; 20090283501; 20090286008; 20100010638; 20100068464; 20100125356; 20100143601; 20100221567; 20100242843; 20100262054; 20100262272; 20100291286; 20100291401; 20100305742; 20110014081; 20110016939; 20110029093; 20110047799; 20110061591; 20110087332; 20110089610; 20110114839; 20110136162; 20110166824; 20110169924; 20110259862; 20110291331; 20110293840; 20110295378; 20110297081; 20120041446; 20120065755; 20120100031; 20120132627; 20120132631; 20120138586; 20120156323; 20120191205; 20120191420; 20120193063; 20120193335; 20120195994; 20120201960; 20120205348; 20120209394; 20120219698; 20120232669; 20120232670; 20120232671; 20120237631; 20120243823; 20120255176; 20120279441; 20120298873; 20120298886; 20130001834; 20130004680; 20130008879; 20130031753; 20130045093; 20130056912; 20130064706; 20130079693; 20130101423; 20130101729; 20130101761; 20130108460; 20130112672; 20130134637; 20130136868; 20130140741; 20130147092; 20130166256; 20130168902; 20130186265; 20130186514; 20130193620; 20130197683; 20130199013; 20130209932; 20130211531; 20130233846; 20130263977; 20130268085; 20130270750; 20130280091; 20130291385; 20130295212; 20130344258; 20140014629; 20140021171; 20140034626; 20140035205; 20140035423; 20140035995; 20140037873; 20140039451; 20140039452; 20140039631; 20140039658; 20140050921; 20140052288; 20140061165; 20140061167; 20140061977; 20140079741; 20140095107; 20140099476; 20140104133; 20140109440; 20140113021; 20140120195; 20140136154; 20140140882; 20140145522; 20140154088; 20140163445; 20140163568; 20140172111; 20140174344; 20140182170; 20140184757; 20140189989; 20140190942; 20140194996; 20140216123; 20140217647; 20140222184; 20140228860; 20140231266; 20140246809; 20140249643; 20140252687; 20140263209; 20140265040; 20140265046; 20140265047; 20140265048; 20140265049; 20140271328; 20140271965; 20140286048; 20140291886; 20140294567; 20140295087; 20140306380; 20140314581; 20140319735; 20140319736; 20140319737; 20140319738; 20140322374; 20140328964; 20140336680; 20140361460; 20140363585; 20140368804; 20140370111; 20140370323; 20150001093; 20150017475; 20150021379; 20150021815; 20150024169; 20150024309; 20150024319; 20150027948; 20150029485; 20150030494; 20150032215; 20150034604; 20150037601; 20150041025; 20150044415; 20150045924; 20150045928; 20150048209; 20150050463; 20150054193; 20150054930; 20150054944; 20150054945; 20150060422; 20150064050; 20150069668; 20150080495; 20150089881; 20150090074; 20150093283; 20150100149; 20150102531; 20150104344; 20150104345; 20150108677; 20150113993; 20150125333; 20150125335; 20150129583; 20150130754; 20150132173; 20150135897; 20150136908; 20150139849; 20150140230; 20150141234; 20150145174; 20150145177; 20150147585; 20150158111; 20150161299; 20150165525; 20150165545; 20150165556; 20150167130; 20150174827; 20150183070; 20150184540; 20150196971; 20150197064; 20150197862; 20150198052; 20150202687; 20150202716; 20150202717; 20150209162; 20150209889; 20150210013; 20150217367; 20150219133; 20150219444; 20150219521; 20150224607; 20150224710; 20150227062; 20150227070; 20150231796; 20150231825; 20150231828; 20150231831; 20150239046; 20150246482; 20150246486; 20150247474; 20150251247; 20150251250; 20150251351; 20150251353; 20150252190; 20150258735; 20150259530; 20150259790; 20150266237; 20150266285; 20150270088; 20150273586; 20150273622; 20150273631; 20150275916; 20150283613; 20150283614; 20150283642; 20150283646; 20150283649; 20150285502; 20150285504; 20150290707; 20150290711; 20150290741; 20150290875; 20150300179; 20150306664; 20150306665; 20150306667; 20150306699; 20150306700; 20150314389; 20150320158; 20150321250; 20150321289; 20150322808; 20150328713; 20150328719; 20150336171; 20150343564; 20150343673; 20150351493; 20150352668; 20150352770; 20150360372; 20150367415; 20150367416; 20150367417; 20150367418; 20150367419; 20150367446; 20150367447; 20150367448; 20150367453; 20150367575; 20150367577; 20150371279; 20150374915; 20150374929; 20150374930; 20150375336; 20150375340; 20150376248; 20160001364; 20160001365; 20160001401; 20160001509; 20160008887; 20160008889; 20160008922; 20160009027; 20160009028; 20160009029; 20160009030; 20160009039; 20160010457; 20160010469; 20160014906; 20160022383; 20160023272; 20160023307; 20160024293; 20160030105; 20160032416; 20160038633; 20160039054; 20160039851; 20160045967; 20160045981; 20160047255; 20160052056; 20160052057; 20160052079; 20160052087; 20160052176; 20160052208; 20160054115; 20160054121; 20160054347; 20160059154; 20160059302; 20160059315; 20160059352; 20160059437; 20160061044; 20160061381; 20160066930; 20160067766; 20160067778; 20160067779; 20160067780; 20160067781; 20160067820; 20160067928; 20160069622; 20160074558; 20160074938; 20160074965; 20160075089; 20160082547; 20160082550; 20160082657; 20160082658; 20160082695; 20160083516; 20160089719; 20160089859; 20160090848; 20160096326; 20160098495; 20160101643; 20160107232; 20160107261; 20160107287; 20160107290; 20160107295; 20160114431; 20160114432; 20160114458; 20160115083; 20160120040; 20160121399; 20160121430; 20160122541; 20160129503; 20160129643; 20160131564; 20160135537; 20160136759; 20160136787; 20160136885; 20160136887; 20160136889; 20160136897; 20160137838; 20160137839; 20160143744; 20160144428; 20160144430; 20160144566; 20160145722; 20160146153; 20160151859; 20160151860; 20160151861; 20160158843; 20160158889; 20160160077; 20160166284; 20160167160; 20160167299; 20160167303; 20160167312; 20160168453; 20160168715; 20160172655; 20160175787; 20160175929; 20160175932; 20160175934; 20160175935; 20160181217; 20160184891; 20160184925; 20160184931; 20160186620; 20160187166; 20160193695; 20160193696; 20160193697; 20160193790; 20160199933; 20160200045; 20160200046; 20160200047; 20160201155; 20160202042; 20160202043; 20160202101; 20160207109; 20160207112; 20160211116; 20160211119; 20160214173; 20160214211; 20160221114; 20160221115; 20160221122; 20160221262; 20160222807; 20160223041; 20160228255; 20160228929; 20160228975; 20160228987; 20160228990; 20160228991; 20160228992; 20160229005; 20160235929; 20160236299; 20160237827; 20160242853; 20160242931; 20160243620; 20160243644; 20160243649; 20160243652; 20160244625; 20160244980; 20160247665; 20160250688; 20160250711; 20160250715; 20160250717; 20160250724; 20160256925; 20160260261; 20160263704; 20160265362; 20160265366; 20160271732; 20160271870; 20160271875; 20160271877; 20160271878; 20160271879; 20160271884; 20160273074; 20160273079; 20160273368; 20160273369; 20160273687; 20160276056; 20160279703; 20160279706; 20160279707; 20160279708; 20160279734; 20160279735; 20160282848; 20160288200; 20160288209; 20160288244; 20160288254; 20160288264; 20160288265; 20160288266; 20160288414; 20160297006; 20160297007; 20160297104; 20160297141; 20160297148; 20160298218; 20160298220; 20160298268; 20160303656; 20160303687; 20160303762; 20160303798; 20160305256; 20160305271; 20160307678; 20160307731; 20160310077; 20160310236; 20160310279; 20160310282; 20160311020; 20160311022; 20160311160; 20160311162; 20160311165; 20160311230; 20160312338; 20160312653; 20160313306; 20160317312; 20160318072; 20160318128; 20160318129; 20160318130; 20160318253; 20160319677; 20160319678; 20160321384; 20160324581; 20160325355; 20160325358; 20160325378; 20160325383; 20160325492; 20160325498; 20160325541; 20160326613; 20160326880; 20160332229; 20160332250; 20160332253; 20160332259; 20160332266; 20160332366; 20160332371; 20160332379; 20160332380; 20160332384; 20160339516; 20160339518; 20160339520; 20160339521; 20160339536; 20160339542; 20160339639; 20160339642; 20160339646; 20160346998; 20160348203; 20160348517; 20160354064; 20160354839; 20160354842; 20160354843; 20160355904; 20160358795; 20160361765; 20160361872; 20160361873; 20160367264; 20160368050; 20160368055; 20160368056; 20160368057; 20160368213; 20160369040; 20160369096; 20160375676; 20160376453; 20160376674; 20160377994; 20160378004; 20160380634; 20170001253; 20170001258; 20170001263; 20170001374; 20170001377; 20170001379; 20170002978; 20170007359; 20170007360; 20170007362; 20170007363; 20170007366; 20170007367; 20170007386; 20170008080; 20170008084; 20170008085; 20170008086; 20170008123; 20170008126; 20170008236; 20170008333; 20170009584; 20170014169; 20170014235; 20170014903; 20170014909; 20170014937; 20170014950; 20170015452; 20170016093; 20170016094; 20170016781; 20170021420; 20170021452; 20170021453; 20170021454; 20170021455; 20170021456; 20170021562; 20170021565; 20170021572; 20170027624; 20170028472; 20170028475; 20170028589; 20170028622; 20170028631; 20170028703; 20170030399; 20170033068; 20170036238; 20170036272; 20170036300; 20170036783; 20170037674; 20170037867; 20170038047; 20170043395; 20170043402; 20170044416; 20170050198; 20170050241; 20170050242; 20170050254; 20170050261; 20170050268; 20170050270; 20170050271; 20170051386; 20170051613; 20170051675; 20170056179; 20170057013; 20170059529; 20170066051; 20170066052; 20170066187; 20170067154; 20170067344; 20170067788; 20170068774; 20170069817; 20170072465; 20170072466; 20170072468; 20170072635; 20170074285; 20170080641; 20170087635; 20170087661; 20170087666; 20170087670; 20170087765; 20170088918; 20170092400; 20170092565; 20170095882; 20170095888; 20170100209; 20170100210; 20170100214; 20170100215; 20170100817; 20170100888; 20170100891; 20170100893; 20170100899; 20170101707; 20170106432; 20170106438; 20170106443; 20170106444; 20170106445; 20170106446; 20170106474; 20170106477; 20170106570; 20170106593; 20170107385; 20170107764; 20170107821; 20170113303; 20170113416; 20170114233; 20170115594; 20170119531; 20170120326; 20170120332; 20170120333; 20170120334; 20170120335; 20170120336; 20170120337; 20170120359; 20170120370; 20170120376; 20170120377; 20170120385; 20170120386; 20170120387; 20170120393; 20170120416; 20170120518; 20170120519; 20170120529; 20170120530; 20170120537; 20170120538; 20170122322; 20170123222; 20170123237; 20170125908; 20170125909; 20170125910; 20170126087; 20170128174; 20170128961; 20170129049; 20170129052; 20170129060; 20170129168; 20170129180; 20170129184; 20170129185; 20170130591; 20170130599; 20170136540; 20170136541; 20170136542; 20170136543; 20170136545; 20170136574; 20170136578; 20170136603; 20170136699; 20170136708; 20170137327; 20170143315; 20170144219; 20170144223; 20170144224; 20170144248; 20170144250; 20170144254; 20170145578; 20170145584; 20170145586; 20170151631; 20170151718; 20170151719; 20170154713; 20170155309; 20170157850; 20170159447; 20170164700; 20170165532; 20170165751; 20170165752; 20170165753; 20170165754; 20170165781; 20170165790; 20170165791; 20170165792; 20170165916; 20170167000; 20170167270; 20170167274; 20170173628; 20170173681; 20170173683; 20170173688; 20170173691; 20170173692; 20170173693; 20170173694; 20170173695; 20170173696; 20170173697; 20170173735; 20170173736; 20170173737; 20170173747; 20170173868; 20170173872; 20170173874; 20170173877; 20170173878; 20170173879; 20170173883; 20170173892; 20170175756; 20170181291; 20170182556; 20170182558; 20170182560; 20170182594; 20170182596; 20170182598; 20170183497; 20170183870; 20170186143; 20170189553; 20170189961; 20170189962; 20170189963; 20170189964; 20170189965; 20170191177; 20170197246; 20170197278; 20170197330; 20170197359; 20170203355; 20170203363; 20170203364; 20170203365; 20170203387; 20170203391; 20170203406; 20170203408; 20170203517; 20170209908; 20170209923; 20170209929; 20170209931; 20170209954; 20170209958; 20170209963; 20170210070; 20170210144; 20170211331; 20170216916; 20170216921; 20170216966; 20170217093; 20170217095; 20170217105; 20170217181; 20170218228; 20170219855; 20170220031; 20170225227; 20170225228; 20170225229; 20170225393; 20170225394; 20170225398; 20170226362; 20170231783; 20170232511; 20170232513; 20170232514; 20170232515; 20170232518; 20170232519; 20170232549; 20170232552; 20170232557; 20170232637; 20170232674; 20170233574; 20170234138; 20170239718; 20170239719; 20170239720; 20170239721; 20170239722; 20170239723; 20170239724; 20170239725; 20170239752; 20170239887; 20170239891; 20170239892; 20170241830; 20170242424; 20170246682; 20170246689; 20170246709; 20170246804; 20170247785; 20170248319; 20170249440; 20170252787; 20170252806; 20170252812; 20170252813; 20170252814; 20170252815; 20170252816; 20170252817; 20170252818; 20170252819; 20170252820; 20170252846; 20170252851; 20170252854; 20170252860; 20170252967; 20170252978; 20170259502; 20170260865; 20170266759; 20170266879; 20170271837; 20170274454; 20170274456; 20170276023; 20170282246; 20170282247; 20170282296; 20170282297; 20170282455; 20170284676; 20170291077; 20170291260; 20170291261; 20170291263; 20170291362; 20170292174; 20170292195; 20170294288; 20170294291; 20170297097; 20170297098; 20170297099; 20170297100; 20170297101; 20170297102; 20170297103; 20170297104; 20170297106; 20170297108; 20170297109; 20170297111; 20170297267; 20170297275; 20170297674; 20170299181; 20170299973; 20170304894; 20170304895; 20170304896; 20170304897; 20170304900; 20170304944; 20170304945; 20170304946; 20170304947; 20170306221; 20170306447; 20170306448; 20170306449; 20170306450; 20170306457; 20170306458; 20170306459; 20170306460; 20170306766; 20170307859; 20170312821; 20170312822; 20170312826; 20170312857; 20170312858; 20170312984; 20170312985; 20170314109; 20170314114; 20170315538; 20170320162; 20170320168; 20170320264; 20170320277; 20170322487; 20170323627; 20170326668; 20170326681; 20170326690; 20170326788; 20170326797; 20170326805; 20170326816; 20170332733; 20170333994; 20170333995; 20170334023; 20170334024; 20170334133; 20170334136; 20170334725; 20170335436; 20170338392; 20170341141; 20170341142; 20170341175; 20170341182; 20170341183; 20170342303; 20170342535; 20170348458; 20170348792; 20170348906; 20170348909; 20170350259; 20170354805; 20170354806; 20170355135; 20170355138; 20170355146; 20170355147; 20170356068; 20170360534; 20170361405; 20170368603; 20170368640; 20170368647; 20170368740; 20170368816; 20180000501; 20180000502; 20180000503; 20180000571; 20180001423; 20180001424; 20180001547; 20180001553; 20180001556; 20180001557; 20180001567; 20180009007; 20180009054; 20180009064; 20180009134; 20180010001; 20180010221; 20180010237; 20180014844; 20180015564; 20180015565; 20180015566; 20180021473; 20180021877; 20180021878; 20180022022; 20180022065; 20180027615; 20180027616; 20180029124; 20180029125; 20180029241; 20180029294; 20180029295; 20180029306; 20180031028; 20180036939; 20180036945; 20180036953; 20180038167; 20180042718; 20180043455; 20180043467; 20180044523; 20180050390; 20180050423; 20180050490; 20180050493; 20180050495; 20180052087; 20180055641; 20180056389; 20180056390; 20180056391; 20180056392; 20180056396; 20180056446; 20180057142; 20180061279; 20180065144; 20180065178; 20180065181; 20180065182; 20180065186; 20180065208; 20180065209; 20180065295; 20180065298; 20180065300; 20180065304; 20180065305; 20180065306; 20180065307; 20180065308; 20180065309; 20180065316; 20180065317; 20180065318; 20180065320; 20180065322; 20180066358; 20180066603; 20180067464; 20180071819; 20180071821; 20180071825; 20180071949; 20180071986; 20180071988; 20180071989; 20180072040; 20180072630; 20180078936; 20180079003; 20180079029; 20180079033; 20180079034; 20180079125; 20180085605; 20180085826; 20180085856; 20180086004; 20180087157; 20180088462; 20180089824; 20180093325; 20180093347; 20180093418; 20180093419; 20180094953; 20180095450; 20180096175; 20180098919; 20180099331; 20180104770; 20180105903; 20180111191; 20180111193; 20180111194; 20180111195; 20180111196; 20180111197; 20180111198; 20180111219; 20180111317; 20180111318; 20180111319; 20180111334; 20180113445; 20180115072; 20180116762; 20180117674; 20180117675; 20180117713; 20180117845; 20180122541; 20180124341; 20180125365; 20180126460; 20180126461; 20180126462; 20180126487; 20180126637; 20180126638; 20180126639; 20180126640; 20180126641; 20180126642; 20180126648; 20180126649; 20180126650; 20180126655; 20180126666; 20180126720; 20180127317; 20180128803; 20180133583; 20180133801; 20180133804; 20180133839; 20180133840; 20180133956; 20180133958; 20180134027; 20180136458; 20180141119; 20180141123; 20180141126; 20180141127; 20180141159; 20180141160; 20180141162; 20180141174; 20180141235; 20180141274; 20180141305; 20180143147; 20180144934; 20180147627; 20180147628; 20180147653; 20180147654; 20180147655; 20180147669; 20180147779; 20180148378; 20180148379; 20180148380; 20180148585; 20180149039; 20180151048; 20180153205; 20180154437; 20180154438; 20180154439; 20180154440; 20180154441; 20180154442; 20180154443; 20180154444; 20180154484; 20180154574; 20180154580; 20180154591; 20180154657; 20180159016; 20180161873; 20180161874; 20180161875; 20180161932; 20180161934; 20180161935; 20180161954; 20180162013; 20180162044; 20180162047; 20180162048; 20180162053; 20180163311; 20180166251; 20180166665; 20180168254; 20180168294; 20180169351; 20180169756; 20180169784; 20180169950; 20180169951; 20180169952; 20180169960; 20180169970; 20180170107; 20180172369; 20180178284; 20180178285; 20180178286; 20180178287; 20180178288; 20180178325; 20180178326; 20180178413; 20180178491; 20180179332; 20180179956; 20180180803; 20180180812; 20180180813; 20180180874; 20180180896; 20180185098; 20180185893; 20180185921; 20180185961; 20180185965; 20180186067; 20180186078; 20180186080; 20180186081; 20180186082; 20180187569; 20180193916; 20180193923; 20180193953; 20180193954; 20180193955; 20180194080; 20180195186; 20180195684; 20180200790; 20180200791; 20180200792; 20180200793; 20180200794; 20180200796; 20180200797; 20180200798; 20180200800; 20180200836; 20180200960; 20180202076; 20180202293; 20180207725; 20180207749; 20180207750; 20180207850; 20180207862; 20180207863; 20180207865; 20180207866; 20180207868; 20180208762; 20180208785; 20180209381; 20180209498; 20180214874; 20180214946; 20180214947; 20180214950; 20180214951; 20180214955; 20180214984; 20180214985; 20180215094; 20180215103; 20180216501; 20180221950; 20180226917; 20180228570; 20180228612; 20180228613; 20180228737; 20180229300; 20180229434; 20180229436; 20180236546; 20180236551; 20180237325; 20180237329; 20180240691; 20180243094; 20180243097; 20180243977; 20180243991; 20180244862; 20180244863; 20180250737; 20180250739; 20180250744; 20180250745; 20180250746; 20180250771; 20180250772; 20180250773; 20180250774; 20180250775; 20180250890; 20180251645; 20180252398; 20180257138; 20180257297; 20180264679; 20180264719; 20180265417; 20180265738; 20180272464; 20180272610; 20180272652; 20180273707; 20180281236; 20180281237; 20180281282; 20180281283; 20180281284; 20180281294; 20180289493; 20180290212; 20180290373; 20180296343; 20180297113; 20180297114; 20180297117; 20180297272; 20180297296; 20180303491; 20180303616; 20180304353; 20180304359; 20180304360; 20180304361; 20180304363; 20180304364; 20180304365; 20180304369; 20180304370; 20180304537; 20180304540; 20180305266; 20180307209; 20180309202; 20180311731; 20180311735; 20180311738; 20180318657; 20180318922; 20180318925; 20180318928; 20180318932; 20180318933; 20180319108; 20180319150; 20180320006; 20180323514; 20180326488; 20180326663; 20180326664; 20180326665; 20180326668; 20180333911; 20180333912; 20180333913; 20180337110; 20180338196; 20180345367; 20180345382; 20180345405; 20180345575; 20180345576; 20180354304; 20180354860; 20180355199; 20180360609; 20180361510; 20180361660; 20180361661; 20180361666; 20180361674; 20180369918; 20180370114; 20180370120; 20180370125; 20180370147; 20180370846; 20180370860; 20180371244; 20180374262; 20190000166; 20190001412; 20190001553; 20190001563; 20190001564; 20190001570; 20190001576; 20190002353; 20190009472; 20190010270; 20190017185; 20190020105; 20190022427; 20190022428; 20190022725; 20190022926; 20190026499; 20190030601; 20190030602; 20190030605; 20190030809; 20190030810; 20190030811; 20190031908; 20190031911; 20190033719; 20190033737; 20190039182; 20190039294; 20190039367; 20190047047; 20190047212; 20190047214; and 20190047277; and more generally CPC classes B33Y, B23K and B22F.


The current paradigm is to use a focused energy source (e.g., laser or electron beam) to fuse metal powders into a solid part by building on a baseplate that is identical or very similar to the build metal, to facilitate wetting. Capabilities offered by selective laser melting (SLM) enable industries to fabricate complex parts faster and cheaper by eliminating traditional forging, machining, and welding techniques. For instance, heat pipes have been directly metal printed via SLM with the wick structure made out of a printed lattice structure that enables low resistance fluid flow, while also producing the capillary driving force to draw coolant to the evaporator.[1,2] A flat-plate oscillating heat pipe, that drives liquid coolant via temperature driven pressure variations has also been additively manufactured.[3] Performance enhancements have also been demonstrated for novel metal printed heat sinks and heat exchangers with lattice-architectures that are too complex to conventionally manufacture.[4,5]


A prior additive manufacturing process does permit bonding of stainless steel substrates to Zr-metal glasses via laser welded V/Ti/Zr intermediate foil layers in a process called laser-foil-printing, [6] and laser welding dissimilar metals, like stainless steel and Ti via foil interlayers. [7,8]


A prior technology permits low-temperature bonding of metal alloys onto semiconductor and ceramic substrates using active brazes. Elements such as Ti, Zr, V, Nb, Hf, Ta, Mo, Cr, and W can form intermetallic compounds (like silicides on Si and SiC, and carbides on graphite) or amorphisized mixtures of the substrate and reactive metal elements on the surface of many dissimilar substrates.[9-26] However the timescale of this bonding in these typical processes are more than three orders-of-magnitude longer than typical additive manufacturing processes energy source exposures in various additive manufacturing processes (powder bed fusion, directed energy deposition).[9,19,27,28]


However, the art does not provide means to directly integrate these novel additively manufactured devices directly onto electronic devices.


The removal of heat from electronic circuits is important for reliability of electronic devices. The current electronic packaging paradigm has a microprocessor packaged with a bottom thermal interface material, a lid, and a top thermal interface material, and finally a heat removal device[29]. One embodiment of the technique developed herein can enable direct manufacture of heat removal devices on electronic devices, by removing the temperature drops due to thermal interface materials. Computational energy of integrated circuits versus temperature can be predicted via the changing power consumption with temperature[30,31]. Furthermore, a leading cause of device failure is interconnects that break because of thermal cycling and electromigration. These interconnects are heated by the microprocessor, and their mean-time-to-failure is an exponential relation with temperature (Black's Law)[32]. A significant amount of e-waste can be reduced per year as many electronic device failures are thermally exacerbated, so the benefit of directly manufacturing heat sinks according to that embodiment is great.


Good wetting, as characterized by low contact angles, is an indication of strong mechanical bonding. Lower contact angles occur when more energetically favored bonding occurs between, for example, a liquid metal and a semiconductor, implying a stronger bond between the two surfaces. This wetting of dissimilar materials occurs via diffusion and dissolution of the substrate into the molten metal, and/or the metal into the substrate [9]. For example, intermetallic compounds may form. For reactive systems, wetting is limited by the diffusion of reactive elements and local reaction kinetics [10]. Many metals that melt at low temperatures do not wet silicon well, because they do not form silicides (e.g., Sn and Ag) [11]. While elements like Ti can amorphously bond to silicon at lower temperatures [12,13], a stronger silicide bonds can be achieved above 550° C. [14]. Similar trends also exist for wetting of SiC, graphite and diamond, for instance.


An intermetallic (also called an intermetallic compound, intermetallic alloy, ordered intermetallic alloy, and a long-range-ordered alloy) is a type of metallic alloy that forms a solid-state compound exhibiting defined stoichiometry and ordered crystal structure. Intermetallic compounds may be defined as solid phases containing two or more metallic elements, with optionally one or more non-metallic elements, whose crystal structure differs from that of the other constituents. Under this definition, Electron (or Hume-Rothery, see en.wikipedia.org/wiki/Hume-Rothery_rules, www.phase-trans.msm.cam.ac.uk/2004/titanium/hume.rothery.html; Massalski, Tadeusz Bronislav, and Uichirō Mizutani. “Electronic structure of Hume-Rothery phases.” Progress in Materials Science 22, no. 3-4 (1978); 151-262; Mizutani, Uichiro. “The Hume-Rothery rules for structurally complex alloy phases.” In Surface Properties And Engineering Of Complex Intermetallics, pp. 323-399. 2010; Hume-Rothery, William. “The structure of metals and alloys.” Indian Journal of Physics 11 (1969); 74-74; Paxton, A. T., M. Methfessel, and D. G. Pettifor. “A bandstructure view of the Hume-Rothery electron phases.” Proceedings of the Royal Society of London. Series A; Mathematical, Physical and Engineering Sciences 453, no. 1962 (1997); 1493-1514.) compounds; Size packing phases. e.g., Laves phases (Stein, Frank, Martin Palm, and Gerhard Sauthoff. “Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability.” Intermetallics 12, no. 7-9 (2004); 713-720; Stein, Frank, Martin Palm, and Gerhard Sauthoff. “Structure and stability of Laves phases part II—structure type variations in binary and ternary systems.” Intermetallics 13, no. 10 (2005); 1056-1074; Johnston, Roy L., and Roald Hoffmann. “Structure-Bonding Relationships in the Laves Phases.” Zeitschrift für anorganische und allgemeine Chemie 616, no. 10 (1992); 105-120.), Frank-Kasper phases (en.wikipedia.org/wiki/Frank-Kasper_phases; Joubert, J. M.; Crivello, J. C. (2012). “Non-Stoichiometry and Calphad Modeling of Frank-Kasper Phases”. Applied Sciences. 2 (4): 669. doi:10.3390/app2030669; Berne, C.; Sluiter, M.; Pasturel, A. (2002). “Theoretical approach of phase selection in refractory metals and alloys”. Journal of Alloys and Compounds. 334; 27. doi:10.1016/50925-8388(01)01773-X.) and Nowotny phases (en.wikipedia.org/wiki/Nowotny_phase, Lu, Guoxin; Lee, Stephen; Lin, Jianhua; You, Liping; Sun, Junliang; Schmidt, Joshua Teal (2002). “RuGavSnw Nowotny Chimney Ladder Phases and the 14-Electron Rule”. Journal of Solid State Chemistry. 164 (2); 210-219. doi:10.1006/jssc.2001.9462; King, R. Bruce (2007). “The Relationship between the Nowotny Chimney Ladder”. Revista de Chimie. 58 (5); 439-441; Fredrickson, Daniel C.; Lee, Stephen; Hoffmann, Roald; Lin, Jianhua (2004). “The Nowotny Chimney Ladder Phases; Following the Pseudo Clue Toward an Explanation of the 14 Electron Rule”. Inorganic Chemistry. 43 (20): 6151-6158. doi:10.1021/ic049427n. PMID 15446859; Jeitschko, Pearson, W. B. (1970). “Phases with Nowotny chimney-ladder structures considered as ‘electron’ phases”. Acta Crystallographica Section B. 26 (7); 1044-1046. doi:10.1107/50567740870003564; Fredrickson, Daniel C.; Lee, Stephen; Hoffmann, Roald (2004). “The Nowotny Chimney Ladder Phases; Whence the 14 Electron Rule?”. Inorganic Chemistry. 43 (20); 6159-6167. doi:10.1021/ic049897h. PMID 15446860.); and Zintl phases (en.wikipedia.org/wiki/Zintl_phase; S. M. Kauzlarich, Encyclopedia of Inorganic chemistry, 1994, John Wiley & Sons, ISBN 0-471-93620-0; Fässler, Thomas F. (2011). “Zintl Phases; Principles and Recent Developments”. 139. doi:10.1007/978-3-642-21150-8. ISSN 0081-5993; Sevov, S. C., Zintl Phases in Intermetallic Compounds, Principles and Practice; Progress, Westbrook, J. H.; Freisher, R. L.; Eds.; John Wiley & Sons. Ltd., Chichester, England, 2002, pp. 113-132 (Slavi Chapter); Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York; Wiley-Interscience, ISBN 0-471-19957-5) are encompassed. The definition of a metal is taken to include the so-called post-transition metals, i.e. aluminum, gallium, indium, thallium, tin and lead, some, if not all, of the metalloids, e.g., silicon, germanium, arsenic, antimony and tellurium, and homogeneous and heterogeneous solid solutions of metals, but interstitial compounds (such as carbides and nitrides), are excluded under this definition. However, interstitial intermetallic compounds are included, as are alloys of semimetal compounds with a metal. For purposes hereof, the phrase “intermetallic” compounds also encompasses certain intermetallic-like compounds, i.e., crystalline metal compounds other than halides or oxides, and including such semimetals, carbides, nitrides, borides, sulfides, selenides, arsenides, and phosphides, and can be stoichiometric, and share similar properties to the intermetallic compounds defined above, including the facilitation of layer adhesion. Thus, compounds such as cementite, Fe3C, is included. See, en.wikipedia.org/wiki/Intermetallic. The interfacial layer may have amorphous characteristics, e.g., due to rapid cooling.


See also U.S. Patent and Patent Application Nos. U.S. Pat. Nos. 4,026,677; 4,034,454; 4,034,906; 4,065,302; 4,171,339; 4,173,614; 4,234,661; 4,241,135; 4,358,506; 4,380,574; 4,396,677; 4,459,062; 4,510,171; 4,518,468; 4,553,856; 4,640,816; 4,683,019; 4,699,310; 4,714,624; 4,725,509; 4,818,628; 4,861,751; 4,873,152; 4,880,614; 4,911,987; 4,916,022; 4,956,011; 4,985,313; 5,015,502; 5,034,274; 5,039,990; 5,047,386; 5,071,828; 5,087,515; 5,104,849; 5,132,278; 5,135,817; 5,154,425; 5,188,164; 5,204,302; 5,209,987; 5,224,969; 5,234,715; 5,247,986; 5,255,730; 5,262,202; 5,266,357; 5,270,296; 5,289,967; 5,326,525; 5,328,717; 5,338,598; 5,342,812; 5,350,637; 5,352,519; 5,362,523; 5,366,570; 5,378,500; 5,422,209; 5,429,843; 5,434,027; 5,458,480; 5,458,705; 5,476,725; 5,490,911; 5,498,298; 5,503,703; 5,516,725; 5,526,914; 5,538,674; 5,580,403; 5,620,791; 5,624,505; 5,648,177; 5,669,436; 5,683,825; 5,686,178; 5,694,184; 5,709,958; 5,741,376; 5,747,111; 5,761,787; 5,770,273; 5,834,070; 5,837,960; 5,865,909; 5,873,771; 5,880,692; 5,939,201; 5,939,224; 5,948,541; 5,964,020; 5,976,716; 5,989,728; 5,993,979; 6,001,461; 6,017,628; 6,019,878; 6,054,185; 6,077,615; 6,086,959; 6,096,436; 6,117,533; 6,129,996; 6,159,267; 6,163,961; 6,214,195; 6,232,037; 6,267,864; 6,277,169; 6,322,897; 6,355,338; 6,372,346; 6,513,433; 6,528,145; 6,531,704; 6,534,194; 6,537,689; 6,540,800; 6,541,695; 6,551,760; 6,558,841; 6,566,035; 6,589,311; 6,596,150; 6,607,844; 6,612,478; 6,613,697; 6,635,357; 6,663,982; 6,669,774; 6,669,989; 6,673,387; 6,676,728; 6,682,780; 6,689,186; 6,699,304; 6,713,519; 6,723,279; 6,730,410; 6,740,464; 6,749,101; 6,765,151; 6,779,951; 6,780,305; 6,797,313; 6,797,449; 6,800,400; 6,800,417; 6,806,478; 6,824,689; 6,828,507; 6,847,699; 6,858,374; 6,875,949; 6,893,732; 6,899,777; 6,909,173; 6,909,192; 6,913,184; 6,929,865; 6,939,505; 6,974,070; 6,974,501; 6,979,646; 6,989,200; 7,004,994; 7,005,191; 7,008,969; 7,011,760; 7,022,165; 7,052,241; 7,060,222; 7,076,959; 7,094,473; 7,097,938; 7,105,217; 7,122,279; 7,145,244; 7,157,188; 7,162,302; 7,169,478; 7,172,663; 7,174,637; 7,192,673; 7,195,842; 7,235,330; 7,241,416; 7,241,533; 7,259,032; 7,282,444; 7,285,337; 7,285,496; 7,287,960; 7,288,576; 7,299,749; 7,300,559; 7,309,548; 7,311,944; 7,318,983; 7,326,434; 7,338,741; 7,351,773; 7,354,471; 7,361,239; 7,381,517; 7,393,559; 7,410,728; 7,413,109; 7,416,835; 7,432,014; 7,451,906; 7,455,458; 7,459,233; 7,476,469; 7,560,138; 7,575,039; 7,597,769; 7,604,897; 7,608,178; 7,621,976; 7,622,424; 7,625,668; 7,626,665; 7,629,058; 7,642,468; 7,645,543; 7,666,233; 7,674,555; 7,722,731; 7,726,872; 7,736,542; 7,736,794; 7,745,050; 7,759,007; 7,771,547; 7,781,376; 7,782,433; 7,794,881; 7,820,332; 7,838,170; 7,858,205; 7,896,222; 7,939,126; 7,940,361; 7,976,985; 7,997,472; 8,007,178; 8,007,929; 8,017,263; 8,025,983; 8,025,984; 8,048,571; 8,063,489; 8,071,419; 8,079,141; 8,097,301; 8,097,303; 8,119,288; 8,119,314; 8,119,315; 8,137,525; 8,173,010; 8,173,269; 8,182,939; 8,182,943; 8,202,649; 8,216,439; 8,221,921; 8,236,452; 8,247,142; 8,273,194; 8,313,560; 8,319,350; 8,323,820; 8,334,075; 8,353,574; 8,354,136; 8,372,685; 8,377,999; 8,389,060; 8,389,147; 8,394,495; 8,410,016; 8,425,651; 8,428,671; 8,436,130; 8,440,498; 8,455,131; 8,465,847; 8,466,095; 8,487,439; 8,507,132; 8,512,808; 8,563,872; 8,591,997; 8,604,350; 8,617,640; 8,623,554; 8,629,564; 8,632,850; 8,636,194; 8,637,864; 8,652,686; 8,658,304; 8,673,050; 8,673,477; 8,692,127; 8,697,322; 8,723,176; 8,748,241; 8,759,473; 8,778,538; 8,789,626; 8,795,899; 8,796,683; 8,802,286; 8,810,035; 8,828,579; 8,840,831; 8,852,801; 8,853,867; 8,860,021; 8,882,442; 8,893,954; 8,901,558; 8,906,462; 8,906,469; 8,916,424; 8,921,473; 8,932,771; 8,946,704; 8,952,380; 8,956,478; 8,956,766; 8,956,912; 8,960,523; 8,962,188; 8,963,148; 8,969,867; 8,979,606; 8,986,880; 8,999,200; 9,005,821; 9,006,733; 9,011,620; 9,040,981; 9,045,335; 9,054,364; 9,070,729; 9,076,825; 9,078,294; 9,079,246; 9,083,054; 9,090,955; 9,093,383; 9,097,995; 9,101,978; 9,109,429; 9,113,571; 9,117,662; 9,127,515; 9,130,358; 9,136,568; 9,142,679; 9,153,436; 9,166,019; 9,166,061; 9,171,787; 9,176,571; 9,181,790; 9,184,160; 9,190,529; 9,190,666; 9,205,578; 9,209,480; 9,214,566; 9,218,966; 9,219,161; 9,227,243; 9,236,428; 9,236,606; 9,243,475; 9,252,283; 9,252,286; 9,263,259; 9,269,647; 9,281,517; 9,287,405; 9,287,573; 9,296,190; 9,318,484; 9,324,875; 9,330,909; 9,331,156; 9,331,251; 9,350,005; 9,354,029; 9,402,313; 9,414,513; 9,419,299; 9,428,826; 9,431,430; 9,437,744; 9,440,853; 9,466,725; 9,472,310; 9,472,656; 9,476,685; 9,482,105; 9,488,456; 9,496,375; 9,508,979; 9,530,895; 9,536,844; 9,545,017; 9,556,505; 9,559,213; 9,564,457; 9,564,589; 9,587,296; 9,593,924; 9,601,779; 9,608,124; 9,614,062; 9,614,100; 9,643,250; 9,643,279; 9,656,877; 9,660,265; 9,666,896; 9,682,425; 9,722,275; 9,728,648; 9,728,773; 9,731,377; 9,735,428; 9,742,001; 9,744,743; 9,765,271; 9,765,635; 9,780,348; 9,793,057; 9,812,467; 9,812,582; 9,818,715; 9,832,866; 9,833,838; 9,835,428; 9,852,904; 9,857,860; 9,859,114; 9,862,617; 9,871,059; 9,881,744; 9,899,136; 9,899,672; 9,903,037; 9,905,860; 9,911,874; 9,916,958; 9,919,472; 9,938,839; 9,943,927; 9,943,929; 9,947,964; 9,954,212; 9,960,122; 9,990,965; 9,991,221; 9,991,395; 9,997,545; 9,997,784; RE41,584; RE43,661; RE44,817; RE44,820; RE46,275; 20010000889; 20010018159; 20010028990; 20010038029; 20020007751; 20020009626; 20020056401; 20020062858; 20020069592; 20020081447; 20020082171; 20020084527; 20020090821; 20020098381; 20020098776; 20020110698; 20020144838; 20020153253; 20020154741; 20020160308; 20020168051; 20020177003; 20020192494; 20020192564; 20020195676; 20030019326; 20030022094; 20030029910; 20030044593; 20030068575; 20030108795; 20030116503; 20030119920; 20030127051; 20030161750; 20030162127; 20030173720; 20030180571; 20030189082; 20040009402; 20040016912; 20040018432; 20040035910; 20040071882; 20040081895; 20040096742; 20040100164; 20040106060; 20040112478; 20040147620; 20040149806; 20040154488; 20040168637; 20040182835; 20040197650; 20040202883; 20040206267; 20040210289; 20040219295; 20040224258; 20040231758; 20040234866; 20040234883; 20040247782; 20040249428; 20040254419; 20040261420; 20040265736; 20050007105; 20050008939; 20050013759; 20050023508; 20050025797; 20050031891; 20050036893; 20050036898; 20050040090; 20050044987; 20050045034; 20050061107; 20050064291; 20050065035; 20050079132; 20050089627; 20050095442; 20050098609; 20050100790; 20050106495; 20050107870; 20050118482; 20050119725; 20050127334; 20050142377; 20050149002; 20050149169; 20050151228; 20050153161; 20050153208; 20050155779; 20050165471; 20050172643; 20050175822; 20050182482; 20050202343; 20050216075; 20050230029; 20050240100; 20050244337; 20050255694; 20050261763; 20050278020; 20060001726; 20060021221; 20060027625; 20060035149; 20060051600; 20060062684; 20060094603; 20060102871; 20060108567; 20060118758; 20060135344; 20060142853; 20060147138; 20060147631; 20060151582; 20060167120; 20060172073; 20060216539; 20060216604; 20060224027; 20060225817; 20060228475; 20060234127; 20060246725; 20060249705; 20060274510; 20060276875; 20060280998; 20070000129; 20070002239; 20070010702; 20070054189; 20070061006; 20070065675; 20070068605; 20070072113; 20070093006; 20070099088; 20070104605; 20070111893; 20070122549; 20070122707; 20070122710; 20070128520; 20070128521; 20070140065; 20070141469; 20070152026; 20070158200; 20070160315; 20070178384; 20070187464; 20070227627; 20070251389; 20070298325; 20070298351; 20080015284; 20080032192; 20080041921; 20080057203; 20080057395; 20080057616; 20080075878; 20080075984; 20080152998; 20080156475; 20080175982; 20080188373; 20080241660; 20080241705; 20080280201; 20080299459; 20090000480; 20090046441; 20090110954; 20090114797; 20090117466; 20090123690; 20090136769; 20090155676; 20090178741; 20090214373; 20090214857; 20090235915; 20090269497; 20090269605; 20090288952; 20090291312; 20090291345; 20090297718; 20090311598; 20090317658; 20100013096; 20100015330; 20100029036; 20100062179; 20100078830; 20100089976; 20100089977; 20100102446; 20100112192; 20100133688; 20100139840; 20100178571; 20100190054; 20100196750; 20100216034; 20100224867; 20100227071; 20100227157; 20100228025; 20100229940; 20100255362; 20100279000; 20100285207; 20100291758; 20100310941; 20100313416; 20100314258; 20100315796; 20100330357; 20110003200; 20110008640; 20110015102; 20110027547; 20110032467; 20110065973; 20110104571; 20110108760; 20110111303; 20110114075; 20110114182; 20110139251; 20110143201; 20110165462; 20110214799; 20110240108; 20110245083; 20110278051; 20110290549; 20110293976; 20110297450; 20110305578; 20120009339; 20120024332; 20120028176; 20120032329; 20120040282; 20120040283; 20120044652; 20120045688; 20120067728; 20120085811; 20120128284; 20120129056; 20120171847; 20120207264; 20120231352; 20120232308; 20120270106; 20120316716; 20120322197; 20120328945; 20130002764; 20130008698; 20130017141; 20130017390; 20130025409; 20130026636; 20130028781; 20130029886; 20130034759; 20130034932; 20130036942; 20130043573; 20130054061; 20130062107; 20130068513; 20130092924; 20130092925; 20130092944; 20130105791; 20130126868; 20130137033; 20130140554; 20130149632; 20130153889; 20130155790; 20130161606; 20130161608; 20130161621; 20130168257; 20130172642; 20130181214; 20130187151; 20130193433; 20130193493; 20130196468; 20130200365; 20130200375; 20130203214; 20130209698; 20130210618; 20130232366; 20130241069; 20130260217; 20130305727; 20130313708; 20130343023; 20130344765; 20140008327; 20140025978; 20140037969; 20140065361; 20140103338; 20140103340; 20140103346; 20140106504; 20140110153; 20140110706; 20140120417; 20140127868; 20140130736; 20140131700; 20140131702; 20140134325; 20140140030; 20140141303; 20140151691; 20140175435; 20140177132; 20140203277; 20140204160; 20140209898; 20140227548; 20140231126; 20140231799; 20140231803; 20140252351; 20140255785; 20140264323; 20140265812; 20140272154; 20140338552; 20140338894; 20140339555; 20140346216; 20140349191; 20140353808; 20140366761; 20140370337; 20140373743; 20140374084; 20150021603; 20150030932; 20150079298; 20150093589; 20150093880; 20150103495; 20150116968; 20150118570; 20150137122; 20150140731; 20150155312; 20150155392; 20150155399; 20150155456; 20150179804; 20150179998; 20150207146; 20150214342; 20150214555; 20150228801; 20150243792; 20150259263; 20150270531; 20150283642; 20150298263; 20150314390; 20150333160; 20150348863; 20150349154; 20150372123; 20150380529; 20160003063; 20160005878; 20160023438; 20160024676; 20160033248; 20160040312; 20160043384; 20160043392; 20160043429; 20160064422; 20160075119; 20160093642; 20160099353; 20160101433; 20160101988; 20160104877; 20160107262; 20160126360; 20160141422; 20160145990; 20160151854; 20160151856; 20160153271; 20160153272; 20160163744; 20160163948; 20160181601; 20160186579; 20160190329; 20160190640; 20160204271; 20160207106; 20160218106; 20160221733; 20160233474; 20160233487; 20160240690; 20160244212; 20160248115; 20160254097; 20160254511; 20160254687; 20160260948; 20160301071; 20160326892; 20160340768; 20160349029; 20160351321; 20160358575; 20160359050; 20160370898; 20160381794; 20170005048; 20170005361; 20170016703; 20170022608; 20170028682; 20170029300; 20170030204; 20170047583; 20170053584; 20170090462; 20170101875; 20170103714; 20170107636; 20170110728; 20170110760; 20170138164; 20170148562; 20170162701; 20170179482; 20170189965; 20170194263; 20170194686; 20170211990; 20170216962; 20170229731; 20170235852; 20170243900; 20170252851; 20170271674; 20170278975; 20170288224; 20170304933; 20170317336; 20170330674; 20170338472; 20170358685; 20170358795; 20170362687; 20170365843; 20170365853; 20170368644; 20180006293; 20180019458; 20180026171; 20180040916; 20180047696; 20180070458; 20180073532; 20180083266; 20180083281; 20180083282; 20180083289; 20180086025; 20180102543; 20180122629; 20180131040; 20180149196; 20180161931; 20180175333; 20180183062; 20180202234; 20180209057; 20180212250; 20180219254; and 20180221985.


Glasses are class of ceramic that have short range order, but lack long-range order (i.e., amorphous) and are often made from oxides (e.g., silica, alumina, beryllia, ceria, zirconia). Performance, strength, rheology, chemical inertness, optical properties and cost make glasses attractive materials for broad range of applications [33]. Conventional silica glasses consist of Si bonded tetrahedrally to four oxygen atoms. If the SiO2 melt is quenched it will harden as an amorphous solid. Amorphous networks of SiO2 structure (short range order) results in glassy forms [34-36] such as Soda-lime-silica glass. Furthermore, various chemical and physical processes can be performed to modify glass properties. As an example, borosilicate glass exhibits high thermal shock and chemical resistance as a result of ion diffusion (boron) to silica. Borosilicate glass will phase separate into silica glass regions and small precipitates of boric glass [37]. Glasses can be made by melting or non-melting based techniques such as physical vapor deposition [36,38], neutron irradiation of crystalline structures [36,39] and sol-gel processing of solutions [36,40].


If on the other hand, the melt is slowly cooled, a crystalline quartz structure with long range order results [41] Crystallinity of ceramics ranges from highly-oriented to complete amorphous structures or some combination.


As glasses, ceramics and metals are widely used in various industries, such as semiconductor, automotive, aerospace, defense, medical, environmental control, it is often beneficial and useful to build structures containing glass or ceramics and metals.


Bettger et al. demonstrated a method to chemically bond soda-lime glass to metal structures consisting of stainless steel alloy, a carbon steel, titanium, aluminum or copper [42]. In this technique, an oxide layer including iron oxide and chromium oxide with iron-to-chromium ratio in the range of 0.02 to 0.6 (atom ratio) is deposited on glass substrate. By heating the metal substrate and glass substrate within the range of 500° C. to 1000° C. and placing them in contact with the oxide layer a bond in between is formed. The duration of contact varies between 10 seconds to 10 minutes based on temperature and pressure (not specified). The interfacial strength of the bond between glass and metal substrate is not quantitively discussed.


In another work McMilan et al. demonstrated the process of bonding glass or ceramic to metal by depositing a uniform layer of glass powder by dipping into a melt or spraying the glass powder suspension onto the metal component [43]. The powder coated metal part is then exposed to a gas-flame in air or nitrogen or in a nitrogen-hydrogen mixture to fuse the powder glass. The metals in the technique should be sandblasted and pre-oxidized before the powder deposition. Ag, Cu and Au metals act as nucleating agent for glass crystallization in the controlled devitrification process and create the bonds to the metal. This devitrification refers to small domains that have crystallized and are no longer amorphous. In this process, the glass powder should be melted within the range of 1000° C. and capable of devitrification under heat treatment to create crystalline structure. Thermal expansion coefficient of post-devitrified glass and the metal should be close to prevent thermal stress and fracture during post heat treatment process. After the heat treatment of metal-glass component at 500° C. to 750° C., liquid state glass will be reflowed to a mold which then bonds to pre-glassed metal. The heat treatment stage varies from 5 minutes to 1 hour.


Bonding of bioglass to metal structures is beneficial for medical devices, like orthopedic and dental devices to improve biocompatibility. One of the greatest challenges in this application is that coefficient of thermal expansion of glasses and metals are dissimilar at melting and cooling process which poses large thermal stress and consequently cracks and failures are probable [44]. There are other limiting factors in conventional glass to metal bonding techniques such as flame spraying. Loss of compositional control during long flame exposure time, extremely high diffusion of metal ions into glass, limited choice of glass types that can match coefficient of thermal expansion of metal during heat treatment process are some of this limiting factors [42,43]. In this bonding technique, similar to previous mentioned methods, the surface of the metal is roughened and oxidized and then heated up to desired glass transition temperature. Then the metal substrate is immersed in molten glass and after removal cooled down in a way to minimize thermomechanical stresses. The proposed metals are surgical stainless steel, carbon steel, cobalt-chrome alloys, titanium and titanium alloys, noble metals such as platinum, noble metal alloys such as platinum (%90)-rhodium (%10) and molybdenum-nickel-cobalt-chrome alloys [44].


The mentioned techniques so far consist of exposing both metal and glass components to high temperatures usually above glass transition temperatures in a furnace or a direct gas-flame. In another technique, it is possible to join ceramics such as lead-zirconite-titanate (PZT) to certain metal oxides (submicron TiO2, material filled with silver particles) by compressing both substrates and exposing the interface to microwave beams. The localized microwave beams will heat up and soften the substrates at the interface and facilitate interdiffusion and reaction [45]. Glass frit can be used as intermediate layer to bond Si, SiO2, Si2N4, Al, Ti, and Glass substrates [46-51]. However, thermal stress due to CTE mismatch is present.


Bonding of ceramics to metal has great importance in applications such as defense. There is the need to bond advanced ceramic elements to metallic components in missiles where the joints should be able to withstand temperatures ˜550° C. or even more for one minute and able to survive environmental thermal fluctuations from −40° C. to 200° C. [52]. In most cases of conventional ceramic-to-metal bonding techniques, thermal expansion coefficient of metals is higher than the ceramic. Furthermore, controlling compositional changes at the interface is rather challenging. Brazing is the favored solution for ceramic to metal bonding due to stable reactive diffusion. Silver-Copper composition containing 2% titanium is commercially available active filler material for conventional brazing [53-56]. High oxidation potential of titanium facilitates oxide redox reaction with ceramic which results in reactive wetting and chemical bond at the interface[52]. In the laser brazing process the temperature of the filler alloy is raised above melting point to cause wetting and reactive bonding to the material. Ceramic-to-metal bonds provided are bonding Ti to ZnS, Pyroceram to Kovar and Nb to Sapphire using Cusil™ and Lucanex 721®. As an example, ZnS is brazed to Ti by Ag—Cu—Ti alloy. The brazed bonds survived up to 12 cycles from 550° C. to liquid nitrogen temperatures and 50 cycles from 0° C. to 200° C. The laser processing was done under vacuum conditions in order to prevent oxidization reactions high reactive metals such as titanium.


Materials containing 90% alumina by weight or higher can bond to certain metals at specified temperatures [57]. Ceramics generally have poor wettability to metals. However, compositions of brazing alloy containing reactive elements such as Ti, Zr, V, Hf, Nb can bond to ceramic oxides (i.e. Al2O3) [58]. The alloy composition beside the reactive element can be chosen from Ag, Cu, Ni, Mn, In, Sn etc. [57]. Some of these elements are used to decrease the melting point of the braze alloy. Furthermore, by adding aluminum to the compound it is possible to further control the brazing alloy to alumina reaction.


SUMMARY OF THE INVENTION

The present technology provides methods and apparatus for bonding metals on to glass and ceramic substrates, including those composed of oxides (e.g., silica glass, quartz, borosilicate glass, alumina, beryllia, ceria, zirconia, lithium aluminum silicates, gallium oxide, indium tin oxide, indium zinc oxide), silicides (e.g., molybdenum disilicide), nitrides, and carbides (e.g., silicon carbide), carbon materials (e.g., diamond, pyrolytic graphite, carbon nanotubes, graphene, fullerenes), borides (e.g., tungsten borides), arsenides (e.g., gallium arsenide), sulfides (e.g., zinc sulfide) and also enables composites of metals and glasses or ceramics for various applications. Applications may include removable support layers, composite structures, connections to opto-electronics, pollution control devices, thermal devices to cool electronics.


This technology invention builds on the literature of low-temperature bonding of metal alloys onto glass and ceramic substrates using brazes, and seeks to overcome the aforementioned timescale limitations.


The present technology provides laser or electron-beam additive manufacturing of metal structures on ceramic and glass substrates.


The current paradigm is to use a focused energy source (e.g., laser or electron beam) to fuse metal powders into a solid part by building on a baseplate that is identical or very similar to the build metal to facilitate wetting. This is to create the strongest bonding to the build plate and minimize coefficient of thermal expansion mismatches.


One benefit of building on ceramic or glass is to enable direct manufacture of heat removal devices and/or electrical connections on opto-electronic substrates, integration of conventional composite materials into metal additive, heterogeneous integration of dissimilar materials, and for easy parting of the desired part from the support structure and/or the buildplate.


In one embodiment, a brazing alloy powder with homogeneous composition is employed. In another embodiment, the bonding metals are not homogeneous, i.e., are heterogeneous. The inhomogeneous brazing powder can have varying composition of the constituents, including separating each element into separate powders. In the inhomogeneous case, the powder sizes can be varied so that the largest phase has larger average diameter powder, while the lower concentration has smaller diameter to more evenly distribute around the bulk phase, for lower diffusional resistance. In some cases, the brazing powder may be deposited in layers, forming isotropic structures or regional differences. In certain embodiments, a metallization on the substrate can facilitate bonding.


In one embodiment, the bonding metal has an overall composition of about 1 to 10 wt % of an “active” brazing element plus the composition of solder for the balance of the composition. The “active” elements may include Ti, Zr, V, Nb, Hf, Ta, Mo, Cr, and W, which are suitable candidates for bonding of metals to various materials such as ceramics and glasses, including those composed of oxides (e.g., silica glass, quartz, borosilicate glass, alumina, beryllia, ceria, zirconia, lithium aluminum silicates, gallium oxide, indium tin oxide, indium zinc oxide), silicides (e.g., molybdenum disilicide), nitrides, and carbides, carbon materials (e.g., diamond, pyrolytic graphite, carbon nanotubes, graphene, fullerenes), borides (e.g., tungsten borides), arsenides (e.g., gallium arsenide), sulfides (e.g., zinc sulfide), as well as other metals [15] due to the interlayers they form that bond to those materials.


Embodiments may include using one or more of these active elements plus a solder. Embodiments may also include solders that mix elements such as Sn, Pb, Ag, Cu, Sb, Bi, In, Zn, Cd, Au, Ni, Si, Ge, Si, Al. Embodiments includes solders such as InSn (e.g., In52Sn48, In60Sn40, In50Sn50, In42Sn58), InCd (e.g., In74Cd26), BiPbInCdSn (e.g., Bi44.7Pb22.6In19.1Cd5.3Sn8.3), InBiSn (e.g., In51Bi32.5Sn16.5), InBiCd (e.g., In61.7Bi30.8Cd7.5), BiPbSnIn (e.g., Bi49Pb18Sn12In21, BiPbSnCd (e.g., Bi50Pb26.7Sn13.3Cd10), BiSnIn (e.g., Bi56Sn30In14), BiPbSn (e.g., Bi52Pb32Sn16, Bi50Pb31.2Sn18.8), BiPb (e.g., Bi58Pb42), SnPbBi (e.g., Sn46Pb46Bi8), InSnPbCd (e.g., In70Sn15Pb9.6Cd5.4), SnPbZn (e.g., Sn54Pb26In20, Sn37.5Pb37.5In25, Sn70Pb18In12), BiSnAg (e.g., Bi57Sn42Ag1), BiSn (e.g., Bi56Sn42, Bi58Sn42), SnBiPb (e.g., Sn48Bi32Pb20, Sn43Pb43Bi14), CdSn (e.g., Cd70Sn30), InPbAg (e.g., In80Pb15Ag5), InAg (e.g., In97Ag3, In90Ag10), SnPbCd (e.g., Sn51.2Pb30.6Cd18.2), InPb (e.g., In75Pb25, In70Pb30, In60Pb40, In50Pb50, Pb75In25), In, PbSnZn (e.g., Pb63Sn34Zn3), SnZnInBi (e.g., Sn86.5Zn5.5In4.5Bi3.5), SnInAg (e.g., Sn77.2In20Ag2.8, Sn86.9In10Ag3.1, Sn91.8In4.8Ag3.4, Sn88In8.0Ag3.5Bi0.5), SnZnCd (e.g., Sn40Zn27Cd33), SnPbZn (e.g., Sn30Pb50Zn20), PbSnAg (e.g., Pb54Sn45Ag1, Sn62Pb36Ag2, Pb80Sn18Ag2, Pb96Sn2Ag2, Pb88Sn10Ag2, Pb92Sn5.5Ag2.5, Pb90Sn5Ag5, Pb93.5Sn5Ag1.5, Pb95.5Sn2Ag2.5), SnZnIn (e.g., Sn83.6Zn7.6In8.8), PbSn (e.g., Pb90Sn10, Pb85Sn15, Pb80Sn20, Sn63Pb37, Sn70Pb30, Sn90Pb10, Sn63Pb37P0.0015-0.04, Sn62Pb37Cu1, Sn97.5Pb1Ag1.5), SnZnBi (e.g., Sn89Zn8Bi3), SnZn (e.g., Sn91Zn9, Sn85Zn15, Sn60Zn40, Zn70sn30, Zn60Sn40, Sn50Zn49Cu1, Sn90Zn7Cu3), SnBiAg (e.g., Sn91.8Bi4.8Ag3.4), SnAgCu (e.g., Sn96.5Ag3.0Cu0.5, Sn95.5Ag4.0Cu0.5, Sn95.8Ag3.5Cu0.7, Sn95.6Ag3.5Cu0.9, Sn99Cu0.7Ag0.3, Sn96.2Ag2.5Cu0.8Sb0.5, Sn90.7Ag3.6Cu0.7Cr5, Sn95Ag3.5Zn1Cu0.5, Sn95.5Cu4Ag0.5, Sn97Cu2.75Ag0.25), SnAu (e.g., Sn90Au10), SnAg (e.g., Sn96.5Ag3.5—Sn93Ag7), SnCu (e.g., Sn99.3Cu0.7, Sn97Cu3), SnPbZn (e.g., Sn33Pb40Zn28), Sn, SnSb (e.g., Sn95Sb5—Sn99Sb1), SnAgSb (e.g., Sn64Ag25Sb10), PbIn (e.g., Pb81In19, Pb70In30, Pb75In25, Pb90In5Ag5, Pb92.5In5Ag2.5, Pb92.5In5Au2.5), CdZn (e.g., Cd82.5Zn17.5, Cd70Zn30, Cd60Zn40, Zn90Cd10, Zn60Cd40, Cd78Zn17Ag5), Bi, AuSn (e.g., Au80Sn20), PbSbSn (e.g., Pb80Sb15Sn5), PbAg (e.g., Pb94.5Ag5.5—Pb96Ag4, Pb97Ag1.5Sn1, Pb97.5Ag2.5), CdAg (e.g., Cd95Ag5), AuSi (e.g., Au98Si2, Au96.8Si3.2), ZnAl (e.g., Zn95Al5), ZnSn (e.g., Zn95Sn5), Zn, AuIn (e.g., Au82In18), AuGe (e.g., Au87.5Ge12.5). Many of these possible bonding alloys are undesirable for due to health and environmental concerns (e.g., those containing Pb, Cd), and for economics due to cost (e.g., Au). However, these are not technologically excluded, and may be employed as appropriate in the application. Aluminum containing solders have advantage for bonding to Al2O3-based substrates.


In another embodiment, the bonding metal is a homogeneous or heterogeneous powder mixture of a brazing alloy. One specific embodiment of this invention uses the Sn3Ag4Ti composition as a heterogeneous or homogeneous composed powder. This alloy has good bonding strength with dissimilar metallic or non-metallic substrates at temperatures between 250° C. to 450° C. [15,59,17,18]. Sn3Ag4Ti forms bonds with such materials as oxides (e.g., silica glass, quartz, borosilicate glass, alumina, beryllia, ceria, zirconia, lithium aluminum silicates, gallium oxide, indium tin oxide, indium zinc oxide), silicides (e.g., molybdenum disilicide), nitrides, and carbides, carbon materials (e.g., diamond, pyrolytic graphite, carbon nanotubes, graphene, fullerenes), borides (e.g., tungsten borides), arsenides (e.g., gallium arsenide), sulfides (e.g., zinc sulfide). To form a good bond, the braze or bonding alloy must minimize thermal stress from the solidification temperature to ambient, so the low melting point of the braze is beneficial. Furthermore, the low melting point increases the activity of the reactive metals by making it more available to react with the substrate. Brazing alloys generally have similar compositions to low-temperature solders, but also include an element that thermodynamically favors forming reactions with the substrate over other elements of the solder. Unlike a solid solution alloy with the different species randomly occupying lattice sites, intermetallics exist at specific stoichiometric ratios and each species has its own lattice sites. Intermetallics possess stiffer bonds than solid solution alloys because of their long range order, negative heats of formation and higher melting temperatures.


A different embodiment uses a homogeneous or heterogeneous powder mixture with a AgCuTi alloy. A different embodiment uses a Ag21Cu5X alloy where X=Ti, Ta, Zr, V, Hf, Cr, Mo, W, Nb.


In yet another embodiment, Cu or Cu alloy with an active element X=Ti, Ta, Zr, V, Hf, Cr, Mo, W, Nb at about 1-10 wt % is mixed as a homogeneous powder alloy, or as a heterogeneous mixed powder.


In yet another embodiment, Al or Al alloy, such as Al—Si alloys, is mixed with an active element X=Ti, Ta, Zr, V, Hf, Cr, Mo, W, Nb at about 1-10 wt % as a homogeneous powder alloy or as a heterogeneous mixed powder. These Al rich alloys are attractive for bonding to alumina rich substrates.


Certain embodiments can incorporate ceramic or semiconductor micro or nanoparticle inclusions. This can serve two purposes, to better match the coefficient of thermal expansion of the substrate, and to mechanically reinforce the interlayer material.


While the time to make a good bond in typical metal wetting is on the order of tens of minutes [9,19,27,28], in additive manufacturing this nucleation and crystal growth of the intermetallic phase needs to occur in times of less than 100 μs per exposure, as the laser melting and solidification occur rapidly [60,61]. Hence, achieving a good bond with powder bed-additive manufacturing poses unique challenges compared to conventional brazing that are overcome through aspects of this invention.


Several embodiments overcome this kinetic limitation. One such aspect is to repeatedly melt the same area to increase the overall time at elevated temperature, which increases time for bonding elements to diffuse to the interface and for metals to form bonding compounds (e.g., intermetallics, oxides, nitrides, carbides, silicides, borides, arsenides). This multiple exposure is beneficial for protecting the electronics and the substrate because each directed energy melting pulse is brief enough that the thermal penetration depth does not exceed the thickness of the typical silicon wafer. This directed energy pulse may be from a source like a laser or an electron beam. Less focusable energy sources, like a microwave or a hot solder iron tip that moves over the part, could also be used in alternative embodiments as energy sources. Moreover, momentary high temperature helps to overcome the energy barriers for diffusion and crystallization better than in a longer duration, lower heating temperature found in conventional brazing, due to diffusivity and nucleation rate being an exponential function of temperature. This elevated temperature overcomes barriers to diffusion and crystal nucleation that are described by an Arrhenius rate equation, exp(−Ea/kBT), where Ea is the activation energy of either diffusion or nucleation, kB is the Boltzmann constant, and T is absolute temperature [62]. Due to the rapid laser processing temperature, diffusion and nucleation can overcome the energy barrier more rapidly than conventional brazing and proceed more rapidly than reactions occurring just above the melting point of the metal.


In one embodiment, a brazing alloy is used for the first layer to the dissimilar substrate (ceramic or glass substrate), and then subsequent layers transition, either abruptly or gradually to a different material. One particular embodiment of this is to build on a substrate, like Si, and transition with a bonding layer to a material like copper, aluminum, or stainless steel. One application of this is to transition to a higher thermal and electrical conductivity material, like aluminum or copper, for heat transfer or electrical transport benefits. The interlayer can be an abrupt transition with one or more layers of the bonding powder or alloy and then transition to a different material, or the transition can be gradual with interlayers varying in composition from the bonding alloy or bonding powder mixture to the new mixture. The bonding from non-metal to metal can occur via intermetallic bonding or amorphous mixture of the two. The metal-to-metal bond can form via intermetallic formation or solid solution alloy formation at the interface. By controlling the processing parameters, it is even possible to print higher melting point materials on a lower-melting point substrate.


One embodiment uses the bonding alloy or bonding metal powder mixture to bond a substrate via the bonding braze to a subsequent metal. This bonding layer softens and the bulk phase melts at lower temperature than the layer on either side. This bonding layer can therefore be removed by application of heat. This enables the support build platform to be parted from the desired part. This is in contrast to the typical method of part separation that involves machining parts from the build plate via operations like bandsaws and wire electrostatic discharge machining. In a related alternate embodiment, the bonding alloy or bonding powder mixture can be used as internal support structure that will be softened or melted away during post-processing. Thus, the bonding alloy or bonding powder mixture can form the support that enables overhangs, yet also is easily removable via melting, rather than mechanical means. The bonding alloy or bonding powder mixture can be distributed via a stream or via a powder recoater process. The process can even be conducted in two steps, with one additive printer printing one material and a second additive printer printing the next layer, so that a multi-material powder bed fusion or multi-material directed energy deposition tool is not required.


In yet another embodiment, the bonding alloy or bonding powder can be printed directly on a metal, and then subsequently bonded via an oven to a dissimilar substrate (e.g., ceramic or glass). In a particular embodiment, the Sn3Ag4Ti alloy can be printed on steel, and then that can be bonded at elevated temperatures to a different metal or non-metal, including from the following possible combinations; oxides (e.g., silica glass, quartz, borosilicate glass, alumina, beryllia, ceria, zirconia, lithium aluminum silicates, gallium oxide, indium tin oxide, indium zinc oxide), silicides (e.g., molybdenum disilicide), nitrides, and carbides (e.g., silicon carbide), carbon materials (e.g., diamond, pyrolytic graphite, carbon nanotubes, graphene, fullerenes), borides (e.g., tungsten borides), arsenides (e.g., gallium arsenide), sulfides (e.g., zinc sulfide), gallium arsenide, stainless steel, copper and copper alloys, and aluminum and aluminum alloys. In yet another embodiment of the invention, a surface may already be coated or made of the bonding alloy and be subsequently additively manufactured on top of the surface.


The glass powder may be a low melting point glass, e.g., leaded glass or lead-free low melting point glass alternatives such as Hitachi Vaneetect or from Corning, JP2010184852A; U.S. Pat. Nos. 3,837,866A; 4,743,302A, WO2016175469A1. For example, the technology may be used to print a pattern of low melting point glass onto a higher melting point glass, for example to provide relief features on a glass surface, such as to provide tactile guidance on a touchscreen, binary (or digital) refractive lens structures, e.g., Fresnel lens type structures, and the like. A low melting temperature glass has a melting point below about 400° C.


In yet another embodiment, the substrate and/or powder can be coated in a metallization that promotes bonding and/or reduces surface fouling. The surface may be coated via techniques including evaporation, sputtering. The metallization can include elements X=Ti, Ta, Zr, V, Hf, Cr, Mo, W, Nb.


In several embodiments of this invention, a 3D pattern or mold can be used to produce the desired features on a ceramic or glass substrate. This mold can be made of a flexible and heat-resistant material like silicone and loaded with brazing alloy powder on the top layer to be bonded to the ceramic or glass substrate. This can be done layer-by-layer. Layers below this bonding alloy can be powder or solid metal to be added to the ceramic or glass substrate. This technique can then have thermal energy from a heat source, including a laser, a microwave or infrared heat source, bond and fuse the metal to the ceramic or glass substrate. The microwave has a greater absorption in the powder than semiconductor, so selectively absorbs more energy, thus not damaging the ceramic or glass. Subsequent layers or bonding to other metals can follow.


In several embodiments of the invention, the processing parameters of a specific bonding alloy powder (homogeneous or inhomogeneous) are determined as a function of the substrate, underlying layer, layer height, directed energy spot size, ambient gas, powder deposition methodology. To determine the ideal print properties, a print on the substrate with different power and scan rate features will be made, and the surface texture and mechanical strength of the alloy and interface are examined. This processing is examined for single and multiple exposures. Once the process for the first layer is determined, subsequent layers and transition layer processing parameters are determined in a similar manner. Methods of examining the print include profilometry to estimate contact angle, mechanical testing via macro mechanical testing and by solder ball shear or pull-off testing.


One embodiment creates surface texturing or voids or wicking texture to enhance phase-change heat transfer. One attractive way to improve heat transfer is to use phase-change, especially boiling and evaporation for cooling. Two-phase cooling via boiling has heat transfer coefficients orders-of-magnitude higher than single-phase liquid cooling, due to the large amount of energy required to vaporize liquids per unit weight. The rate of boiling heat transfer is a function of how many bubble generating sites are available. Scratches and pits often act as nucleation sites, as the crevices encourage bubble growth by reducing the energy required for bubbles to nucleate compared to a flat surface. One way they do this is by trapping nuclei of bubbles that reduce the energy of bubble generation, and increase the heat transfer in the onset boiling regime. Reentrant cavities also delay the critical heat flux, which is the maximum heat flux before any further increase in surface temperature will actually have reduced heat flux due to water vapor blanket fully enveloping the surface, which insulates the surface. Therefore, one embodiment of this invention is to intentionally create texturing for bubble nucleation. An additional embodiment further coats the surface to make bubble liftoff easier and liquid replenishment of bubble sites easier. This can involve deposition via solution, chemical vapor deposition, physical vapor deposition, and/or atomic layer deposition.


In another embodiment, wicks for evaporative cooling and heat pipes are mode using this bonding alloy or bonding powder mixture. While there are many varieties of heat pipes, the basic variety has two primary components; 1) a wick that draws refrigerant into the evaporator by capillary pressure and 2) a condenser that condenses the vaporized refrigerant. The effective thermal conductivity of typical heat pipes exceed that of copper by several times.[63] One embodiment of this invention is directly producing these wicks on the active electronic devices substrate. In an alternative embodiment these wicks are used for evaporative cooling in an open system. The evaporator features could be printed via this technique and a lid can seal and integrate this into a heat-pipe system. It can be sealed to the substrate with adhesive or melting a material that bonds well to the substrate. The lid can be made of any number of materials, including polymers and metals.


An alternative embodiment is to create microchannels. These microchannels can be used for cooling or for microfluidic integration. The microchannels can also be used to make integrated cooling channels for non-wicked heat pipes, like oscillating heat pipes and for two-phase heat transfer devices called vapor chambers. The microchannels can be produced by this technique and a lid that can seals to the chip and has flow inlets and outlets can be used.


Another embodiment uses the bonding alloy or bonding powder mixture to fabricate electrical connections to the substrate. This process can involve transitioning from the bonding metal alloy to a different metal for reasons such as improved electrical conductivity. In some embodiments, electrical connections and thermal heat sinking can occur on the same electrical device. On certain substrates these connections could be made to transparent conductive material (e.g., indium tin oxide, indium zinc oxide, graphene).


It is therefore an object to provide a method for forming a metal structure bonded to a dissimilar substrate, comprising: providing a substrate having a bonding surface; depositing a powder comprising components that, when heated to at least a melting temperature, melts and chemically reacts with the substrate to form an interlayer which adheres the melted powder to the dissimilar substrate; heating a portion of the powder deposited on the substrate with a localized energy source, the localized energy source being dynamically controlled to regionally melt the portion of the powder substantially without melting all of the powder and without bringing the substrate into thermal equilibrium, said heating being sufficient to form the interlayer which adheres the melted powder to the dissimilar substrate; and cooling the regionally melted portion of the powder to form a solid layer, wherein the solid layer is adhered to the dissimilar substrate.


A device, comprising a fused powder conductive metal alloy, wherein the alloy forms an interlayer comprising at least one intermetallic or intermetallic-like compound component with a dissimilar material supporting surface, the fused powder being formed on the dissimilar material supporting surface as a conductive trace separated from at least one other trace by an insulating region, the dissimilar material supporting surface being part of a substrate having a heat sensitive structure which is degraded at a temperature lower than a melting point of the conductive metal alloy.


The cooling may occur concurrently with heating of a different portion of the powder deposited on the substrate with the localized energy source, to regionally melt the different portion of the powder.


The localized energy source may have a heating diameter, and the melted portion of the powder is confined to a region extending laterally along the surface no more than three times the heating diameter. The localized energy source has an energy density of about 40 J/mm3. The localized energy source may have an energy density of less than about 150 J/mm3.


The method may further comprise reheating the portion of the powder deposited on the substrate with the localized energy source, to enhance formation of the interlayer which adheres the melted powder to the dissimilar substrate, and subsequently cooling the regionally remelted portion of the powder to reform the solid layer.


The localized energy source may heat the region above the melting temperature for a duration of less than about 60 seconds, or 30 seconds, or 20 seconds, or 20 seconds, or 5 seconds, or 2.5 seconds, or 1 second, or about 100 milliseconds, or 10 milliseconds, or 1 millisecond, or 100 microseconds, or 25 microseconds, for example.


The localized energy source may heat the region for a duration of less than about 60 seconds, or 30 seconds, or 20 seconds, or 20 seconds, or 5 seconds, or 2.5 seconds, or 1 second, or about 100 milliseconds, or 10 milliseconds, or 1 millisecond, or 100 microseconds, or 25 microseconds, for example.


The localized energy source may be pulsatile or continuous. The localized energy source may be dynamically repositioned over the surface, during exposure or between pulses of exposure. The powder may comprise a metal powder, e.g., having a melting temperature of less than 1600° C., or 1500° C., or 1400° C., or 1300° C., or 1250° C., or 1200° C., or 1100° C., or 1000° C., or 900° C., or 800° C., or 700° C., or 600° C., or 500° C., or 400° C., or 375° C., or 350° C., or 325° C., or 300° C., or 290° C., or 285° C., or 280° C., or 270° C., or 260° C., or 250° C., or 240° C., or 230° C., or 220° C., or 210° C., or 200° C., or 190° C., or 180° C., or 170° C., or 160° C., 150° C., or 140° C., or 130° C., or 125° C., or 120° C., 110° C., 100° C., or 90° C., or 80° C., or 79° C., or 75° C., for example.


The powder may chemically react with the dissimilar substrate to form an intermetallic or intermetallic-like compound. The powder may chemically react with the dissimilar substrate to form a metal carbide or metal silicide compound. The powder may chemically react with the dissimilar substrate in an anoxic or inert environment, such as argon, helium or nitrogen gas.


At least one of the powder and the dissimilar substrate may be flammable in air, especially under conditions of focused laser or electron beam irradiation. At least one of the powder and the dissimilar substrate may be pattered by modulating a flow of reactive gas, such that regions exposed to the focused energy beam in the presence of the reactive gas have different properties than regions exposed to the focused energy beam in the absence of the reactive gas. The modulated property may be porosity, hydrophilicity/hydrophobicity, adhesion to subsequent layers of fused metal or metal particles, bubble liftoff, surface roughness, electrical conductivity, thermal conductivity, optical refractive properties, optical reflective properties, optical absorption properties, frictional coefficient, chemical reactivity, wear-resistance, etc.


The powder may melt to form a metal layer having less than about 1% void space. The melted powder may have a density of at least 99% of a homogeneous solid formed of the same composition as the powder.


The heating may comprise selective laser melting (SLM), electron beam exposure, or other techniques.


The dissimilar substrate may comprise pyrolytic carbon, graphite, silicon, an integrated circuit wafer, stainless steel, 316L stainless steel, a gallium arsenide wafer, an integrated circuit formed on a semiconductor wafer, a microprocessor formed on a silicon wafer, silicon carbide, diamond, a diamond-like coating, gallium oxide, a material with a conductive transparent substrate (indium tin oxide, indium zinc oxide, graphene), silica glass, quartz, borosilicate glass, molybdenum disilicide, tungsten borides, dissimilar metal, a heatsink or other materials, devices or structures.


The solid layer may be part of a stack of solid layers formed above the bonding surface.


The stack of solid layers may define a bounded space. The bounded space may define a fluid flow channel. The fluid flow channel may comprise a microchannel heat exchanger. The fluid flow channel may comprise a phase change heat pipe.


The stack of solid layers may be homogenous or heterogeneous. The stack of solid layers may have a composition gradient. The stack of solid layers may have a composition discontinuity. The stack of solid layers may comprise a low melting point solder.


The dissimilar substrate may be non-metallic and the solid layer may be metallic.


The solid layer may have a first melting point, and a second solid layer is formed over the solid layer having a second melting point, the second melting point being higher than the first melting point, wherein heating the dissimilar substrate to a temperature between the first melting point and the second melting point causes a loss of material integrity between the dissimilar substrate and the second solid layer, making the second solid layer separable from the dissimilar substrate.


The preferred embodiment is a localized energy source that may comprise a laser beam or an electron beam. Alternative embodiments could use an energy source that is less localized, like a microwave energy source, an infrared heating element, or a heated stylus (eg soldering iron tip), possibly with a template or mold providing finer detailing on where material should bond to the substrate.


The dissimilar substrate and the solid layer may have similar coefficients of thermal expansion, wherein thermal mismatch does not cause delamination over a temperature range of −25° C. to +125° C. The dissimilar substrate and the solid layer may have different coefficients of thermal expansion, wherein thermal mismatch is sufficient to reliably cause delamination at a temperature under 250° C.


The pattern produced can have features that are sized small enough that the thermal stresses do not lead to interfacial delaminations. The features can be printed in smaller units at a time so the heat buildup and thermal stresses from cool-down of melt are below the interfacial bond failure stress limit.


The powder may comprise a metal having between about 1% and 10% by weight aggregate of at least one of Ti, Zr, V, Nb, Hf, Ta, Mo, Cr, and W. Various metals form silicide compounds, including; Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Jr, Pt, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Th, U, Np, Pu, Am, and Cm. Therefore, these components may be present within the powder to be processed, and potentially form silicides that enhance adhesion to a silicon substrate. Some of these would only be useful in very particular circumstances, for example, Np, Am and Cm might find application in high-cost tolerant situations where one seeks a future release of the solid metal from the silicon, as might result from radioactive decay of the silicides that promote adhesion. Some of these same silicide forming elements also promote bonding to silica materials like ceramics composed of silica, quartz, borosilicate glasses, lithium aluminum silicate glass-ceramics.


The powder may comprise a solder alloy selected from the group consisting of at least two of Sn, Pb, Ag, Cu, Sb, Bi, In, Zn, Cd, Au, Ni, Si, Ge, Si, and Al. The powder may comprise a solder alloy selected from the group consisting of; InSn (e.g., In52Sn48, In60Sn40, In50Sn50, In42Sn58), InCd (e.g., In74Cd26), BiPbInCdSn (e.g., Bi44.7Pb22.6In19.1Cd5.3Sn8.3), InBiSn (e.g., In51Bi32.5Sn16.5), InBiCd (e.g., In61.7Bi30.8Cd7.5), BiPbSnIn (e.g., Bi49Pb18Sn12In21), BiPbSnCd (e.g., Bi50Pb26.7Sn13.3Cd10), BiSnIn (e.g., Bi56Sn30In14), BiPbSn (e.g., Bi52Pb32Sn16, Bi50Pb31.2Sn18.8), BiPb (e.g., Bi58Pb42), SnPbBi (e.g., Sn46Pb46Bi8), InSnPbCd (e.g., In70Sn15Pb9.6Cd5.4), SnPbIn (e.g., Sn54Pb26In20, Sn37.5Pb37.5In25, Sn70Pb18In12), BiSnAg (e.g., Bi57Sn42Ag1), BiSn (e.g., Bi56Sn42, Bi58Sn42), SnBiPb (e.g., Sn48Bi32Pb20, Sn43Pb43Bi14), CdSn (e.g., Cd70Sn30), InPbAg (e.g., In80Pb15Ag5), InAg (e.g., In97Ag3, In90Ag10), SnPbCd (e.g., Sn51.2Pb30.6Cd18.2), InPb (e.g., In75Pb25, In70Pb30, In60Pb40, In50Pb50, Pb75In25), In, PbSnZn (e.g., Pb63Sn34Zn3), SnZnInBi (e.g., Sn86.5Zn5.5In4.5Bi3.5), SnInAg (e.g., Sn77.2In20Ag2.8, Sn86.9In10Ag3.1, Sn91.8In4.8Ag3.4, Sn88In8.0Ag3.5Bi0.5), SnZnCd (e.g., Sn40Zn27Cd33), SnPbZn (e.g., Sn30Pb50Zn20), PbSnAg (e.g., Pb54Sn45Ag1, Sn62Pb36Ag2, Pb80Sn18Ag2, Pb96Sn2Ag2, Pb88Sn10Ag2, Pb92Sn5.5Ag2.5, Pb90Sn5Ag5, Pb93.5Sn5Ag1.5, Pb95.5Sn2Ag2.5), SnZnIn (e.g., Sn83.6Zn7.6In8.8), PbSn (e.g., Pb90Sn10, Pb85Sn15, Pb80Sn20, Sn63Pb37, Sn70Pb30, Sn90Pb10, Sn63Pb37P0.0015-0.04, Sn62Pb37Cu1, Sn97.5Pb1Ag1.5), SnZnBi (e.g., Sn89Zn8Bi3), SnZn (e.g., Sn91Zn9, Sn85Zn15, Sn60Zn40, Zn70sn30, Zn60Sn40, Sn50Zn49Cu1, Sn90Zn7Cu3), SnBiAg (e.g., Sn91.8Bi4.8Ag3.4), SnAgCu (e.g., Sn96.5Ag3.0Cu0.5, Sn95.5Ag4.0Cu0.5, Sn95.8Ag3.5Cu0.7, Sn95.6Ag3.5Cu0.9, Sn99Cu0.7Ag0.3, Sn96.2Ag2.5Cu0.8Sb0.5, Sn90.7Ag3.6Cu0.7Cr5, Sn95Ag3.5Zn1Cu0.5, Sn95.5Cu4Ag0.5, Sn97Cu2.75Ag0.25), SnAu (e.g., Sn90Au10), SnAg (e.g., Sn96.5Ag3.5—Sn93Ag7), SnCu (e.g., Sn99.3Cu0.7, Sn97Cu3), SnPbZn (e.g., Sn33Pb40Zn28), Sn, SnSb (e.g., Sn95Sb5—Sn99Sb1), SnAgSb (e.g., Sn64Ag25Sb10), PbIn (e.g., Pb81In19, Pb70In30, Pb75In25, Pb90In5Ag5, Pb92.5In5Ag2.5, Pb92.5In5Au2.5), CdZn (e.g., Cd82.5Zn17.5, Cd70Zn30, Cd60Zn40, Zn90Cd10, Zn60Cd40, Cd78Zn17Ag5), Bi, AuSn (e.g., Au80Sn20), PbSbSn (e.g., Pb80Sb15Sn5), PbAg (e.g., Pb94.5Ag5.5—Pb96Ag4, Pb97Ag1.5Sn1, Pb97.5Ag2.5), CdAg (e.g., Cd95Ag5), AuSi (e.g., Au98Si2, Au96.8Si3.2), ZnAl (e.g., Zn95Al5), ZnSn (e.g., Zn95Sn5), Zn, AuIn (e.g., Au82In18), AuGe (e.g., Au87.5Ge12.5). The powder may comprise Sn3Ag4Ti, or an AgCuTi alloy. The powder may comprise an Ag21Cu5X alloy where X=Ti, Ta, Zr, V, Hf, Cr, Mo, W, and Nb. The powder may comprise a Cu alloy having between about 1% and 10% by aggregate weight of X=Ti, Ta, Zr, V, Hf, Cr, Mo, W, and Nb. The powder may comprise an Al alloy having between about 1% and 10% by aggregate weight of X=Ti, Ta, Zr, V, Hf, Cr, Mo, W, and Nb.


The localized energy source may be a 1064 nm Yb-fiber laser. A position of the localized energy source may be controlled by a galvanometer mirror system. The localized energy source may have a heating zone of less than 300 μm deep.


The dissimilar substrate may comprise at least one of silicon and graphite, with a solid layer formed of Sn3Ag4Ti, and a second solid later of 316L stainless steel formed on the Sn3Ag4Ti.


The heating and cooling may be repetitively cycled to reduce a contact angle.


The heating and cooling may be repetitively cycled to increase a mechanical strength.


The heating and cooling may be repetitively cycled to relieve residual thermal stress.


The solid layer bonded to the dissimilar substrate may comprise a heat spreader for a heat dissipative device.


It is another object to provide a method of forming a heatsink for an integrated circuit, comprising: depositing a metallic powder on an integrated circuit substrate; and locally heating the metallic power to a sufficient temperature to melt the metallic powder with focused energy, having limited duration at a particular region to avoid heat-induced functional damage to the integrated circuit, and cooling the melted metallic powder to form a solid layer, to form an adherent bond between the integrated circuit substrate and the solid layer.


The adherent bond may comprise a metal silicide component interlayer.


The locally heating may comprise exposing the metallic powder to radiation pulses, and/or spatially scanned radiation.


The locally heating may remelt and subsequently cool regions of the solid layer.


The method may further comprise depositing a second metallic powder over the solid layer, the second metallic powder being different from the metallic powder; and locally heating the second metallic power to a sufficient temperature to melt the second metallic powder, substantially without heat-induced functional damage to the integrated circuit, while forming an alloy interlayer between the melted second metallic powder and the solid layer.


The silicon wafer (or other substrate) may be cleaned by a process selective from the group consisting of at least one of a chemical, a mechanical, and an ablative cleaning step.


It is a further object to provide a method for forming a selectively melted metal structure, comprising: providing a substrate having a bonding surface; depositing a first powder comprising components of a fused low melting temperature metal, having a composition that, when heated, chemically reacts with the substrate; heating the first powder, on the substrate, with localized energy source to melt the powder and the melted low melting temperature metal, and to react with the bonding surface, sufficient to form a bonding interlayer; depositing a second powder comprising components of a high melting temperature metal, having a composition that, when heated, forms an alloy interlayer with the lower melting temperature metal substrate; and heating the second powder, on the fused low melting temperature metal, with localized energy pulses to fuse the second powder, and to alloy with the fused low melting temperature metal.


The substrate mat be further heated to at least soften the fused low melting temperature metal while maintaining the fused high melting temperature metal as a solid; and the solid fused high melting temperature metal then removed from the substrate.


After removing the solid fused high melting temperature metal from the substrate, the substrate may be reused by; depositing a third powder comprising components of a fused low melting temperature metal, having a composition that, when heated, chemically reacts with the substrate; and heating the third powder, on the substrate, with localized energy source to melt the powder and the melted low melting temperature metal, and to react with the bonding surface, sufficient to form a bonding interlayer.


It is another object to provide a metal alloy powder for use in additive manufacturing, comprising a particles of metal alloy, and particles which form non-metal inclusions, wherein a fused volume of the metal alloy powder formed by localized heating has a plurality of surface re-entrant cavities configured to promote bubble nucleation in a heat transfer fluid.


The configuration of the surface re-entrant cavities may be controllable by a modulation and a power setting of a laser power source.


It is a still further object to provide a heat transfer device comprising the fused volume of the metal alloy powder, formed by localized heating having the plurality of surface re-entrant cavities configured to promote bubble nucleation in the heat transfer fluid.


It is also an object to provide a method for forming a structure bonded to a substrate, comprising: providing a substrate; forming an interlayer by chemical reaction on the substrate, between the substrate and a metal layer; depositing a metallic powder on the metal layer; heating a portion of the metallic powder deposited on the substrate with a localized energy source in a localized heating region, the localized energy source being dynamically controlled to regionally melt the portion of the metallic powder substantially while leaving an adjacent portion of the metallic powder unmelted, and without bringing the substrate underneath the localized heating region into thermal equilibrium; and cooling the regionally melted portion of the metallic powder to form a solid layer.


The cooling may occur concurrently with heating of a different portion of the metallic powder deposited on the surface with the localized energy source, to regionally melt the different portion of the metallic powder.


The localized energy source may be operated continuously and is dynamically repositioned over the surface. The metallic powder may consist essentially of a metal or metal alloy powder. The powder may chemically react with the surface of the substrate to form at least one of an intermetallic compound, a metal carbide compound, a metal nitride compound, a metal boride compound, and a metal silicide compound. A location of the localized heating region may be controlled over time to selectively melt the powder into a predefined patterned layer having gaps between portions of the solid layer. The heating may comprise selective laser melting (SLM). The substrate may comprise a semiconductor. The surface of the substrate may comprise an aluminum or copper layer.


The method may further comprise forming a stack of layers over the solid layer above the bonding surface, by sequentially depositing a powder on an upper surface and melting the powder, in a predetermined pattern, to form a three-dimensional structure which adheres to the substrate.


It is a further object to provide a method of forming a structure on an integrated circuit, comprising: depositing a powder on a surface of a substrate comprising an integrated circuit; and locally heating the powder to a sufficient temperature to melt the powder with focused energy, having limited duration at a particular region to avoid heat-induced functional damage to the integrated circuit, and cooling the melted powder to form a solid layer, wherein an adherent bonding layer is present between the substrate and the solid layer comprising a chemical reaction product distinct from a composition of the surface and a composition of the solid layer.


The adherent bonding layer may comprise an interlayer selected from the group consisting of an intermetallic compound, a metal silicide, a metal carbide, a metal boride, and a metal nitride, and the solid layer comprises a metal or metal alloy, and the method further comprise forming a stack of additional solid layers over the solid layer in a regional pattern to form a three dimensional structure having at least one space over the substrate between respective portions of the regional pattern, while avoiding heat-induced functional damage to the integrated circuit.


Another object of the invention provides a device, comprising: a fused layer, formed by a process comprising: depositing a powder on a supporting surface of a substrate, comprising particles; and locally heating a portion of the powder on the supporting surface with a focused energy beam, substantially without achieving thermal equilibrium in the substrate, to fuse the locally heated portion of the powder to form an adhesion interlayer.


The adhesion layer may be formed substantially without concurrently fusing a non-locally heated portion of the powder, configured as a region-specific pattern.


The adhesion interlayer may comprise a heating-induced chemical reaction product of the supporting surface of the substrate and the powder


The powder may further comprise particles which form inclusions in the fused volume of powder, wherein after locally heating, the powder, an exposed surface of the fused volume of powder comprises a plurality of surface re-entrant cavities.


The region-specific pattern of the device may be configured as a heat sink.


The fused volume may have a surface with adjacent regions of heterogeneous aqueous fluid wetting, wherein regions with high wettability promote aqueous liquid flow to bubble generation sites, and regions with low wettability promote bubble liftoff. The region-specific pattern may define a circumferential wall of a microchannel configured to guide fluid flow.


The powder may comprise a metal alloy, and between about 1% to about 10% aggregate weight, per weight of the metal alloy, of a reactive element that bonds actively to the substrate surface selected from the group consisting of Ti, Ta, Zr, V, Hf, Cr, Mo, W, and Nb.


A further object of the invention provides a manufactured structure, comprising: a substrate; an interface layer, comprising a chemical reaction product of a surface of the substrate and a metallic composition; and a solid layer, formed over the interface layer from fused portions of the powder, in a regional pattern having at least one void region over the substrate.


The substrate may comprise an integrated circuit having a deposited metal layer, the solid layer is metallic, the fused interface layer comprises an intermetallic composition, and the regional pattern is configured as a heatsink for the integrated circuit.


The manufactured structure may further comprise an additional solid layer formed on the solid layer by regional heating of a powder.


The additional solid layer may be formed in a three dimensional pattern having a gap between selectively formed regions of the regional pattern.


The solid layer may be formed by fusion of a powder that chemically reacts with the surface to form the interface layer comprising at least one of an intermetallic compound, a metal carbide compound, a metal nitride compound, a metal boride compound, and a metal silicide compound.


The substrate may comprise a semiconductor. The semiconductor may be configured as an integrated electronic circuit, and wherein the solid layer is configured as a set of electrically-isolated electrical interconnects to the integrated electronic circuit.


A still further object provides an adhesive interlayer between a substrate and a fused metal alloy powder, comprising a chemical reaction product comprising at least one of a metal silicide, a metal carbide, a metal boride, and a metal nitride with a respective substrate, the chemical reaction product forming a shear resistant layer which causes the fused metal alloy powder to adhere to the substrate.


The chemical reaction product may be selected from the group consisting of an intermetallic compound, an intermetallic-like compound, or a chalcogen bond compound.


It is another object to provide a device, comprising: a fused metal alloy, formed by a process comprising: depositing a powder on a supporting surface of a dissimilar substrate, comprising particles of metal alloy wherein the powder is reactive under heating with the supporting surface of the dissimilar substrate to form an interlayer comprising at least one intermetallic or intermetallic-like compound component; and locally heating the powder on the supporting surface with a focused energy beam, substantially without achieving thermal equilibrium, to fuse the volume of the powder and form the interlayer.


The powder may further comprise particles which form non-metal inclusions in the fused volume of powder, wherein after locally heating, the powder, an exposed surface of the fused volume of powder comprises a plurality of surface re-entrant cavities. A configuration of the re-entrant cavities may be controlled by a modulation and power setting of the focused energy source. The device may be configured as a heat sink, a heat pipe, or a heat spreader.


The device may have a porous surface of the fused volume configured to promote fluid wicking. The porous surface of the fused volume may be configured to promote heat transfer by fluid wicking.


The fused volume may have a surface with adjacent regions of heterogeneous aqueous fluid wetting, wherein regions with high wettability promotes aqueous liquid flow to bubble generation sites, and regions with low wettability promote bubble liftoff. The adjacent regions of heterogeneous aqueous fluid wetting may be defined by a selective coating on the surface. The adjacent regions of heterogeneous aqueous fluid wetting may be defined by a selective surface treatment. The adjacent regions of heterogeneous aqueous fluid wetting may be defined by a selective control over the focused energy beam during the locally heating. The adjacent regions of heterogeneous aqueous fluid wetting may be defined by a selective control over an atmosphere during the locally heating.


The locally heating may be conducted in an inert gas.


The locally heating may be controlled to define a microchannel configured to guide fluid flow within the fused volume of powder, the microchannel being covered by at least one layer above the fused volume of powder.


The dissimilar substrate may be formed of a dissimilar metal with respect to the fused metal alloy.


The device may further comprise a metal structure bonded to the dissimilar substrate. The dissimilar substrate may be formed of a non-metal or a metal.


The fused volume may be separated from the dissimilar substrate after formation.


The device may further comprise at least one additional layer of metal alloy formed over the fused volume of the powder, the at least one additional layer of metal alloy having a higher melting point than the fused volume of the powder.


The device may further comprise at least one metal layer formed over the fused volume of the powder by a process selected from the group consisting of; sputtering, plasma coating, electrodeposition, and evaporation.


The powder may consist essentially of an SnAgX alloy, where X is a reactive element selected from the group consisting of Ti, Ta, Zr, V, Hf, Cr, Mo, W, and Nb in an amount of between about 1% to about 10% by weight, where Ag is about 3% by weight and Sn is the balance.


The powder may consist essentially of an AgCuX alloy, where X is a reactive element selected from the group consisting of Ti, Ta, Zr, V, Hf, Cr, Mo, W, and Nb in an amount of between about 1% to about 10% by weight, where Cu is about 35% by weight and Ag is the balance.


The powder may consist essentially of a Cu alloy comprising copper and additional alloying elements, and optional non-metallic particles, wherein the additional alloying elements are provided in an effective amount to reactively bond with dissimilar substrate to form the intermetallic or intermetallic-like compound, and to lower a melting point of the Cu alloy with respect to Cu.


The additional alloying elements may comprise at least one of Ti, Ta, Zr, V, Hf, Cr, Mo, W, and Nb in weight percentages from about 1-10 wt %, the Cu alloy being at least 50% by weight Cu.


The powder may comprise a mixture of metal powder and non-metal reinforcements.


The locally heating may be performed by controlling a focused laser, to determine; an optimal laser processing power, an optimal scan rate, and an optimal fused volume thickness, for each of a plurality of layers of powder formed on the dissimilar substrate, by rastering multiple scan rates and laser processing power on test parts for each layer thickness, and inspecting the test parts to determine the optimum processing conditions, and subsequently employing the determined optimum processing conditions on other parts. The testing may comprise a visual inspection and/or thermal testing of the test parts.


The powder may comprise of a powder with a homogeneous concentration of an alloying mixture, or a powder with a heterogeneous metal powder.


It is another object to provide a metal alloy powder for selective laser melting additive manufacturing, comprising: optional non-metallic inclusion particles; particles which comprise components that fuse to form an alloy having a thermal conductivity of at least 17 W/mK at 25° C., and forms at least one of metal silicides, metal carbides, and metal nitrides with a respective non-metallic substrate comprising silicon, carbon, or nitrogen, in an interlayer region with the non-metallic substrate.


The powder may comprise the metal alloy, and between about 1% to about 10% aggregate weight, per weight of the metal alloy, of a reactive element that bonds actively to the substrate surface. The reactive element may be one of more element selected from the group consisting of Ti, Ta, Zr, V, Hf, Cr, Mo, W, and Nb. The reactive element may facilitate bonding to a substrate selected from the group consisting of Si, SiC, SiN, graphite, diamond, carbon nanotubes, graphene, fullerenes, GaN, GaAs, βGa2O3, gallium oxide, Al2O3, and SiO2 (glass and quartz), silica glass, quartz, borosilicate glass, aluminosilicate glass, lithium aluminum silicates, indium tin oxide, indium zinc oxide, molybdenum disilicide, tungsten boride, gallium arsenide, zinc sulfide, beryllia, ceria, zirconia, indium tin oxide, and indium zinc oxide.


In certain embodiments, additively manufactured metal structures are formed onto glasses and ceramics by directed energy deposition (e.g., laser beam, electron beam) that fuses a metal alloy onto a ceramic or glass substrate. This bond for an oxide-based ceramic or glass will occur via diffusional bonding (e.g., titanium oxides and titanium silicides forming from Ti in bonding alloy bonding to silica-based materials). Vacuum or protective gas such as argon, nitrogen might be used. After deposition of one or more layers of the brazing alloy, the material can be switched to other metals such as stainless steel, titanium alloys, copper alloys, aluminum alloys to build various structures. The thickness of the brazing alloy is a function of the thermal stress to be resisted and interfacial strength of the bond to the substrate. The brazing alloy in this process acts as an interface material and has components that bond to both glass or ceramic and the subsequent metal, unless a structure of the bonding alloy is desired. Because the laser exposure time is very short and high temperatures are reached, rapid bonding is enabled compared to conventional bonding. Moreover, because only a small section of the layer is molten at a time, the stresses at the interfaces can be reduced compared to a non-locally bonded interface, where the entire material is bonded at the same time. Furthermore, most metal have a greater coefficient of thermal expansion than ceramics and glasses, so the cooldown from the molten state can apply a compressive residual stress. In the case of laser heating, the absorption of the laser by the glass can affect how hot the glass substrates can get, and thus the residual stress upon cooling. Because absorption is a function of wavelength, the choice of laser wavelength is another variable that can be tuned to minimize residual stress upon cooling.


The powder bonds may form a metal oxide that diffusion bonds to the substrate.


The dissimilar substrate may comprise a substrate formed principally (e.g., >90% by weight) of silica borosilicate glasses; quartz; doped quartz, borosilicate, soda-lime glass, potash-lime glass, lead glass, flint glass, aluminosilicate glass, alumina, lithium aluminum silicate, beryllia, zirconia, gallium oxide, gallium aluminum oxide, gallium nitride, germanium oxide, silica-germania, germanium-oxide glass (alumina and germanium dioxide), fluoride glass, phosphate glass, borate glass, chalcogenide glass, indium tin oxide (ITO), an indium antimony oxide, indium oxide, indium zinc oxide, molybdenum disilicide, tungsten boride, tungsten carbide, or zinc sulfide for example.


The technology may be used to apply coatings to substrates, which may be homogeneous, heterogeneous, or patterned in two or three dimensions. The coating and/or substrate may be glass. Further, because the technology forms a chemically modified layer on the substrate, the technology may represent a treatment, such as a chemical strengthening, of the substrate.


For example, the known Corning® Gorilla® glass, AGC Inc. Dragontail®, or Schott AG Xensation®, chemically strengthened alkali-aluminosilicate glass may be formed by providing a potassium-rich coating on the base glass, and heating the interface during process to cause ion exchange, and prestress in the glass. As described in U.S. Pat. Nos. 7,666,511, 4,483,700 and 5,674,790, Corning Gorilla glass is made by fusion drawing a glass sheet and then chemical strengthening of the glass sheet. Corning Gorilla glass has a relatively deep depth of layer (DOL) of compressive stress, and presents surfaces having a relatively high flexural strength, scratch resistance and impact resistance.


See, U.S. Pat. Nos. 10,196,295; 10,195,643; 10,181,017; 10,173,916; 10,166,744; 10,162,084; 10,137,667; 10,116,777; 10,082,605; 10,051,753; 10,008,870; 9,933,820; 9,932,663; 9,931,817; 9,908,803; 9,887,066; 9,871,176; 9,850,160; 9,826,652; 9,815,144; 9,789,665; 9,774,192; 9,769,573; 9,729,187; 9,724,727; 9,676,653; 9,661,423; 9,655,293; 9,611,167; 9,599,766; 9,565,910; 9,564,938; 9,522,836; 9,512,029; 9,505,648; 9,477,346; 9,475,947; 9,471,172; 9,468,317; 9,446,979; 9,435,915; 9,434,633; 9,407,746; 9,369,553; 9,362,972; 9,351,083; 9,339,993; 9,308,616; 9,290,407; 9,287,916; 9,284,212; 9,264,090; 9,258,651; 9,231,410; 9,220,328; 9,102,007; 9,048,665; 8,994,695; 8,983,098; 8,980,115; 8,976,997; 8,974,105; 8,907,871; 8,883,314; 8,844,782; 8,842,358; 8,789,998; 8,708,458; and 8,586,492; 8,436,833. See also, U.S. Pat. Nos. 10,002,685; 10,023,495; 10,065,885; 10,117,806; 10,117,810; 10,123,947; 10,134,766; 10,135,002; 10,170,500; 10,170,726; 10,172,695; 10,202,216; 4,888,127; 5,099,759; 5,194,161; 5,628,945; 5,952,253; 5,993,701; 6,119,483; 6,128,918; 6,187,700; 6,300,263; 6,300,389; 6,360,562; 6,377,729; 6,423,387; 6,427,489; 6,430,965; 6,526,778; 6,537,648; 6,555,299; 6,593,061; 6,620,861; 6,643,442; 6,750,023; 6,771,009; 6,800,574; 6,845,635; 6,852,010; 6,866,929; 6,871,514; 6,881,483; 6,914,024; 7,040,953; 7,169,489; 7,235,736; 7,299,749; 7,312,168; 7,321,012; 7,358,008; 7,384,680; 7,405,326; 7,420,065; 7,438,990; 7,514,174; 7,521,567; 7,521,928; 7,629,480; 7,631,518; 7,635,617; 7,666,568; 7,678,668; 7,691,279; 7,727,846; 7,825,007; 7,838,130; 7,851,804; 7,867,907; 7,964,262; 7,977,405; 7,989,068; 8,007,557; 8,066,946; 8,114,211; 8,119,267; 8,119,315; 8,339,837; 8,357,311; 8,357,731; 8,361,873; 8,367,224; 8,414,424; 8,435,477; 8,455,331; 8,497,312; 8,546,161; 8,552,088; 8,568,684; 8,586,199; 8,592,057; 8,610,120; 8,617,994; 8,628,987; 8,634,228; 8,654,566; 8,697,322; 8,765,837; 8,766,253; 8,783,063; 8,790,768; 8,790,793; 8,797,487; 8,815,974; 8,829,528; 8,884,284; 8,907,879; 8,916,406; 8,919,150; 8,926,389; 8,932,060; 8,932,184; 8,951,650; 8,957,468; 8,987,728; 8,988,116; 9,034,442; 9,035,867; 9,040,975; 9,070,399; 9,082,861; 9,102,566; 9,105,869; 9,112,086; 9,112,168; 9,142,681; 9,145,363; 9,168,573; 9,175,174; 9,184,355; 9,186,295; 9,198,829; 9,241,869; 9,260,390; 9,272,946; 9,287,521; 9,333,148; 9,359,513; 9,406,698; 9,408,781; 9,474,688; 9,474,689; 9,478,422; 9,490,350; 9,490,351; 9,494,829; 9,511,005; 9,575,037; 9,603,775; 9,603,780; 9,608,228; 9,614,160; 9,625,764; 9,655,293; 9,663,400; 9,668,944; 9,682,019; 9,688,540; 9,700,485; 9,700,486; 9,705,099; 9,707,153; 9,707,154; 9,707,155; 9,713,572; 9,717,648; 9,717,649; 9,745,223; 9,755,191; 9,765,167; 9,768,026; 9,790,124; 9,839,579; 9,849,066; 9,871,209; 9,905,516; 9,915,756; 9,917,263; 9,923,000; 9,923,166; 9,972,802; 9,991,293; 9,991,453; 9,993,395; 9,999,576; 20010021292; 20010039810; 20010043996; 20020025493; 20020031731; 20020041137; 20020066233; 20020092325; 20020108400; 20020160685; 20020173416; 20030003474; 20030009126; 20030039459; 20030070916; 20030109202; 20030113506; 20030128428; 20030203205; 20040016769; 20040023087; 20040154488; 20040161789; 20040192063; 20040192171; 20040209756; 20040221515; 20040242792; 20050048571; 20050054510; 20050056806; 20050069640; 20050147752; 20050227148; 20050233886; 20060119249; 20060141362; 20060147369; 20060160919; 20060226421; 20060227695; 20060235060; 20070029927; 20070048531; 20070189986; 20070214467; 20070259220; 20080015494; 20080026220; 20080047599; 20080057267; 20080087629; 20080106261; 20080110491; 20080139342; 20080145707; 20080233434; 20080268618; 20080280424; 20080284719; 20080284768; 20080290329; 20080290795; 20080302418; 20080306182; 20080308792; 20090004764; 20090004878; 20090011575; 20090014055; 20090043116; 20090075083; 20090076189; 20090098674; 20090117707; 20090131203; 20090160325; 20090267491; 20090284138; 20100021565; 20100036075; 20100048762; 20100056026; 20100119846; 20100126132; 20100130682; 20100132765; 20100190038; 20100203706; 20100209328; 20100216907; 20100236288; 20100261144; 20100267856; 20100300532; 20100326429; 20110003143; 20110006670; 20110052921; 20110195279; 20110240594; 20110248251; 20110253990; 20110269621; 20120012032; 20120028176; 20120040283; 20120051116; 20120052625; 20120056647; 20120061665; 20120061677; 20120062813; 20120063203; 20120064650; 20120113341; 20120114518; 20120115973; 20120135153; 20120146014; 20120164413; 20120194756; 20120196952; 20120208002; 20120214900; 20120238658; 20120241734; 20120244060; 20120261654; 20120264884; 20120296029; 20120326601; 20130061636; 20130071294; 20130075735; 20130101596; 20130109194; 20130119360; 20130119373; 20130119374; 20130134414; 20130161609; 20130162306; 20130184415; 20130192304; 20130196094; 20130196095; 20130196096; 20130196097; 20130199241; 20130202823; 20130213848; 20130216597; 20130216742; 20130219890; 20130233303; 20130236662; 20130248528; 20130266915; 20130274373; 20130289216; 20130300284; 20130309946; 20130338252; 20140001155; 20140008686; 20140013554; 20140034544; 20140039087; 20140039088; 20140047996; 20140051335; 20140063432; 20140065430; 20140091299; 20140151320; 20140151321; 20140151370; 20140151371; 20140154646; 20140162043; 20140204160; 20140209886; 20140228474; 20140272398; 20140335653; 20140339122; 20140339125; 20140339126; 20140341883; 20140341888; 20140341889; 20140341890; 20140341891; 20140341945; 20140342979; 20140370654; 20140374728; 20150001516; 20150041788; 20150064374; 20150064474; 20150064841; 20150069449; 20150071913; 20150076469; 20150094396; 20150108694; 20150123091; 20150126641; 20150129544; 20150132548; 20150132563; 20150147540; 20150179777; 20150182315; 20150207080; 20150231040; 20150299035; 20150311452; 20150315392; 20150338709; 20150340641; 20150357581; 20150360954; 20150366756; 20150371854; 20150374582; 20150380364; 20160013439; 20160018371; 20160023948; 20160056392; 20160056396; 20160061806; 20160064669; 20160071625; 20160079548; 20160083135; 20160095795; 20160095796; 20160159955; 20160164046; 20160258383; 20160264479; 20160289483; 20160336538; 20160340256; 20160355433; 20170001919; 20170014312; 20170021383; 20170023168; 20170025440; 20170031057; 20170033129; 20170036303; 20170036951; 20170050349; 20170066928; 20170072104; 20170108780; 20170129806; 20170135909; 20170139082; 20170162790; 20170166730; 20170174545; 20170174565; 20170183257; 20170197875; 20170210662; 20170212088; 20170227800; 20170231873; 20170231874; 20170233287; 20170252271; 20170253523; 20170266081; 20170285227; 20170290746; 20170296441; 20170296442; 20170309710; 20170320773; 20170333295; 20170341451; 20170348201; 20170348202; 20170349756; 20170355855; 20170362119; 20170365473; 20180022640; 20180037546; 20180038995; 20180052254; 20180071175; 20180072613; 20180088399; 20180099307; 20180136367; 20180162771; 20180170914; 20180185875; 20180186120; 20180212184; 20180214351; 20180215644; 20180228701; 20180237567; 20180264778; 20180267373; 20180273422; 20180273425; 20180282604; 20180291195; 20180312660; 20180319132; 20180335659; 20180353391; 20180363361; 20190019736; 20190022979; 20190030498; and 20190031844.


Alternately, the process can for a mechanically prestressed layer, which does not rely solely on ion exchange chemical hardening to define the mechanical properties of the glass. Further, the deposition according to the present technology may be regionally controlled in the plane of the substrate, and also controlled in depth based on processing parameters and/or use of multiple layers which may be the same or different. The layers or patterns may advantageously provide distinct properties, such as electrical conductivity and conductive channels or planes, optical properties, and the like.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an overview of the additive manufacturing process.



FIG. 2 shows an SEM image (8.6 mm WD, 9 KV EHT, SE2 detector) of mixed Ag (3 wt %) Ti (4 wt %) and Sn (93 wt %) powders.



FIGS. 3A and 3B show SEM images (8.5 mm WD, 18 kV EHT, SE2 detector) of two sample at the interface of alloy and silicon with different exposure parameters, where FIG. 3A shows partial melting in sample one, and FIG. 3B shows full melting.



FIG. 4 shows quantitative measurement of elemental composition of alloy using EDS (DT between 30% to 40%). SEM image (8.2 mm WD, 15 kV EHT, SE2 detector). Polished up to 20 nm roughness.



FIGS. 5A and 5B show Sn3Ag4Ti alloy deposited on silicon by SLM process.



FIG. 5C shows a stainless steel logo built on 4″ silicon wafer.



FIG. 6 shows stainless steel parts fabricated by SLM on silicon wafer after thermal cycling test (100 cycles from −40° C. to 130° C.). Note, the steel plate used to secure the silicon to the build platform has rusted over the course of the thermal cycling.



FIG. 7 shows a sample with different patterns printed under varying conditions. Surface property and mechanical strength were studied versus processing parameters, including number of exposures. Silicon is held in a wafer holder. Wafer can be held by a vacuum chuck or adhesive and the chuck can include powder skirts to prevent powder ingress into undesired areas.



FIG. 8 shows the bond strength of the Sn3Ag4Ti-silicon fabricated by SLM technique (laser power 120 W, laser scan velocity 1100-2300 mm/s, double exposure).



FIGS. 9A and 9B show examples of optical profilometry for a line of alloy on silicon created by 120 W, 1500 mm/s exposure parameter.



FIGS. 9C and 9D show equivalent contact angle measurement versus laser scan velocity based on optical profilometry.



FIG. 10A shows representative EDS spectrum of the alloy-silicon interface (8.7 mm WD, 10 kV EHT, DT 20%). The scalebar is 1 μm.



FIG. 10B shows back scatter detector scanning electron microscopy image of the interface shows light elements (i.e., Ti) darker than heavy elements (i.e., Sn, Ag) (8.7 mm WD, 10 kV EHT, RBSD detector). The scalebar is 1 μm.



FIG. 10C-10F show EDS mapping of the SiK peak (10C), AgL peak (10D), SnL (10E) peak, and TiK (10F) peak.



FIGS. 11A-11C show surface roughness study by optical profilometry on three samples with different number of rasters (120 W, 1700 mm/s, 0.09 hatch distance).



FIG. 12 shows phase identification of Sn—Ti—Ag alloy fabricated by SLM process using GIXRD (PANalytical X'Pert PRO High-Resolution X-ray Diffractometer).



FIGS. 13A-13B show optical image of stainless steel 316L deposited on graphite exhibiting poor wetting (13A). Fixture designed to hold graphite substrate on build platform of EOS M290 (13B).



FIG. 14 shows optical profilometry of ablated graphite.



FIGS. 15A and 15B show a stainless steel logo printed on graphite (15A). Removing printed part using hot plate (15B).



FIGS. 16A and 16B show spreading of the alloy on graphite substrate based on laser exposure parameters.



FIG. 17 shows a schematic of the designed shear lap test.



FIGS. 18A, 18B, and 18C show the interfacial strength of the graphite-metal bonding at various laser scan velocities (18A, 18B). Sample preparation for tensile test (18C).



FIG. 19 shows an optical image of the Sn—Ag—Ti alloy laser bonded onto graphite.



FIG. 20 shows an unpolished scanning electron microscopy of graphite-alloy interface.



FIGS. 21A and 21B show the formation of carbide near the interface between graphite (bottom) and alloy (top).



FIGS. 22A and 22B show two stainless steel parts after thermal cycling test.



FIG. 23 shows Sn3Ag4Ti alloy additively deposited on HT grade high conductivity (˜1700 W/m−K at room temperature) pyrolytic graphite by laser processing.



FIG. 24 shows ball shear testing is performed to measure interfacial strength of Sn3Ag4Ti alloy additively deposited on HT grade high conductivity (1700 W/m−K at room temperature) pyrolytic graphite by laser processing.



FIG. 25 shows a photograph of Sn3Ag4Ti alloy deposited on Borosilicate glass.



FIG. 26A shows an SEM image of Sn3Ag4Ti alloy deposited on Borosilicate glass (5.6 mm WD, 10 kV EHT, SE2 detector).



FIG. 26B shows an SEM image of Sn3Ag4Ti alloy deposited on Borosilicate glass (8.1 mm WD, 10 kV EHT, SE2 detector).



FIGS. 27A-27F shows EDS mapping of Sn3Ag4Ti alloy deposited on Borosilicate glass 8.1 mm WD, 10 kV EHT, SE2 detector). FIG. 27A; SE2 image, FIG. 27B; AgL peak, FIG. 27C; SnL peak, FIG. 27D; O K peak, FIG. 27E; TiK peak, FIG. 27F; SiK peak.



FIGS. 28A-28E shows the printing onto sapphire process mapping. FIG. 28A shows a D50×0.43 mm Sapphire wafer with <0001> orientation and single side polish is purchased from a supplier and installed on a steel build platform using Kapton tape. FIG. 28B shows a single layer of Sn3Ag4Ti powder was deposited on the unpolished surface with manual deposition. The layer thickness is ˜54 μm which is the thickness of the Kapton tape. FIG. 28C shows the exposure parameters were set to 150 W with scanning rates varying from 4400 mm/s to 5600 mm/s. Two different geometries are considered lines and pillars. FIG. 28D shows a bright field optical imaging at 5× of two lines, top with 150 W and 4400 mm/s and bottom with 150 W and 4600 mm/s. FIG. 28E shows a bright field optical imaging at 20× magnification of 150 W 4400 mm/s line with Z-stack. Line thickness of 100 um is achieved with edge exposure (single line raster).



FIG. 29 shows schematic showing layers of a 3D printed heat removal device made on a metallized silicon substrate.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present technology provides a method for bonding metal powder to various types of dissimilar substrates, employing process technology that forms an adhesion layer from components of the substrate and the metal powder, substantially without causing heat damage to nearby or underlying structures.


Example 1

Metal powder may be deposited in fused layers a non-metal substrate by directed-energy powder fusion manufacturing. The energy source for this process can be from any focused energy sources, and popular sources include laser and electron beams. The powder can be deposited uniformly over an entire layer and then selectively melted, as is done in powder bed fusion processes, or it can be made with powder that is directly deposited onto the area of the part that is being exposed to the focused energy source, in the process typically referred to as directed energy deposition. The directed energy source may be steered or the sample stage may move the sample to selectively fuse powder where desired. This process is conducted in an inert environment, such as an Argon, N2, or vacuum environment to reduce oxidation risk.


A prototype of the technology employs a laser-powder bed fusion EOS M290 machine that possesses a 500 W peak 1064 nm Yb-fiber laser and high speed galvanometer mirror system (maximum raster speed of 7000 mm/s), which presents results which are broadly applicable to other powder bed fusion and directed energy deposition tools, regardless of the focused energy source.


This technique can involve selective melting to a high density solid, or selective sintering to a porous solid depending on the processing parameters. Differences in the processing parameters (powder deposition mechanism, powder composition, substrate properties, energy source (e.g., wavelength of laser), energy source diameter) results in changes in the acceptable range of energy delivery parameters, though the methodology to identify near-ideal processing conditions will be unchanged.


One benefit of this technology is that it enables localized high temperature bonding without damaging the sensitive circuits on the other side of the electronic wafer or sample. Even with the high temperatures of laser melting, the short exposure time of the laser limits the thermal penetration depth to avoid exceeding thermal limits of nearby elements. The thermally effected zone is quite small, as the exposure time for typical focused energy powder fusion is only ˜100 μs. The zone that is thermally affected can be estimated by the thermal penetration depth, Lp∝√{square root over (αt)}. [64] This depth is less than the typical electronic wafer thickness (e.g., 300 μm for silicon), and so can be safely performed without damaging sensitive devices. This short exposure also enables building of higher melting temperature metals onto low-melting point alloys (e.g., stainless steel 316L on Sn3Ag4Ti on Si or graphite).


In particular, during selective laser melting, the metals are typically only molten for times on the order of 75 μs (assuming typical scan rates of 1 m/s, and focused energy spot sizes of 75 μm). This period is much shorter than the typical time for conventional bonding of dissimilar materials (tens of milliseconds to tens of minutes). To overcome this kinetic limitation, the focused energy locally heats the sample beyond the melting point to thermally overcome the energy barrier for the active metal species to more easily diffuse, as the diffusivity, D, has an Arrhenius rate term so that the D∝ exp(−Ea,D/KB T), where Ea,D is the energy barrier for the active alloy element to diffuse. The barrier to nucleate intermetallic phases can also be overcome faster at higher temperature, as the nucleation rate, N, will also be N∝ exp(−Ea,N/KB T), where Ea,N is the energy barrier for intermetallic phases to nucleate at the interface.


The contact angle and mechanical strength of the interface is not at its highest after a single exposure. Therefore, another key insight provides exposure of a single layer of brazing alloy to energy pulses multiple times. This provides greater time for diffusion of the active metal species and nucleation of the intermetallic phase. The benefit of a greater number of exposure diminishes with each successive exposure. For Sn3Ag4Ti on silicon and graphite, the difference between single and double exposures is extreme, but negligible additional improvements for three and more exposures.



FIG. 1 shows an overview of this embodiment of the additive manufacturing process.


Additive manufacturing on electronic substrates can be performed at the wafer level, after dicing, or after reflow onto a polymeric substrate (heterogeneously integrated circuits). The wafer or chips can be mounted in a chuck that maintains the device steady by such means as a vacuum chuck or heat release adhesive. The powder can be kept away from areas where powder ingress is undesired by a powder skirt. The powder skirt can be made out of silicone or elastomeric material. The bonding can be performed on an unpolished side or polished side of the wafer. It can also be used to bond onto diamond films that are used for heat spreading. For bonding, roughening is advantageous for mechanical bonding. This same technique can also be used to make electrical contacts on electronic devices like microprocessors and power electronic devices.


Another embodiment uses this same technique to bond dissimilar metals for composite applications. The alloy may be printed directly on the metal substrate, and then the printed alloy is then bonded this metal substrate by heating to an elevated temperature, which for Sn3Ag4Ti is ˜220° C. This embodiment can bond to carbon materials, like graphite, that are of interest for composites, nuclear, heat transfer and medical applications. For instance, it can be used to make a pyrolytic graphite based heat spreader or heat sink. The benefit of making in pyrolytic graphite stems from pyrolytic graphite's high thermal conductivity.


Another embodiment uses a bonding alloy for one or more layers and then transitions to printing a different metal. This can be desirable when different properties of a different metal are desired. For instance, copper or aluminum may be preferred to the bonding alloy for their transport properties. For Sn containing braze will form Cu—Sn intermetallics (Cu3Sn and Cu6Sn5)[65] and a braze with Ti element can bond to Al via formation of Al3Ti intermetallics. [21]


Another embodiment uses this alloy to bond to metal as a thermally removable support material. This can help save the cost of refinishing build platforms that are currently used to build metal additively formed parts. This process works by printing the metal mixture or alloy, which forms high melting point intermetallics on the substrate, but the bulk metal melts at temperatures lower than the metal used to form the part. This bonding metal can then be used to bond to the part metal. The bonding metal can also be used as removable support internal to the part, like an overhang feature in the part. The low-melt alloy can be softened or melted in an oven.


Subsequent sub-sections detail the particular embodiment of heterogeneous Sn3Ag4Ti powder bonding to silicon and graphite substrates. These subsections also detail subsequent bonding of this Sn3Ag4Ti alloy to stainless steel (316L). This same approach and material can also bond to SiC, SiN by forming silicides, and diamond and graphite by forming carbides, and GaN, GaAs, βGa2O3 by forming Ga—Ti intermetallic compounds, and to silicon containing oxides of crystalline and non-crystalline types (e.g., silica glass, quartz, borosilicate glass, lithium aluminum silicates) via the formation of oxides at the interface.


In an alternative embodiment, this braze can alternatively replace the Ti with other elements that react actively with the substrate, such as Ta, Zr, V, Hf, Cr, Mo, W. The purpose of the Sn3Ag part of the alloy is to lower the melting point and increase the activity of the active metal elements.


One embodiment of this invention uses Sn3Ag4Ti that reacts to form a Titanium Silicide on Si that promotes good bonding, and has a melting point around 250° C. This low melting point increases the activity of Ti. The low melting point also reduces the thermal stresses experienced on cool down from the molten state, hence preventing interfacial mechanical failure when printed. The interfacial mechanical failure is observed to be dependent on the size of the feature made and on the shape of the edges, as sharp corners are prone to greater thermal stresses.


Bonding to Silicon with Sn3Ag4Ti:


All experiments were conducted using a laser-powder bed fusion EOS M290 tool having a 500 W 1064 nm Yb-fiber laser and high speed galvanometer mirror system (maximum raster speed of 7000 mm/s). The machine has a N2 generator that maintains an N2 gas atmosphere with O2 concentrations of less than 1.5%. A special wafer tray is used to securely hold the silicon wafer.


A Sn3Ag4Ti powder mixture is used as the bonding metal mixture, as it provides good bonding with Si via the Ti silicide formation, and also bonds to a broad range of other materials including graphite, Al, Cu, and Fe-based metals. This low melting point of this alloy (˜250° C.) reduces the thermal stresses experienced after solidification upon cooling. Sn, Ag, and Ti powders (>99% purity) with respective average diameters of 40 μm, 5 μm, 10 μm were mixed with weight percentages of 93%, 3%, and 4% (Sn87.55Ag3.11Ti9.34) (FIG. 2). Smaller powder sizes were chosen for the lower concentration metals to facilitate mixing and reduce diffusional resistance of the Ag and Ti in the Sn melt. FIG. 2 shows an SEM image (8.6 mm WD, 9 KV EHT, SE2 detector) of mixed Ag (3 wt %), Ti (4 wt %) and Sn (93 wt %) powders.


The process parameters for the first layer of bonding and subsequent layers were determined via conventional process mapping techniques [66-71]. The process parameters were identified in a high-throughput manner, where various powers ranging from 30 to 200 watts and scanning rates from 800 to 6500 mm/s with fixed hatch distance of 0.09 mm were printed in each build, to identify the exposure parameters that provide the best wetting and bonding strength between silicon and the alloy. At the extremes, it was observed that at a fixed scanning speed, low power will result in partial sintering behavior and high power causes high vapor flux and large recoil pressure which leads to splattering. One key difference with conventional processing is that the transformation is assisted by multiple laser exposers for each layer.



FIGS. 3A and 3B show SEM images (8.5 mm WD, 18 kV EHT, SE2 detector) of two samples at the interface of alloy and silicon with different exposure parameters. FIG. 3A shows partial melting, as opposed to FIG. 3B that shows complete melting and solidification. Sample 2 possesses an average composition as expected from the mixing weights, indicating sufficient mixing (FIG. 4) as quantified by electron dispersive spectroscopy (EDS). The properties used for the sample of FIG. 3B were close to ideal.















TABLE 1







Scan

Hatch
Layer
Energy



Power
speed

distance
thickness
density


Sample
[W]
[mm/s]
Exposure
[mm]
[μm]
[J/mm3]





















1
150
5250
Double
0.09
20
15.87


2
120
1700
Double
0.09
20
39.21




















TABLE 2







Element
Wt % - EDS
At % - EDS









Sn
91.13 (L shell) 
83.14 (L shell)



Ti
6.33 (K shell)
14.30 (K shell)



Ag
2.55 (L shell)
 2.56 (L shell)











FIG. 4 shows quantitative measurement of elemental composition of alloy using EDS (DT between 30% to 40%). SEM image (8.2 mm WD, 15 kV EHT, SE2 detector). The specimen was polished up to 20 nm roughness.


This alloy-silicon bond can survive subsequent printing of high temperature metals, like stainless steel 316L (melting point≈1400° C.). The Sn3Ag4Ti alloy forms an interlayer between silicon and the stainless steel that wets and bonds to both. A good bond was achieved by depositing three layers the alloy and from then on printing the stainless steel. Parts produced by this method are shown in FIGS. 5A and 5B, which show Sn3Ag4Ti alloy deposited on silicon by SLM process. FIG. 5C Stainless steel Binghamton University logo built on 4″ silicon wafer. 316L was selected because it demonstrates the temperature survivability. For heat transfer applications, high thermal conductivity metals, like Al and Cu can be used instead [72]. The choice of 316L stainless steel is to demonstrate robustness to hotter melting temperatures.


The reliability of the bond to thermal cycling was probed via thermal cycling. The Si—Sn3Ag4Ti-SS316L samples were thermal cycled in Thermotron chamber between −40° C. and 130° C. for 100 cycles (over 1 week of testing). The temperatures of the parts are monitored to confirm the parts reach the chamber setpoints each cycle. After the 100 cycles, the parts were visually examined for defects, such as delamination, along the perimeter where thermal stresses are greatest. All parts passed the visual test without any noticeable failure or defect. FIG. 1 shows stainless steel parts fabricated by SLM on silicon wafer after thermal cycling test (100 cycles from −40° C. to 130° C.). (Note, the steel plate used to secure the silicon to the build platform has rusted over the course of the thermal cycling.)


Characterization of Si-Alloy Interface



FIG. 2 shows a sample with different patterns printed under varying conditions. Surface property and mechanical strength were studied versus processing parameters, including number of exposures. Silicon is held in a wafer holder. Wafer can be held by a vacuum chuck or adhesive and the chuck can include powder skirts to prevent powder ingress into undesired areas The strength of the Sn3Ag4Ti—Si bond was destructive shear tested with a Nordson DAGE 4000 Plus on hemispherical balls with a mean diameter of 432. μm. The stylus is positioned 1 μm from the interface with top raster speed of 100 μm/s. During the test it is observed that the balls did not fracture at the interface and rather scraped from the alloy. This indicates that the bond at the interface is stronger than the shear strength of the alloy.



FIG. 8 shows the bond strength of the Sn3Ag4Ti-silicon fabricated by SLM technique (laser power 120 W, laser scan velocity 1100-2300 mm/s, double exposure). Consequently, what is being reported in FIG. 8 is the lower limit of the interfacial strength. The obtained data show shear strengths between 14.7 to 22.1 MPa. This value was expected as shear strength of pure Sn is 17.7 MPa and Sn-3.5Ag is 31.7 MPa [73]. Each sample is repeated ten times with standard deviation of ˜10%. A control test on the silicon wafer was also performed with 0 μm liftoff, and the frictional force was negligible compared to the force due to the alloy. The slower laser scan velocities have higher lower limits of the interfacial strength, indicating stronger alloy at these processing conditions. Balls fabricated by single exposure generally obtained lower interfacial strength compared to double exposure.


The solidified metal contact angle is a proxy for the interfacial bonding strength between the alloy and the silicon substrate. Better wetting implies a lower energy interface and stronger interfacial bonding [19]. In lieu of instantaneous contact angle measurements during selective laser melting, the contact angles of a solidified metal lines are studied (FIGS. 9A-9D) [74,75]. While the system is not in equilibrium during the transient cooling, the contact angle still provides insight and approximates the liquid contact angle [19]. The exposure parameters were varied, by varying scan rate from 1500 mm/s to 2300 mm/s while holding power at 120 W. Each solidified metal line was formed at a different laser exposure ranging from 1500 mm/s to 2300 mm/s and power of 120 watts. Afterwards the contact angles of each line were studied by optical profilometry and the height-to-diameter (H/D) ratio is used to extract the contact angle [19], θequiv=2atan(2H/D). By lowering the velocity of scan, the laser heating period and maximum temperature increases, which improves the diffusion of reactants, assisting spreading. FIGS. 9A and 9B show examples of optical profilometry for a line of alloy on silicon created by 120 W, 1500 mm/s exposure parameter. FIGS. 9C and 9D show equivalent contact angle measurement versus laser scan velocity based on optical profilometry.


Based on the Si—Ti phase diagram, it is expected to observe titanium-silicides at the interface as they are energetically favored [76,77]. The growth and formation of the titanium silicide rapidly forms over the limited molten metal phase and is limited by diffusion of Ti. Hence, a very thin silicide forms just at the interface. This is visible form the electron dispersive spectroscopy (EDS) mapping of the interface. The concentration of Ti is seen to have a bright line near the interface, as pointed out in FIG. 10F. This titanium-silicide band appears about 1 μm wide, but this is an artifact of the EDS interaction volume being on the order of a 1 μm3 [78]. The actual titanium-silicide layer formed in this process is sub-μm. Noteworthy, the laser-processed silicide thickness and EDS maps are comparable to conventional brazing to silicon [18].



FIG. 10A shows a representative EDS spectrum of the alloy-silicon interface (8.7 mm WD, 10 kV EHT, DT 20%). FIG. 10B shows a back scatter detector scanning electron microscopy image of the interface shows light elements (i.e., Ti) darker than heavy elements (i.e., Sn,Ag) (8.7 mm WD, 10 kV EHT, RBSD detector). FIG. 10C shows EDS mapping of the SiK peak. FIG. 10D shows EDS mapping of the, AgL peak. FIG. 10E shows EDS mapping of the SnL peak. FIG. 10F shows EDS mapping of the TiK peak. The scalebar is 1 μm.


The energy barrier for diffusion and crystallization must be overcome with thermal energy, so the reaction rate is expected to have an Arrhenius rate equation, exp(−Ea/kB T), where Nis the nucleation rate, Ea is the activation energy, kB is the Boltzmann constant, and T is absolute temperature [62]. Due to the rapid laser processing temperature, diffusion and nucleation can overcome the energy barrier more rapidly than conventional brazing and proceed more rapidly than reactions occurring just above the melting point of the metal, which explains why the bonding is rapid. Despite faster reaction rates, the rapid cooling rates are on the order of millions of degrees Celsius per second, which leads to quenching and non-equilibrium properties.


Properties of the Alloy on Si


On the test designed for surface and interface properties, six rectangles were created with exposure parameters similar to sample 2 in terms of hatch distance, power and scan speed but with single, double and triple exposures (FIGS. 11A, 11B, an 11C). Surface optical profilometry reviled improvement on surface roughness from first to second exposure. However, the third exposure did not improve the surface properties any further. FIGS. 11A-11C show a surface roughness study by optical profilometry on three samples with different number of rasters (120 W, 1700 mm/s, 0.09 hatch distance).


Grazing incidence X-ray diffraction (GIXRD) was performed on a bulk Sn3Ag4Ti sample to identify the compounds that appear in the laser processed alloy, and compare them to the conventionally processed braze. See FIG. 12, which shows phase identification of Sn—Ti—Ag alloy fabricated by SLM process using GIXRD (PANalytical X'Pert PRO High-Resolution X-ray Diffractometer). The dominant signal is from the β-Sn phase, as expected from the large concentration of Sn in the alloy. There are also weak, yet distinct peaks from the intermetallic compounds Sn5Ti6 and Ag3Sn. These formations agree with what is thermodynamically expected from phase diagrams [79,80]. Moreover, this agrees with prior conventionally processed Sn3Ag4Ti alloy phases, showing that laser processing and conventional brazing results in similar phases being formed [18,21].


Bonding to Graphite with Sn3Ag4Ti:


One of the key challenges in additively manufacturing metal parts is removing the printed part from build platform. Conventional platforms are made of the same material as the metal powder to achieve reliable bonding and resistance to thermal stress. Support or solid structures are used to provide required offset for the cutting blade to detach the part from building platform followed by detailed machining to achieve proper surface finish. This process adds additional machining, particularly challenging for difficult to machine metals, like titanium or stainless steel. Another downside of the current build plate paradigm is that current building platforms used in commercial metal printing devices are heavy. These blocks need to be removed each time the process completes. Since graphite is lightweight, graphite buildplates can help to make handling and post-machining easier and safer.


The graphite crystal structure consists of strong Graphene planes (sp2 hybridization of carbon atoms) which are connected by π-orbitals resulting in weaker interplanar Van der Waals forces [81,82]. The thermal conductivity in the graphene plane is extraordinary (>1700 W/m−K) over eight times better than aluminum. Furthermore, graphite is 16% lighter than aluminum. Graphite also possesses beneficial properties for nuclear applications. The thermal conductivity of pyrolytic graphite makes it an attractive material for use as a heat spreader, especially when coupled with a heat pipe or heat exchanger that is additively printed.


Studying wetting of metal alloys on substrates of dissimilar material can provide valuable insights regarding bonding. However, there are debates regarding the mechanism of wetting in metal alloy systems at high temperatures. In non-reactive systems, it is hypothesized that wetting occurs by displacement of molecules of advancing front on adsorption sites of the substrate originated from surface tension. Interdiffusion and dissolution of the substrate directly affects the composition of the liquid and as a result solid-liquid interfacial energy [9]. For reactive systems, wetting is limited by the diffusion of reactive elements and local reaction kinetics [10].


The joining of dissimilar materials such as graphite to common metals employed in additive manufacturing is challenging due to these metals having contact angles greater than 130° (i.e., non-wetting) [81]. Reactive metals like Ti, Ta, Zr, and Nb have been bonded to graphite by employing carbides of the same metal as an interlayer. This process is done in furnace at temperatures around 1000° C. for 90 minutes [83]. The reason for wetting behavior is carbide formation at the interface by diffusive transport of reactive species which result in modification of specific surface energies of the system [81]. The bonding time in these conventional bonding techniques is very long (minutes to hours), compared to laser exposure time in additive manufacturing (˜100 μs).


Previously, rods of Graphite and SUS304 Stainless Steel were joined using solid state diffusion bonding method under compressive pressure of 25 MPa, annealing temperature of 664° C. and duration of 120 minutes. Clearly, this methodology is not applicable in the present method as basic requirements such as annealing time and pressure cannot be satisfied [23]. In another study, brazed carbon-carbon composite was brazed to Stainless Steel 316L at a temperature of 1050° C. using BNi-7 (Ni-14Cr-10.5P-0.1Si) filler alloy. Observation of the microstructure confirmed the carbide formation. Joint shear strength of approximately 16 MPa reported at 1 mm thickness of Nb interlayer [24]. Sn—Ag—Ti alloys are considered as “active” alloys which makes them suitable candidate for bonding of metals to various materials such as ceramics and carbon materials at temperatures between 250° C. to 450° C. [15] Activity of elements under required thermodynamic condition is of interest as it influences the effectiveness of the bond between alloy and substrate. Based on a thermodynamics study on Sn—Ag—Ti filler alloys, the activity of Ti increases with weight percentage between 0 and 2.25 wt % at 450° C. The addition of silver at low mass fractions (e.g., 3 wt %) tends to increase the titanium activity at 450° C.[59]


The contact angle of Sn—Ti and Ag—Ti alloys on graphite was reduced to under 10° by adding approximately 2-5 wt % of titanium to the systems. As a result, it is expected to see acceptable wetting on graphite. Also in the case of using the alloy as interlayer to bond steel to graphite, the reactive wetting mechanism of Sn/Fe system can is described by dissolution of Fe and precipitation of FeSn2 at the interface [25]. Similarly, intermetallics form with this alloy and Cu (e.g., Cu3Sn, Cu6Sn5). Sn is also known to wet aluminum at 350-450° C.[25]


Superfine isomolded graphite with grade of GM-10 was purchased from Graphitestore.com and machined into samples 1″×1″×0.125″ to fit experimental configuration. Similar performance can also be achieved on higher quality pyrolytic graphite with slightly adjusted processing parameters. Building on pyrolytic graphite may be desired for certain applications that demand high thermal conductivity and excellent heat spreading, as the in-plane thermal conductivity exceeding 1,700 W/m−K [84].


As initial test, stainless steel 316L was deposited on the graphite surface by various exposure parameters. The idea was that 316L steel has minimum 17 percent chromium content which might assist the bond by creating carbides at the interface [85]. The results indicated poor wetting in all tests, as shown in FIG. 13A, which presents an optical image of stainless steel 316L deposited on graphite exhibiting poor wetting. The fixture designed to hold graphite substrate on build platform of EOS M290 is shown in FIG. 13B.


As mentioned above, various elements are investigated to find a metal or alloy that can produce proper bond with carbon materials which can be applied in additive manufacturing. Sn—Ti—Ag alloy is chosen next as it provides good bonding between broad range of materials including carbon, aluminum and iron based metals in conventional brazing. Silver, titanium and tin powders with respective average diameters of 5 μm, 10 μm and 40 μm and purities of above 99% were mixed. Working with various diameter of powders show that size distribution has great importance in homogeneity and quality of uniform deposition on substrate.


The exposure power was set to 200 watts and a scan rate of 1000 mm/s was used to ablate a rectangular volume at the interface of two graphite pieces with RMS depth of 29.83 μm (measured by Veeco NT1100 optical profilometer). Three-dimensional Topography of the surface at the edge of exposed area to laser scan can be seen in FIG. 14, which shows optical profilometry of ablated graphite. The area scan size is 1.7×2.3 mm. Laser ablation was used to create a roughened surface for better adhesion, and to expose clean graphite surface. Also, for wetting liquids, increases in surface roughness can improve wetting behavior [86]. This step could possibly be omitted, though with weaker bonding.


Phase transformation and reactive wetting are dictated by laser matter interactions, transport and reactions during this process. Various powers ranging from 30 to 200 watts and scanning rates from 800 to 6500 mm/s and constant hatch distance of 0.09 mm were tested to find the exposure parameters that provide the highest wetting and bonding strength between graphite and the alloy. During this process, it is observed that at a fixed scanning speed, low power will result in partial sintering behavior and high power causes high vapor flux and large recoil pressure which leads to splattering. These process parameter trends with scan rate and power mostly agree with the general process parameters seen for other materials [61]. One key difference with regular stainless steel processing is that the mixed powder phase transformation is assisted by a double laser exposing each layer. The bonding appears to be a two-step process that requires a double exposure


In an experiment, three layers of the alloy with thickness of 40 μm each are deposited on graphite surface by laser melting. Afterwards, two layers of powder mixed with 50 wt % of stainless steel 316L deposited with same exposure parameters on the surface to create an elemental gradient in the build normal direction. Afterwards, a “Binghamton University” logo was built on the alloy with SS316L material using support structure exposure parameters to study the applicability of the interlayer method. Since the alloy meting temperature is under 450° C., the graphite with the structure built on it then removed from the build platform and placed on a hot plate. By increasing the temperature of the hot plate to 400° C. for one minute, the part can be separated from the graphite substrate. FIG. 15A shows the stainless steel logo printed on graphite. FIG. 15B shows removal of the printed part using hot plate.


A sessile drop experiment is generally used for molten metal contact angle measurements. However, it is hard to accurately study instantaneous spreading process in case of selective laser melting, as phase change occurs fast. On the other hand, solidified sessile drop measurements can be used to give an estimate on the contact angle. However, since in SLM the molten metal drop solidifies before reaching its equilibrium state [74,75]. The contact angle can be estimated from the solidified droplet shape [87]. Studying the post-solidified triple contact line can in various exposure parameter provides information regarding the wetting mechanism during laser processing. Based on this ideology, an experiment is designed to create 5 lines of 120 μm width on graphite. Each line was scanned by a different laser exposure ranging from 5000 mm/s to 6000 mm/s and power of 150 watts. Afterwards the contact angles of each line are studied by optical profilometry. FIGS. 16A and 16B show spreading of the alloy on graphite substrate based on laser exposure parameters. The height-to-width (H/D) ratio is provided for each scanned line in order to have a better comparison. By lowering the velocity of scan, the laser heating period and maximum temperature increase, which improves the diffusion of reactants, assisting spreading.


The energy barrier for crystallization must be overcome with thermal energy, so the reaction rate is expected to have an Arrhenius rate equation, N∝ exp(−Ea/kBT), where N is the nucleation rate, Ea is the activation energy, kB is the Boltzmann constant, and T is absolute temperature [62]. Due to the rapid laser processing temperature, nucleation can overcome the energy barrier and proceed more rapidly than reactions just above the melting point of the metal, which explains why bonding occurs so rapidly. Despite faster reaction rates, the rapid cooling rates are on the order of millions of degrees Celsius per second, which leads to imperfect quenching of the interfacial layer with defects with respect to microstructure and surface coverage due to reaction and diffusion kinetics.


Since the bond is under combined normal and shear stresses imposed by the thermal stress inherent to SLM and the recoating blade of SLM machine, it is necessary to measure the bonding strength of the joint. The common approach is to perform tensile tests to calculate yield tensile strength and shear yield strength of the joint. However, these tests are designed for isotropic or homogenous materials, which are not the case at the interface [88,89]. Direct measurement of tensile load at the joint is not straight forward since there is not enough space to grip the deposited layer of metal. To characterize the joint, a lap shear test according to FIG. 17 is performed, where the alloy layer functions as a weld connecting two graphite blocks that are loaded under tensile load.


The designed mechanical testing reveals the lower limit of interfacial strength for the alloy in FIGS. 18A, 18B and 18C, which shows the Interfacial strength of the graphite-metal bonding at various laser scan velocities (FIGS. 18A and 18B). Sample preparation for tensile test (FIG. 18C). Since the fracture occurred in alloy for most of the samples rather than at the graphite-metal interface, only a lower limit of the interfacial strength can be estimated (shown by arrow).



FIG. 19 shows an optical image using a polarized light microscope of the Sn—Ag—Ti alloy laser bonded onto graphite.



FIG. 20 shows an unpolished scanning electron microscopy of graphite-alloy interface.


Similar processing will work for printing onto pyrolytic graphite. FIG. 23 shows a print on a pyrolytic graphite sample. Pyroid® HT pyrolytic graphite substrate is thermally annealed in the manufacturing process to increase its thermal conductivity up to 1700 W/m−K at room temperature. Owing to the higher thermal conductivity of pyrolytic graphite, a greater energy density is required for bonding. This sample was made at laser scan speeds ranging from 4400 mm/s to 5600 mm/s and 150 W power and 20 μm layer thickness. Double exposure was applied to all samples. Ball shear testing is performed to measure interfacial strength of Sn3Ag4Ti alloy deposited by different laser processing parameters on pyrolytic graphite as shown on FIG. 24. 4400 mm/s and 150 W process parameters provided highest bond strength.


Energy-dispersive X-ray spectroscopy (EDS)/SEM 15 kV MAG 300 performed on the interface of the joint is shown in FIGS. 21A and 21B. A scan across the interface shows diffusion of Carbon into the alloy. Elemental compositions observed at the interface show a titanium-tin-carbide interlayer [90]. Carbide formation is observed near the interface between graphite (bottom) and alloy (top).















TABLE 3







Element
C
Ag
Sn
Ti






















At %
25.85
00.00
61.92
12.22



Wt %
03.77
00.00
89.13
07.10










To examine the reliability of the bond in various thermal conditions, a thermal cycling test is performed. The bulk SS316L samples printed on graphite were tested using a Thermotron temperature chamber. During the test, the chamber temperature varied from −40° C. to 130° C. for 100 cycles. The temperatures of the parts are monitored. After the 100 cycles (over 1 week of testing), the parts were visually examined for defects, such as delamination, along the perimeter where thermal stresses are greatest. All parts passed the visual test without any noticeable failure or defects. FIGS. 22A and 22B show two stainless steel parts after the thermal cycling test.


This technology efficiently and effectively employs a focused energy additive manufacturing process capable of bonding metals onto to graphite. Parts produced by this method can help effectively spread heat and take advantage of the high in-plane thermal conductivity of pyrolytic graphite. Furthermore, graphite can be used as an alternative build platform which decreases the cost of printing with stainless steel or titanium since current metal additively manufactured parts require machining to remove support, which requires either manually machining the parts or computer-controlled machining (CNC), which are both expensive and time-consuming. There is no need to print support structures as the part can be printed directly on the build platform and separated from it after print by melting the alloy connecting the stainless to graphite, or by brittle fracturing the graphite plate.


Detailed Bonding to Silica-Based Compounds with Sn3Ag4Ti


Experiments were conducted using a laser-powder bed fusion EOS M290 tool having a 500 W 1064 nm Yb-fiber laser and high speed galvanometer mirror system (maximum raster speed of 7000 mm/s). The machine has a N2 generator that maintains an N2 gas atmosphere with O2 concentrations of less than 1.5%. A special wafer tray is used to securely hold the silicon wafer.


A Sn3Ag4Ti powder mixture is used as the bonding metal mixture, as it provides good bonding with silica and alumina via the Ti silicide and Ti oxide formation [58,91-93], and also bonds to a broad range of other materials including graphite, Al, Cu, and Fe-based metals. This low melting point of this alloy (˜250° C.) reduces the thermal stresses experienced after solidification upon cooling. Sn, Ag, and Ti powders (>99% purity) with respective average diameters of 40 μm, 5 μm, 10 μm were mixed with weight percentages of 93%, 3%, and 4% (Sn87.55Ag3.11Ti9.34) (FIG. 2). Smaller powder sizes were chosen for the lower concentration metals to facilitate mixing and reduce diffusional resistance of the Ag and Ti in the Sn melt. FIG. 2 shows an SEM image (8.6 mm WD, 9 KV EHT, SE2 detector) of mixed Ag (3 wt %), Ti (4 wt %) and Sn (93 wt %) powders.



FIGS. 25 and 26A and 26B show optical and scanning electron microscopy images of the first layer of printing Sn3Ag4Ti alloy onto a borosilicate glass substrate fractured at the interface. The laser processing parameters used for this deposition are given in table 4.















TABLE 4







Scan

Hatch
Layer
Energy



Power
speed

distance
thickness
density


Sample
[W]
[mm/s]
Exposure
[mm]
[μm]
[J/mm3]





















1
120
1700
Double
0.09
20
39.21









Energy dispersive X-ray spectroscopy mapping was applied at the interface of the sample with the Sn3Ag4Ti alloy deposited onto borosilicate glass to investigate the bonding, as shown in FIGS. 27A-27F. During directed energy deposition by the laser, the titanium in the alloy reacts to silica and create titanium oxide and titanium silicide. Presence of similar patterns for Ti, Si and O in EDS elemental mapping supports titanium oxides forming at the interface.


Detailed Bonding to Al2O3-Based Compounds with Sn3Ag4Ti


An EOS m290 system and Sn3Ag4Ti alloy powder was used to print on D50×0.43 mm Sapphire wafer with <0001> orientation and single side polish, installed on a steel build platform using Kapton tape. FIG. 28A shows the powder mounted on the build platform. The sapphire is unpolished on the side that was printed on. FIG. 28B shows a thin single layer of approximately 54 μm (the thickness of the Kapton tape) of Sn3Ag4Ti alloy powder, deposited on the unpolished surface with manual deposition. FIG. 28C shows the pattern of pillars and lines printed with this technique using a laser power of 150 W with scanning rate from 4400 to 5600 mm/s and a spot size of approximately 100 μm. As can be seen in the brightfield optical microscope images of FIG. 28D and FIG. 28E, good bonding can be achieved with a scan rate of 4400 mm/s and a power of 150 W. FIG. 28D shows bright field optical imaging at 5× of two lines, top with 150 W and 4400 mm/s and bottom with 150 W and 4600 mm/s. FIG. 28E shows bright field optical imaging at 20× magnification of 150 W 4400 mm/s line with Z-stack. Line thickness of 100 μm is achieved with edge exposure (single line raster).


Example 2

The present technology provides an alternate technique for direct fabrication of heat transfer devices onto the chip by additive manufacturing, by building on recent hybrid bonding literature for interconnect manufacturing [98-101]. Previously lead solders, and more recently non-lead solders, have been used extensively in the electronic packaging industry to form interconnects, etc. However, reliability concerns are pushing the industry to move away from solders, towards a concept called hybrid bonding [94-97] which does not require solders. Hybrid bonding consists of multi-stage physical and chemical depositions onto a semiconductor device by employing photolithography-based techniques. This process produces a thin bonding layer via depositions that can then have features, like fins and microchannels, additively deposited via a powder-based laser melting process.


In this example, ˜50 nm of titanium is deposited onto the back of the semiconductor die by physical vapor deposition (PVD), such as sputtering or evaporation as adhesion layer. This layer could be patterned or unpatterned. Then ˜250 nm of copper is deposited on top with similar techniques. Afterwards, 5-40 μm of copper layer is grown by electrodeposition onto the seed layer. This process is illustrated in FIG. 29. After metallizing the silicon with Cu, it is possible to 3d metal print heat sink structures made of copper directly on the metalized surface. Alternative embodiments may choose to make features out of other high conductivity metals, like silver or aluminum. This technique has an interface from titanium to the silicon via titanium silicides, and the first interlayer to the copper via Ti—Cu intermetallic formation.


The disclosure has been described with reference to various specific embodiments and techniques. However, many variations and modifications are possible while remaining within the scope of the disclosure.


REFERENCES (EACH OF WHICH IS EXPRESSLY INCORPORATED HEREIN BY REFERENCE IN ITS ENTIRETY)



  • [1] S. M. Ameli, Additive Layer Manufactured Sinter-Style Aluminium/Ammonia Heat Pipes, (n.d.) 182.

  • [2] M. Ameli, B. Agnew, P. S. Leung, B. Ng, C. J. Sutcliffe, J. Singh, R. McGlen, A novel method for manufacturing sintered aluminium heat pipes (SAHP), Applied Thermal Engineering. 52 (2013) 498-504. doi:10.1016/j.applthermaleng.2012.12.011.

  • [3] S. M. Thompson, Z. S. Aspin, N. Shamsaei, A. Elwany, L. Bian, Additive manufacturing of heat exchangers; A case study on a multi-layered Ti-6Al-4V oscillating heat pipe, Additive Manufacturing. 8 (2015) 163-174. doi:10.1016/j.addma.2015.09.003.

  • [4] M. Wong, S. Tsopanos, C. J. Sutcliffe, I. Owen, Selective laser melting of heat transfer devices, Rapid Prototyping Journal. 13 (2007) 291-297. doi:10.1108/13552540710824797.

  • [5] M. Wong, I. Owen, C. J. Sutcliffe, A. Puri, Convective heat transfer and pressure losses across novel heat sinks fabricated by Selective Laser Melting, International Journal of Heat and Mass Transfer. 52 (2009) 281-288. doi:10.1016/j.ijheatmasstransfer.2008.06.002.

  • [6] Y. Li, Y. Shen, C.-H. Hung, M. C. Leu, H.-L. Tsai, Additive manufacturing of Zr-based metallic glass structures on 304 stainless steel substrates via V/Ti/Zr intermediate layers, Materials Science and Engineering; A. 729 (2018) 185-195. doi:10.1016/j.msca.2018.05.052.

  • [7] I. Tomashchuk, D. Grevey, P. Sallamand, Dissimilar laser welding of AISI 316L stainless steel to Ti6-Al4-6V alloy via pure vanadium interlayer, Materials Science and Engineering; A. 622 (2015) 37-45. doi:10.1016/j.msea.2014.10.084.

  • [8] M. K. Lee, J. G. Lee, Y. H. Choi, D. W. Kim, C. K. Rhee, Y. B. Lee, S. J. Hong, Interlayer engineering for dissimilar bonding of titanium to stainless steel, Materials Letters. 64 (2010) 1105-1108. doi:10.1016/j.matlet.2010.02.024.

  • [9] E. Saiz, A. P. Tomsia, Atomic dynamics and Marangoni films during liquid-metal spreading, Nature Materials. 3 (2004) 903-909. doi:10.1038/nmat1252.

  • [10] N. Eustathopoulos, Progress in understanding and modeling reactive wetting of metals on ceramics, Current Opinion in Solid State and Materials Science. 9 (2005) 152-160. doi:10.1016/j.cossms.2006.04.004.

  • [11] S. Sugihara, K. Okazaki, K. Suganuma, Wetting of silicon single crystal by silver and tin, and their interfaces, Journal of Materials Science. 28 (1993) 2455-2458. doi:10.1007/BF01151679.

  • [12] F. Baudin, L. Di Cioccio, V. Delaye, N. Chevalier, J. Dechamp, H. Moriceau, E. Martinez, Y. Bréchet, Direct bonding of titanium layers on silicon, Microsystem Technologies. 19 (2013) 647-653. doi:10.1007/s00542-012-1664-0.

  • [13] J. Yu, Y. Wang, J.-Q. Lu, R. J. Gutmann, Low-temperature silicon wafer bonding based on Ti/Si solid-state amorphization, Applied Physics Letters. 89 (2006) 092104. doi:10.1063/1.2338574.

  • [14] K. Holloway, R. Sinclair, Amorphous Ti—Si alloy formed by interdiffusion of amorphous Si and crystalline Ti multilayers, Journal of Applied Physics. 61 (1987) 1359-1364. doi:10.1063/1.338114.

  • [15] R.W. Smith, Process of using an active solder alloy, U.S. Pat. No. 6,047,876A, 2000.

  • [16] Y. Tang, G. Li, Thermodynamic Study of Sn—Ag—Ti Active Filler Metals, Physics Procedia. 25 (2012) 30-35. doi:10.1016/j.phpro.2012.03.045.

  • [17] R. W. Smith, R. Redd, Electronic package formed using low-temperature active solder including indium, bismuth, and/or cadmium, EP1749315B1, 2009.

  • [18] R. Kolenak, Igor Kostolný, Martin Sahul, Direct bonding of silicon with solders type Sn—Ag—Ti, 28 (2016) 149-158. doi:doi.org/10.1108/SSMT-11-2015-0040.

  • [19] Nicolas Eustathopoulus, Michael G. Nicolas, Béatrice Drevet, eds., Wettability at High Temperatures, Pergamon, 1999.

  • [20] K. Holloway, K. B. Do, R. Sinclair, Interfacial reactions on annealing molybdenum-silicon multilayers, Journal of Applied Physics. 65 (1989) 474-480. doi:10.1063/1.343425.

  • [21] W.-L. Wang, Y.-C. Tsai, Microstructural characterization and mechanical property of active soldering anodized 6061 Al alloy using Sn-3.5Ag-xTi active solders, Materials Characterization. 68 (2012) 42-48. doi:10.1016/j.matchar.2012.03.007.

  • [22] M. Tashiro, A. Kasahara, Method of bonding graphite to metal, U.S. Pat. No. 5,904,287A, 1999.

  • [23] H. Sueyoshi, T. Nishida, Solid State Bonding of Graphite to SUS304 Steel, Materials Transactions, JIM. 41 (2000) 414-419. doi:10.2320/matertrans1989.41.414.

  • [24] J. Y. Liu, S. Chen, B. A. Chin, Brazing of vanadium and carbon-carbon composites to stainless steel for fusion reactor applications, Journal of Nuclear Materials. 212-215 (1994) 1590-1593. doi:10.1016/0022-3115(94)91095-2.

  • [25] Q. Lin, W. Zhong, F. Li, W. Yu, Reactive wetting of tin/steel and tin/aluminum at 350-450° C., Journal of Alloys and Compounds. 716 (2017) 73-80. doi:10.1016/j.jallcom.2017.05.036.

  • [26] T. H. Chuang, M. S. Yeh, Y. H. Chai, Brazing of zirconia with AgCuTi and SnAgTi active filler metals, Metall and Mat Trans A. 31 (2000) 1591-1597. doi:10.1007/s11661-000-0169-0.

  • [27] E. Saiz, A. P. Tomsia, R. M. Cannon, Ridging effects on wetting and spreading of liquids on solids, Acta Materialia. 46 (1998) 2349-2361. doi:10.1016/S1359-6454(98)80016-5.

  • [28] K. Landry, C. Rado, R. Voitovich, N. Eustathopoulos, MECHANISMS OF REACTIVE WETTING; THE QUESTION OF TRIPLE LINE CONFIGURATION, Acta Materialia. 45 (1997) 3079-3085. doi:10.1016/S1359-6454(96)00372-2.

  • [29] D. Lu, C. P. Wong, eds., Materials for Advanced Packaging, Springer US, Boston, Mass., 2009. doi:10.1007/978-0-387-78219-5.

  • [30] F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, J. Renau, Measuring power and temperature from real processors, in; IEEE, 2008; pp. 1-5. doi:10.1109/IPDPS.2008.4536423.

  • [31] Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin, C. R. Kao, Electromigration-induced failure in flip-chip solder joints, Journal of Electronic Materials. 34 (2005) 27-33. doi:10.1007/s11664-005-0176-4.

  • [32] Z. Huang, R. E. Jones, A. Jain, Experimental investigation of electromigration failure in Cu—Sn—Cu micropads in 3D integrated circuits, Microelectronic Engineering. 122 (2014) 46-51. doi:10.1016/j.mee.2014.03.003.

  • [33] E. Le Bourhis, Glass; Mechanics and Technology, 2nd ed., Wiley-VCH, 2014.

  • [34] W. H. Zachariasen, The Atomic Arrangement In Glass, Journal of the American Chemical Society. 54 (1932) 3841-3851. doi:10.1021/ja01349a006.

  • [35] B. E. Warren, X-Ray Determination Of The Structure Of Glass, Journal of the American Ceramic Society. 17 (1934) 249-254. doi:10.1111/j.1151-2916.1934.tb19316.x.

  • [36] J. E. Shelby, Introduction to Glass Science and Technology:, 2nd ed., Royal Society of Chemistry, Cambridge, 2007. doi:10.1039/9781847551160.

  • [37] M. Hasanuzzaman, A. Rafferty, M. Sajjia, A.-G. Olabi, Properties of Glass Materials, in; Reference Module in Materials Science and Materials Engineering, Elsevier, 2016. doi:10.1016/B978-0-12-803581-8.03998-9.

  • [38] M. D. Ediger, Perspective; Highly stable vapor-deposited glasses, The Journal of Chemical Physics. 147 (2017) 210901. doi:10.1063/1.5006265.

  • [39] L. Yang, H. Y. Li, P. W. Wang, S. Y. Wu, G. Q. Guo, B. Liao, Q. L. Guo, X. Q. Fan, P. Huang, H. B. Lou, F. M. Guo, Q. S. Zeng, T. Sun, Y. Ren, L. Y. Chen, Structural responses of metallic glasses under neutron irradiation, Scientific Reports. 7 (2017). doi:10.1038/s41598-017-17099-2.

  • [40] D. Kundu, G. De, B. Karmakar, A. Patra, D. Ganguli, Sol-gel preparation of silica glass, Bulletin of Materials Science. 15 (1992) 453-457. doi:10.1007/BF02745295.

  • [41] K. Kihara, An X-ray study of the temperature dependence of the quartz structure, European Journal of Mineralogy. 2 (1990) 63-78. doi:10.1127/ejm/2/1/0063.

  • [42] K. Bettger, E. Brown, E. N. Boulos, D. H. Stark, Glass-to-metal bond structure, US20100119740A1, 2010.

  • [43] M. P. William, H. B. Pardam, P. Graham, Process of bonding glass or ceramic to metal, U.S. Pat. No. 3,220,815A, 1965.

  • [44] L. L. Hench, P. J. Buscemi, Method of bonding a bioglass to metal, U.S. Pat. No. 4,159,358A, 1979.

  • [45] R. W. Bruce, D. L. III, M. Kahn, A. W. Fliflet, S. H. Gold, Microwave assisted reactive brazing of ceramic materials, U.S. Pat. No. 7,022,198B2, 2006.

  • [46] C. Dresbach, A. Krombholz, M. Ebert, J. Bagdahn, Mechanical properties of glass frit bonded micro packages, Microsystem Technologies. 12 (2006) 473-480. doi:10.1007/s00542-005-0031-9.

  • [47] R. Knechtel, Glass frit bonding; an universal technology for wafer level encapsulation and packaging, Microsystem Technologies. 12 (2005) 63-68. doi:10.1007/s00542-005-0022-x.

  • [48] R. Knechtel, M. Wiemer, J. Frömel, Wafer level encapsulation of microsystems using glass frit bonding, Microsystem Technologies. 12 (2006) 468-472. doi:10.1007/s00542-005-0036-4.

  • [49] K. Nötzold, C. Dresbach, J. Graf, B. Böttge, Temperature dependent fracture toughness of glass frit bonding layers, Microsystem Technologies. 16 (2010) 1243-1249. doi:10.1007/s00542-010-1037-5.

  • [50] M. Petzold, C. Dresbach, M. Ebert, J. Bagdahn, M. Wiemer, K. Glien, J. Graf, R. Muller-Fiedler, H. Hofer, Fracture mechanical life-time investigation of glass frit-bonded sensors, in; Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006., IEEE, San Diego, Calif., 2006; pp. 1343-1348. doi:10.1109/ITHERM.2006.1645501.

  • [51] Z. Sun, D. Pan, J. Wei, C. K. Wong, Ceramics bonding using solder glass frit, Journal of Electronic Materials. 33 (2004) 1516-1523. doi:10.1007/s11664-004-0093-y.

  • [52] R. J. Churchill, U. Varshney, H. P. Groger, J. M. Glass, Laser brazing for ceramic-to-metal joining, U.S. Pat. No. 5,407,119A, 1995.

  • [53] Materials Science International Team MSIT®, Ag—Cu—Ti (Silver-Copper-Titanium), in; G. Effenberg, S. Ilyenko (Eds.), Non-Ferrous Metal Systems. Part 3, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007; pp. 63-74. doi:10.1007/978-3-540-47004-5_10.

  • [54] H. Mizuhara, Silver-copper-titanium brazing alloy containing crust inhibiting element, U.S. Pat. No. 4,883,745A, 1989.

  • [55] M. L. Santella, J. A. Horton, J. J. Pak, Microstructure of Alumina Brazed with a Silver-Copper-Titanium Alloy, Journal of the American Ceramic Society. 73 (1990) 1785-1787. doi:10.1111/j.1151-2916.1990.tb09835.x.

  • [56] Y. Sechi, K. Nagatsuka, K. Nakata, Effect of composition of titanium in silver-copper-titanium braze alloy on dissimilar laser brazing of binder-less cubic boron nitride and tungsten carbide, IOP Conference Series; Materials Science and Engineering. 61 (2014) 012019. doi:10.1088/1757-899X/61/1/012019.

  • [57] A. Gasse, N. Eustathopoulos, Brazing composition and method for brazing parts made of alumina-based materials with said composition, U.S. Pat. No. 6,616,032B1, 2003.

  • [58] Y. S. Chaug, N. J. Chou, Y. H. Kim, Interaction of Ti with fused silica and sapphire during metallization, Journal of Vacuum Science & Technology A; Vacuum, Surfaces, and Films. 5 (1987) 1288-1291. doi:10.1116/1.574792.

  • [59] Y. Tang, G. Li, Thermodynamic Study of Sn—Ag—Ti Active Filler Metals, Physics Procedia. 25 (2012) 30-35. doi:10.1016/j.phpro.2012.03.045.

  • [60] S. A. Khairallah, A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, Journal of Materials Processing Technology. 214 (2014) 2627-2636. doi:10.1016/j.jmatprotec.2014.06.001.

  • [61] S. A. Khairallah, A. T. Anderson, A. Rubenchik, W. E. King, Laser powder-bed fusion additive manufacturing; Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Materialia. 108 (2016) 36-45. doi:10.1016/j.actamat.2016.02.014.

  • [62] R. Lacmann, Crystallization, Third Edition. J. W. MULLIN, Butterworth-Heinemann, Oxford 1997, 527 Seiten, zahlr. Abb. and ISBN 0-7506-3759-5, Chemie Ingenieur Technik-CIT. 70 (1998) 1468-1468. doi:10.1002/cite.330701126.

  • [63] B. D. Iverson, T. W. Davis, S. V. Garimella, M. T. North, S. S. Kang, Heat and Mass Transport in Heat Pipe Wick Structures, Journal of Thermophysics and Heat Transfer. 21 (2007) 392-404. doi:10.2514/1.25809.

  • [64] T. L. Bergman, F. P. Incropera, L. S. Adrienne, D. P. DeWitt, Introduction to heat transfer, John Wiley & Sons, 2011.

  • [65] S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, The Cu—Sn phase diagram, Part I: New experimental results, Intermetallics. 34 (2013) 142-147. doi:10.1016/j.intermet.2012.10.004.

  • [66] J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder, Journal of Materials Processing Technology. 149 (2004) 616-622. doi:10.1016/j.jmatprotec.2003.11.051.

  • [67] J. P. Kruth, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering, Assembly Automation. 23 (2003) 357-371. doi:10.1108/01445150310698652.

  • [68] L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, J.-P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Materialia. 58 (2010) 3303-3312. doi:10.1016/j.actamat.2010.02.004.

  • [69] J. Beuth, N. Klingbeil, The role of process variables in laser-based direct metal solid freeform fabrication, JOM. 53 (2001) 36-39. doi:10.1007/s11837-001-0067-y.

  • [70] J. Gockel, J. Beuth, K. Taminger, Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti-6Al-4V, Additive Manufacturing. 1-4 (2014) 119-126. doi:10.1016/j.addma.2014.09.004.

  • [71] N. K. Roy, O. G. Dibua, W. Jou, F. He, J. Jeong, Y. Wang, M. A. Cullinan, A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers, Journal of Micro and Nano-Manufacturing. 6 (2017) 010903. doi:10.1115/1.4038455.

  • [72] D. D. Chung, Materials for thermal conduction, Applied Thermal Engineering. 21 (2001) 1593-1605. doi:10.1016/S1359-4311(01)00042-4.

  • [73] T. Siewert, L. Stephen, S. David R., M. Juan Carlos, Database for Solder Properties with Emphasis on New Lead-free Solders, National Institute of Standards and Technology & Colorado School of Mines, 2002.

  • [74] T. Young, III. An essay on the cohesion of fluids, Phil. Trans. R. Soc. Lond. 95 (1805) 65-87. doi:10.1098/rstl1805.0005.

  • [75] M. E. Schrader, Young-Dupre Revisited, Langmuir. 11 (1995) 3585-3589. doi:10.1021/1a00009a049.

  • [76] B. Predel, Si—Ti (Silicon-Titanium), in; O. Madelung (Ed.), Pu—Re—Zn—Zr, Springer-Verlag, Berlin/Heidelberg, 1998; pp. 1-3. doi:10.1007/10551312_2737.

  • [77] R. J. Kematick, C. E. Myers, Thermodynamics of the Phase Formation of the Titanium Silicides, Chemistry of Materials. 8 (1996) 287-291. doi:10.1021/cm950386q.

  • [78] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, Springer US, Boston, Mass., 2003. doi:10.1007/978-1-4615-0215-9.

  • [79] Solder Systems in Phase Diagrams & Computational Thermodynamics, (n.d.). www.metallurgy.nist.gov/phase/solder/solder.html (accessed Jul. 18, 2018).

  • [80] I. Ansara, A. T. Dinsdale, M. H. Rand, eds., Thermochemical database for light metal alloys, EUR 18499 EN, European cooperation in the field of scientific and technical research, 1998.

  • [81] N. Eustathopoulus, M. G. Nicolas, B. Drevet, eds., Chapter 8 Wetting properties of metal/carbon systems, in; Pergamon Materials Series, Pergamon, 1999; pp. 317-338. doi:10.1016/S1470-1804(99)80010-8.

  • [82] H. Zabel, S. Solin, eds., Graphite Intercalation Compounds I, Springer Berlin Heidelberg, Berlin, Heidelberg, 1990. doi:10.1007/978-3-642-75270-4.

  • [83] M. Tashiro, A. Kasahara, Method of bonding graphite to metal, U.S. Pat. No. 5,904,287 A, 1999.

  • [84] G. A. Slack, Anisotropic Thermal Conductivity of Pyrolytic Graphite, Phys. Rev. 127 (1962) 694-701. doi:10.1103/PhysRev.127.694.

  • [85] EOS Metal Materials for Additive Manufacturing, (n.d.). www.eos.info/material-m (accessed Nov. 28, 2017).

  • [86] N. Eustathopoulus, M. G. Nicolas, B. Drevet, eds., Chapter 1 Fundamental equations of wetting, in; Pergamon Materials Series, Pergamon, 1999; pp. 1-53. doi:10.1016/S1470-1804(99)80003-0.

  • [87] N. Eustathopoulus, M. G. Nicolas, B. Drevet, eds., Chapter 3 Methods of measuring wettability parameters, in; Pergamon Materials Series, Pergamon, 1999; pp. 106-147. doi:10.1016/S1470-1804(99)80005-4.

  • [88] R. M. Christensen, A Two-Property Yield, Failure (Fracture) Criterion for Homogeneous, Isotropic Materials, J. Eng. Mater. Technol. 126 (2004) 45-52. doi:10.1115/1.1631024.

  • [89] Y. Flom, 2—Strength and margins of brazed joints, in; D. P. Sekulić (Ed.), Advances in Brazing, Woodhead Publishing, 2013; pp. 31-54. doi:10.1533/9780857096500.1.31.

  • [90] Y. C. Zhou, H. Y. Dong, B. H. Yu, Development of two-dimensional titanium tin carbide (Ti2SnC) plates based on the electronic structure investigation, Materials Research Innovations. 4 (2000) 36-41. doi:10.1007/s100190000065.

  • [91] A. K. Podshivalova, I. K. Karpov, Thermodynamic analysis of the stability of titanium oxides in the TiO—TiO2 range, Russian Journal of Inorganic Chemistry. 52 (2007) 1147-1150. doi:10.1134/50036023607070273.

  • [92] H. B. Liu, L. X. Zhang, L. Z. Wu, D. Liu, J. C. Feng, Vacuum brazing of SiO2 glass ceramic and Ti-6Al-4V alloy using AgCuTi filler foil, Materials Science and Engineering; A. 498 (2008) 321-326. doi:10.1016/j.msea.2008.08.008.

  • [93] R. Gordon, Chemical vapor deposition of coatings on glass, Journal of Non-Crystalline Solids. 218 (1997) 81-91. doi:10.1016/S0022-3093(97)00198-1.

  • [94] R. A. Sosa, K. Mohan, L. Nguyen, R. Tummala, A. Antoniou, V. Smet, Cu Pillar with Nanocopper Caps; The Next Interconnection Node Beyond Traditional Cu Pillar, in; 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 2019; pp. 655-660.

  • [95] S. W. Ho, L. Ding, S. H. Lim, S. A. Sek, M. Yu, G. Q. Lo, Polymer-based fine pitch Cu RDL to enable cost-effective re-routing for 2.5D interposer and 3D-IC, in; 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013), IEEE, Singapore, 2013; pp. 435-439. doi:10.1109/EPTC.2013.6745758.

  • [96] C. Nair, F. Pieralisi, F. Liu, V. Sundaram, U. Muehlfeld, M. Hanika, S. Ramaswami, R. Tummala, Sputtered Ti—Cu as a superior barrier and seed layer for panel-based high-density RDL wiring structures, in; 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), IEEE, San Diego, Calif., 2015; pp. 2248-2253. doi:10.1109/ECTC.2015.7159916.

  • [97] T. Takano, H. Kudo, M. Tanaka, M Akazawa, Submicron-Scale Cu RDL Pattering Based on Semi-Additive Process for Heterogeneous Integration, in; 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 2019; pp. 94-100.

  • [98] Z. R. Camacho, L. C. H. Tay, H. D. Bathan, J. D. Punzalan, Method of forming a wafer level package with RDL interconnection over encapsulant between bump and semiconductor die, U.S. Pat. No. 7,888,181B2, 2011.

  • [99] K. Suzuki, Method of forming low-resistivity recessed features in copper metallization, U.S. Pat. No. 7,704,879B2, 2010.

  • [100] P. R. Besser, D. M. Erb, S. Lopatin, Selective deposition process for passivating top interface of damascene-type Cu interconnect lines, U.S. Pat. No. 6,455,425B1, 2002.

  • [101] V. Dubin, Self-encapsulated copper metallization, U.S. Pat. No. 6,249,055B1, 2001.

  • [102] K. Hoshino, Semiconductor device using copper metallization, U.S. Pat. No. 4,985,750A, 1991.

  • [103] R. Khazaka, D. Martineau, T. Youssef, T. Long Le, S. Azzopardi, Direct Printing of Heat Sinks, Cases and Power Connectors on Insulated Substrate Using Selective Laser Melting Techniques, in; 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 2019; pp. 2173-2179.

  • [104] R Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, New York, 2001.

  • [105] A. Sakanova, C. F. Tong, A. Nawawi, R. Simanjorang, K. J. Tseng, A. K. Gupta, Investigation on weight consideration of liquid coolant system for power electronics converter in future aircraft, Applied Thermal Engineering, Vol. I 04, pp. 603-615, 2016.

  • [106] E. M. Dede, S. N. Joshi, F. Zhou, Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink, Journal of Mechanical Design, Vol. 137, 2015, DOT; I 0.1115/1.4030989

  • [107] M. Wong, I. Owen, C. J. Sutcliffe, A. Puri, Convective heat transfer and pressure losses across novel heat sinks fabricated by Selective Laser Melting, International Journal of Heat and Mass Transfer, Vol. 52, pp. 281-288,2009

  • [108] A. Syed-Khaja, A. Perinan Freire, C. Kaestle, J. Franke, Feasibility Investigations on Selective Laser Melting for the Development of Microchannel Cooling in Power Electronics, IEEE 67th Electronic Components and Technology Conference proceeding, 2017.

  • [109] R. Skuriat, J. F. Li, P. A. Agyakwa, N. Mattey, P. Evans, C. M. Johnson, Degradation of thermal interface materials for high-temperature power electronics applications, Microelectronics Reliability, Vol. 53, pp. 1933-1942,2013.

  • [110] R. Khazaka, L. Mendizabal, D. Henry, R. Hanna, “Survey of high-temperature reliability of power electronics packaging components”, IEEE Transactions on Power Electronics, Vol. 30, No. 5, 2015.

  • [111] L Ventola, E Chiavazzo, F Calignano, D Manfredi, P Asinari, Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness, Microtechnology and Thermal Problems in Electronics, Journal of Physics; Conference Series 494, 2014. doi:IO.I088/1742-6596/494/I/O 12009.

  • [112] Bey Vrancken, Study of residual stresses in Selective laser melting, PhD thesis at KU Leuven, Faculty of engineering science, 2016.

  • [113] N. C. DeJong, L. W. Zhang, A. M. Jacobi, S. Balachandar, O. K. Tafti, A complementary experimental and numerical study of the flow and heat transfer in offset strip-fin heat exchangers, Transactions of the ASME; Journal of Heat Transfer, Vol. 120, pp. 690-698, 1998.

  • [114] H. M. Joshi, R. L. Webb, Heat transfer and friction in the offset strip fin heat exchanger, International Journal of Heat and Mass Transfer, Vol. 30, pp. 69-84, 1987.

  • [115] R. S. Matos, J. V. C. Vargas, T. A. Laursen, F. E. M. Saboya, Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection, International Journal of Heat and Mass Transfer, Vol. 44, pp. 3953-3961,2001.


Claims
  • 1. A method for forming a structure, comprising: providing a substrate having a surface;depositing a first powder comprising components of a first melting temperature composition, having a composition that, when heated, chemically reacts with the surface of the substrate, the substrate being selected from the group consisting of a metal, an alloy, graphite, graphene, diamond, silicon, a silicide, a glass, gallium arsenide, a ceramic, a boride, a nitride, an oxide, and a sulfide;locally heating the first powder, on the substrate, with a localized energy source to melt the first powder, and to chemically react the melted first melting temperature composition with the surface of the substrate, to form a first adherent interlayer; andcooling the melted first powder to form a fused first melting temperature layer having a lower boundary defined by the first adherent interlayer and an upper surface formed of the first melting temperature composition.
  • 2. The method according to claim 1, further comprising: depositing a second powder comprising components of a second melting temperature composition on the upper surface of the fused first melting temperature layer;heating the second powder, on the upper surface of the fused first melting temperature composition, with a localized energy source to regionally melt the second powder; andcooling the melted second powder to form a patterned fused second melting temperature layer.
  • 3. The method according to claim 2, wherein the second melting temperature composition, when heated by the localized energy source, chemically reacts with the first melting temperature composition to form a second adherent interlayer.
  • 4. The method according to claim 2, further comprising: heating the substrate to selectively soften one of the first and second melting temperature composition while maintaining the other of the first and second melting temperature composition as a solid; andseparating the solid from the substrate.
  • 5. The method according to claim 1, wherein said heating is performed on selected portions of the first powder, and the fused first melting temperature layer is selectively formed in a pattern corresponding to the selected portions.
  • 6. The method according to claim 1, wherein said heating is performed by controlling a focused laser,further comprising receiving feedback from at least one sensor, to determine:an optimal laser processing power, andan optimal scan rate.
  • 7. The method according to claim 1, wherein said heating is performed by controlling a focused laser, and the structure comprises a plurality of layers formed on the fused first melting temperature layer in a selective pattern, further comprising optimizing a laser processing power, a laser scan rate, and a layer thickness for each respective layer.
  • 8. A method for forming a structure bonded to a substrate, comprising: providing a substrate having a surface, the substrate being selected from the group consisting of a metal, an alloy, graphite, graphene, diamond, silicon, a silicide, a glass, gallium arsenide, a ceramic, a boride, a nitride, an oxide, and a sulfide;depositing a powder on the surface of the substrate;locally heating a portion of the powder on the surface of the substrate with localized energy to form an interlayer resulting from a chemical reaction between the substrate and a metal layer, wherein the interlayer is adherent to the substrate; andcooling the locally heated portion of the powder.
  • 9. The method according to claim 8, further comprising: depositing a metallic powder over the interlayer;heating a portion of the deposited metallic powder with the localized energy to form a melted portion of the metallic powder, wherein the localized energy is dynamically controlled to regionally melt the portion of the deposited metallic powder while leaving an adjacent portion of the metallic powder unmelted, to form a deposited pattern from the melted portion, and without bringing the substrate underneath the melted region into thermal equilibrium; andcooling the melted portion of the metallic powder to form a solid layer,wherein said cooling occurs concurrently with heating of a different portion of the metallic powder deposited over the interlayer with the localized energy, to regionally melt the different portion of the metallic powder.
  • 10. The method according to claim 9, wherein the localized energy is emitted by a localized energy source which is operated continuously and is dynamically repositioned over the surface, and the metallic powder consists essentially of a metal or metal alloy powder.
  • 11. The method according to claim 8, wherein the chemical reaction product of the powder with the surface of the substrate forms at least one of an intermetallic compound, a metal carbide compound, a metal nitride compound, a metal boride compound, and a metal silicide compound.
  • 12. The method according to claim 9, wherein a location of the heated portion of the deposited metallic powder is controlled over time to selectively melt the metallic powder into a predefined patterned layer having gaps between portions of the solid layer.
  • 13. The method according to claim 9, wherein said heating comprises selective laser melting (SLM).
  • 14. The method according to claim 8, wherein substrate comprises a semiconductor.
  • 15. The method according to claim 8, wherein the surface of the substrate comprises an aluminum or copper layer.
  • 16. The method according to claim 9, further comprising forming a stack of layers over the solid layer above the interlayer, by sequentially depositing a powder on an exposed surface and melting the powder to selectively define a pattern comprising at least one gap in at least one layer, in to form a three-dimensional structure which adheres to the substrate.
  • 17. A method of forming a structure on a substrate, comprising: providing the substrate having a surface, the substrate being selected from the group consisting of a metal, an alloy, graphite, graphene, diamond, silicon, a silicide, a glass, gallium arsenide, a ceramic, a boride, a nitride, an oxide, and a sulfide;depositing a powder on the surface of the substrate;locally heating the powder to a sufficient temperature to melt the powder with focused energy, having limited duration at a particular region to avoid heat-induced damage to the substrate distance from the surface; andcooling the melted powder to form a solid layer,wherein the melted powder forms an adherent bonding layer between the substrate and the solid layer, comprising a chemical reaction product of the surface and the powder, having a composition distinct from a composition of the surface and a composition of the solid layer.
  • 18. The method according to claim 17, wherein the adherent bonding layer comprises an interlayer selected from the group consisting of an intermetallic compound, a metal silicide, a metal carbide, a metal boride, and a metal nitride, and the solid layer comprises a metal or metal alloy.
  • 19. The method according to claim 17, further comprising forming a stack of additional solid layers over the solid layer in a regional pattern to form a three dimensional structure having at least one gap between portions of a respective additional solid layer over the substrate, while avoiding heat-induced functional damage to the integrated circuit, while avoiding heat-induced damage to structures underlying the surface of the substrate.
  • 20. The method according to claim 17, wherein the substrate comprises a semiconductor electronic device, and said locally heating the powder avoids heat-induced functional damage to the electronic device, the powder is a metal powder, and the adherent bonding layer is formed as at least one of an intermetallic, a metal carbide, a metal nitride, a metal boride, and a metal silicide reaction product of the metal powder and the semiconductor.
  • 21. The method according to claim 17, wherein the substrate comprises an integrated circuit device having electronic devices, and said locally heating the powder avoids heat-induced functional damage to the electronic devices of the integrated circuit, the powder is a metal powder, and the adherent bonding layer is formed as at least one of an intermetallic, a metal carbide, a metal nitride, a metal boride, and a metal silicide reaction product of the metal powder and a surface of the integrated circuit.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a non-provisional of, and claims benefit or priority from each of U.S. Provisional Patent Application No. 62/806,901, filed Feb. 17, 2019, and U.S. Provisional Patent Application No. 62/717,444, filed Aug. 10, 2019, each of which is expressly incorporated herein by reference in its entirety.

US Referenced Citations (3708)
Number Name Date Kind
2338574 Cunningham Jan 1944 A
2882009 Bryant Apr 1959 A
3220815 McMilllian et al. Nov 1965 A
3837866 Malmendier et al. Sep 1974 A
4026677 Galasso et al. May 1977 A
4030989 Atmore et al. Jun 1977 A
4034454 Galasso et al. Jul 1977 A
4034906 Carlson et al. Jul 1977 A
4038455 Wampetich Jul 1977 A
4065302 Turillon Dec 1977 A
4159358 Hench et al. Jun 1979 A
4171339 Lee et al. Oct 1979 A
4173614 Lee et al. Nov 1979 A
4234661 Lee et al. Nov 1980 A
4241135 Lee et al. Dec 1980 A
4358506 Intrater et al. Nov 1982 A
4380574 Gessinger et al. Apr 1983 A
4396677 Intrater et al. Aug 1983 A
4459062 Siebert Jul 1984 A
4483700 Forker, Jr. et al. Nov 1984 A
4510171 Siebert Apr 1985 A
4518468 Fotland et al. May 1985 A
4536423 Travis Aug 1985 A
4553856 Bierlein et al. Nov 1985 A
4640816 Atzmon et al. Feb 1987 A
4683019 Motoki Jul 1987 A
4699310 Kohno et al. Oct 1987 A
4714624 Naik Dec 1987 A
4725509 Ryan Feb 1988 A
4743302 Dumesnil et al. May 1988 A
4748085 Fukuda et al. May 1988 A
4818628 Alexander et al. Apr 1989 A
4861751 Tenhover Aug 1989 A
4863538 Deckard Sep 1989 A
4873152 Garg et al. Oct 1989 A
4880614 Strangman et al. Nov 1989 A
4883745 Mizuhara Nov 1989 A
4888127 Wada et al. Dec 1989 A
4911987 Sakata et al. Mar 1990 A
4916022 Solfest et al. Apr 1990 A
4938816 Beaman et al. Jul 1990 A
4944817 Bourell et al. Jul 1990 A
4956011 Nishida et al. Sep 1990 A
4985313 Penneck et al. Jan 1991 A
4985750 Hoshino Jan 1991 A
5006265 Kar et al. Apr 1991 A
5015502 Strangman et al. May 1991 A
5034274 Stevens et al. Jul 1991 A
5039990 Stevens et al. Aug 1991 A
5047386 Hed Sep 1991 A
5053090 Beaman et al. Oct 1991 A
5071828 Greuter et al. Dec 1991 A
5076869 Bourell et al. Dec 1991 A
5087515 Stevens et al. Feb 1992 A
5099759 Sonobe et al. Mar 1992 A
5104849 Shiga et al. Apr 1992 A
5132143 Deckard Jul 1992 A
5132278 Stevens et al. Jul 1992 A
5135817 Shimogori et al. Aug 1992 A
5147587 Marcus et al. Sep 1992 A
5154425 Niskanen et al. Oct 1992 A
5155321 Grube et al. Oct 1992 A
5155324 Deckard et al. Oct 1992 A
5156697 Bourell et al. Oct 1992 A
5182170 Marcus et al. Jan 1993 A
5188164 Kantner et al. Feb 1993 A
5194161 Heller et al. Mar 1993 A
5204302 Gorynin et al. Apr 1993 A
5207371 Prinz et al. May 1993 A
5209987 Penneck et al. May 1993 A
5224969 Chen et al. Jul 1993 A
5234715 Stevens et al. Aug 1993 A
5247986 Kantner et al. Sep 1993 A
5255730 Wall Oct 1993 A
5262202 Garg et al. Nov 1993 A
5266357 Preuss et al. Nov 1993 A
5270296 Hed Dec 1993 A
5281789 Merz et al. Jan 1994 A
5289967 Bampton et al. Mar 1994 A
5296062 Bourell et al. Mar 1994 A
5316580 Deckard May 1994 A
5326525 Ghosh Jul 1994 A
5328717 Stevens et al. Jul 1994 A
5338598 Ketcham Aug 1994 A
5342812 Niskanen et al. Aug 1994 A
5350637 Ketcham et al. Sep 1994 A
5352519 Stevens et al. Oct 1994 A
5362523 Gorynin et al. Nov 1994 A
5366570 Mazur et al. Nov 1994 A
5378500 Ward-Close et al. Jan 1995 A
5382308 Bourell et al. Jan 1995 A
5407119 Churchill et al. Apr 1995 A
5422209 Ono et al. Jun 1995 A
5429843 Masaki et al. Jul 1995 A
5431967 Manthiram et al. Jul 1995 A
5433280 Smith Jul 1995 A
5434027 Oshiba et al. Jul 1995 A
5458480 Newkirk et al. Oct 1995 A
5458705 Mazur et al. Oct 1995 A
5476725 Papich et al. Dec 1995 A
5490911 Makowiecki et al. Feb 1996 A
5498298 Wecker et al. Mar 1996 A
5503703 Dahotre et al. Apr 1996 A
5516725 Chang et al. May 1996 A
5526914 Dwivedi et al. Jun 1996 A
5538674 Nisper et al. Jul 1996 A
5544550 Smith Aug 1996 A
5580403 Mazur et al. Dec 1996 A
5597589 Deckard Jan 1997 A
5616294 Deckard Apr 1997 A
5620791 Dwivedi et al. Apr 1997 A
5622577 O'Connor Apr 1997 A
5624505 Mazur et al. Apr 1997 A
5628945 Riman et al. May 1997 A
5639070 Deckard Jun 1997 A
5648177 Fukui et al. Jul 1997 A
5669436 Papich et al. Sep 1997 A
5674790 Araujo Oct 1997 A
5683825 Bruce et al. Nov 1997 A
5686178 Stevens et al. Nov 1997 A
5694184 Yamada et al. Dec 1997 A
5709958 Toyoda et al. Jan 1998 A
5730925 Mattes et al. Mar 1998 A
5741376 Subramanian et al. Apr 1998 A
5747111 Fukui et al. May 1998 A
5761787 Kragle et al. Jun 1998 A
5770273 Offer et al. Jun 1998 A
5834070 Movchan et al. Nov 1998 A
5837960 Lewis et al. Nov 1998 A
5865909 Meyer et al. Feb 1999 A
5873771 Uesugi Feb 1999 A
5880692 Stevens et al. Mar 1999 A
5904287 Tashiro et al. May 1999 A
5939201 Boire et al. Aug 1999 A
5939224 Bito et al. Aug 1999 A
5948541 Inspektor Sep 1999 A
5952253 Dejneka et al. Sep 1999 A
5957006 Smith Sep 1999 A
5964020 Kragle et al. Oct 1999 A
5976716 Inspektor Nov 1999 A
5989728 Coffey et al. Nov 1999 A
5993701 Ando et al. Nov 1999 A
5993979 Figueroa et al. Nov 1999 A
6001461 Toyoda et al. Dec 1999 A
6017628 Stevens et al. Jan 2000 A
6019878 Nidola et al. Feb 2000 A
6046426 Jeantette et al. Apr 2000 A
6047876 Smith Apr 2000 A
6054185 Inspektor Apr 2000 A
6077615 Yada et al. Jun 2000 A
6085122 Manning Jul 2000 A
6086959 Inspektor Jul 2000 A
6096436 Inspektor Aug 2000 A
6117533 Inspektor Sep 2000 A
6119483 Takahashi et al. Sep 2000 A
6128918 Deaton et al. Oct 2000 A
6129996 Cordy Oct 2000 A
6143378 Harwell et al. Nov 2000 A
6144008 Rabinovich Nov 2000 A
6159267 Hampden-Smith et al. Dec 2000 A
6163961 McMeekin Dec 2000 A
6187700 Merkel Feb 2001 B1
6202734 Sackinger et al. Mar 2001 B1
6214195 Yadav et al. Apr 2001 B1
6215093 Meiners et al. Apr 2001 B1
6232037 Uesugi et al. May 2001 B1
6249055 Dubin Jun 2001 B1
6261493 Gaylo et al. Jul 2001 B1
6267864 Yadav et al. Jul 2001 B1
6277169 Hampden-Smith et al. Aug 2001 B1
6300263 Merkel Oct 2001 B1
6300389 Sato et al. Oct 2001 B1
6322897 Borchert et al. Nov 2001 B1
6341952 Gaylo et al. Jan 2002 B2
6355338 Hilmas et al. Mar 2002 B1
6360562 Kodas et al. Mar 2002 B1
6372346 Toth Apr 2002 B1
6377729 Merkel Apr 2002 B2
6391251 Keicher et al. May 2002 B1
6397922 Sachs et al. Jun 2002 B1
6423387 Zollinger et al. Jul 2002 B1
6427489 Eda et al. Aug 2002 B1
6430965 Eda et al. Aug 2002 B2
6454811 Sherwood et al. Sep 2002 B1
6455425 Besser et al. Sep 2002 B1
6459069 Rabinovich Oct 2002 B1
6476343 Keicher et al. Nov 2002 B2
6513433 Inoue et al. Feb 2003 B2
6526778 Zollinger et al. Mar 2003 B2
6528145 Berger et al. Mar 2003 B1
6531704 Yadav et al. Mar 2003 B2
6534194 Weihs et al. Mar 2003 B2
6537648 Takahashi et al. Mar 2003 B1
6537689 Schoop et al. Mar 2003 B2
6540800 Sherman et al. Apr 2003 B2
6541695 Mowles Apr 2003 B1
6551760 Uesugi et al. Apr 2003 B2
6555299 Hosokawa Apr 2003 B2
6558841 Nakagiri et al. May 2003 B1
6566035 Aoshima May 2003 B1
6583379 Meiners et al. Jun 2003 B1
6589311 Han et al. Jul 2003 B1
6593061 Hotta Jul 2003 B2
6596150 Nishino et al. Jul 2003 B2
6596224 Sachs et al. Jul 2003 B1
6607844 Araga et al. Aug 2003 B1
6612478 Lee et al. Sep 2003 B2
6613697 Faur et al. Sep 2003 B1
6616032 Gasse et al. Sep 2003 B1
6620861 Nakatuka et al. Sep 2003 B1
6629559 Sachs et al. Oct 2003 B2
6635357 Moxson et al. Oct 2003 B2
6643442 Brambilla et al. Nov 2003 B2
6663982 Stephens, Jr. et al. Dec 2003 B1
6669774 Zhang et al. Dec 2003 B1
6669989 Movchan et al. Dec 2003 B2
6673387 Zhang et al. Jan 2004 B1
6676728 Han et al. Jan 2004 B2
6676892 Das et al. Jan 2004 B2
6682780 Tzatzov et al. Jan 2004 B2
6689186 Hampden-Smith et al. Feb 2004 B1
6699304 Hampden-Smith et al. Mar 2004 B1
6713519 Wang et al. Mar 2004 B2
6723279 Withers et al. Apr 2004 B1
6730252 Teoh et al. May 2004 B1
6730410 Fritzemeier et al. May 2004 B1
6740464 Maemoto May 2004 B2
6745758 Minidis Jun 2004 B1
6749101 Lee et al. Jun 2004 B1
6750023 Tanner et al. Jun 2004 B2
6756561 McGregor et al. Jun 2004 B2
6765151 Fritzemeier et al. Jul 2004 B2
6767499 Hory et al. Jul 2004 B1
6771009 Nishikawa et al. Aug 2004 B2
6779951 Vale et al. Aug 2004 B1
6780305 Nishino et al. Aug 2004 B2
6797313 Fritzemeier et al. Sep 2004 B2
6797449 Nakamura et al. Sep 2004 B2
6800400 Ota et al. Oct 2004 B2
6800417 Kikuchi Oct 2004 B2
6800574 Anderson Oct 2004 B2
6806478 Hatfield Oct 2004 B1
6811744 Keicher et al. Nov 2004 B2
6814823 White Nov 2004 B1
6824689 Wang et al. Nov 2004 B2
6828507 Fritzemeier et al. Dec 2004 B1
6830643 Hayes Dec 2004 B1
6845635 Watanabe et al. Jan 2005 B2
6847699 Rigali et al. Jan 2005 B2
6852010 Takahashi et al. Feb 2005 B2
6858374 Yanaka Feb 2005 B2
6866929 Kodas et al. Mar 2005 B2
6871514 Muschik et al. Mar 2005 B2
6875949 Hall Apr 2005 B2
6881483 McArdle et al. Apr 2005 B2
6893732 Fritzemeier et al. May 2005 B1
6899777 Vaidyanathan et al. May 2005 B2
6909173 Hamamoto et al. Jun 2005 B2
6909192 Yeoh Jun 2005 B2
6913184 Dockus et al. Jul 2005 B2
6914024 Anderson Jul 2005 B2
6925346 Mazumder et al. Aug 2005 B1
6929865 Myrick Aug 2005 B2
6930278 Chung et al. Aug 2005 B1
6939505 Musso et al. Sep 2005 B2
6974070 Goretta et al. Dec 2005 B2
6974501 Zhang et al. Dec 2005 B1
6979646 Yeoh Dec 2005 B2
6989200 Byers et al. Jan 2006 B2
6995334 Kovacevic et al. Feb 2006 B1
7004994 Hampden-Smith et al. Feb 2006 B2
7005191 Perepezko et al. Feb 2006 B2
7008969 Wang et al. Mar 2006 B2
7011760 Wang et al. Mar 2006 B2
7020539 Kovacevic et al. Mar 2006 B1
7022165 Paglieri et al. Apr 2006 B2
7022198 Bruce et al. Apr 2006 B2
7034246 Muylaert et al. Apr 2006 B2
7040953 Matsuno et al. May 2006 B2
7043330 Toyserkani et al. May 2006 B2
7045738 Kovacevic et al. May 2006 B1
7052241 Decker May 2006 B2
7060222 Sachs et al. Jun 2006 B2
7076959 Lewis Jul 2006 B2
7094473 Takayama et al. Aug 2006 B2
7097938 Yamada et al. Aug 2006 B2
7105217 Ohno et al. Sep 2006 B2
7122279 Tamura et al. Oct 2006 B2
7145244 Yeoh Dec 2006 B2
7157188 Yamaguchi et al. Jan 2007 B2
7159916 Stack et al. Jan 2007 B2
7162302 Wang et al. Jan 2007 B2
7169478 Kaiser et al. Jan 2007 B2
7169489 Redmond Jan 2007 B2
7172663 Hampden-Smith et al. Feb 2007 B2
7174637 Johal et al. Feb 2007 B2
7192673 Ikeda et al. Mar 2007 B1
7195842 Fujimoto et al. Mar 2007 B1
7212095 Sato et al. May 2007 B2
7235330 Fujimoto et al. Jun 2007 B1
7235736 Buller et al. Jun 2007 B1
7241416 Sweetland Jul 2007 B2
7241533 Ikeda et al. Jul 2007 B1
7259032 Murata et al. Aug 2007 B2
7282444 Tanida et al. Oct 2007 B2
7285337 Narita et al. Oct 2007 B2
7285496 Yeoh Oct 2007 B2
7287960 Decker Oct 2007 B2
7288576 Wang et al. Oct 2007 B2
7299749 Tomita et al. Nov 2007 B2
7300559 Gorokhovsky Nov 2007 B2
7305367 Hollis et al. Dec 2007 B1
7309548 Ota et al. Dec 2007 B2
7311944 Sambasivan et al. Dec 2007 B2
7312168 Anderson Dec 2007 B2
7318983 Adachi et al. Jan 2008 B2
7321012 Sotzing Jan 2008 B2
7326434 Rupich et al. Feb 2008 B2
7338741 Aoshima et al. Mar 2008 B2
7351773 Fujimaki Apr 2008 B2
7354471 Hampden-Smith et al. Apr 2008 B2
7358008 Nanno et al. Apr 2008 B2
7361239 Zahrah et al. Apr 2008 B2
7381517 Fujimaki Jun 2008 B2
7384680 Bi et al. Jun 2008 B2
7393559 Groza et al. Jul 2008 B2
7405326 Kawamura et al. Jul 2008 B2
7410728 Fujimoto et al. Aug 2008 B1
7413109 Goretta et al. Aug 2008 B2
7416835 Fujimaki Aug 2008 B2
7420065 Yoshida et al. Sep 2008 B2
7432014 Konishiike et al. Oct 2008 B2
7438990 Nanno et al. Oct 2008 B2
7451906 Kisielius et al. Nov 2008 B2
7455458 Johal et al. Nov 2008 B2
7459233 Konishiike et al. Dec 2008 B2
7476469 Ota et al. Jan 2009 B2
7514174 Nanno et al. Apr 2009 B2
7521567 Fujiwara et al. Apr 2009 B2
7521928 Romalis et al. Apr 2009 B2
7537664 O'Neill et al. May 2009 B2
7560138 Perepezko et al. Jul 2009 B2
7575039 Beals et al. Aug 2009 B2
7597769 Hampden-Smith et al. Oct 2009 B2
7604897 Matsuno et al. Oct 2009 B2
7608178 De Jonghe et al. Oct 2009 B2
7621976 Hampden-Smith et al. Nov 2009 B2
7622424 Li et al. Nov 2009 B2
7625668 Konishiike et al. Dec 2009 B2
7626665 Koike Dec 2009 B2
7629058 Takayanagi et al. Dec 2009 B2
7629480 Wang et al. Dec 2009 B2
7631518 Kodas et al. Dec 2009 B2
7635617 Yamazaki Dec 2009 B2
7642468 Nakada et al. Jan 2010 B2
7645543 Visco et al. Jan 2010 B2
7666233 Visco et al. Feb 2010 B2
7666511 Ellison et al. Feb 2010 B2
7666568 Gao et al. Feb 2010 B2
7674555 Nanba et al. Mar 2010 B2
7678668 Shimomura et al. Mar 2010 B2
7691279 Koike Apr 2010 B2
7695248 Mons et al. Apr 2010 B2
7704879 Suzuki Apr 2010 B2
7705264 Hoebel et al. Apr 2010 B2
7716802 Stern et al. May 2010 B2
7722731 Routbort et al. May 2010 B2
7726872 Levingston Jun 2010 B2
7727846 Ohnuma et al. Jun 2010 B2
7736542 Shibata et al. Jun 2010 B2
7736794 Kubota et al. Jun 2010 B2
7745050 Kajita et al. Jun 2010 B2
7759007 Tokunaga et al. Jul 2010 B2
RE41584 Ying et al. Aug 2010 E
7771547 Bieler et al. Aug 2010 B2
7777155 Twelves, Jr. et al. Aug 2010 B2
7781376 Kodenkandath et al. Aug 2010 B2
7782433 Koike Aug 2010 B2
7794881 Fujimoto et al. Sep 2010 B1
7820332 Badding et al. Oct 2010 B2
7825007 Yamazaki et al. Nov 2010 B2
7838130 Takashima et al. Nov 2010 B2
7838170 Hommura et al. Nov 2010 B2
7851804 Takahashi Dec 2010 B2
7858205 Allen et al. Dec 2010 B2
7867907 Shimomura et al. Jan 2011 B2
7888181 Camacho et al. Feb 2011 B2
7896222 Shaw et al. Mar 2011 B2
7939126 Rupich et al. May 2011 B2
7940361 Koike May 2011 B2
7964262 Brocheton et al. Jun 2011 B2
7968026 Teoh et al. Jun 2011 B1
7976985 Kwon et al. Jul 2011 B2
7977405 Ishino et al. Jul 2011 B2
7989068 Rao et al. Aug 2011 B2
7997472 Szymanski et al. Aug 2011 B2
8007178 Perrin et al. Aug 2011 B2
8007557 Merkel Aug 2011 B2
8007929 Itoh et al. Aug 2011 B2
8017263 Ogawa et al. Sep 2011 B2
8021138 Green Sep 2011 B2
8025983 Lee et al. Sep 2011 B2
8025984 Stamm Sep 2011 B2
8048571 Visco et al. Nov 2011 B2
8063489 Shigihara et al. Nov 2011 B2
8066946 Redmond Nov 2011 B2
8071007 Teoh et al. Dec 2011 B1
8071419 Robinson et al. Dec 2011 B2
8079141 Meura Dec 2011 B2
8097301 Ishikawa et al. Jan 2012 B2
8097303 Perepezko et al. Jan 2012 B2
8114211 Handrosch et al. Feb 2012 B2
8119267 Osakabe et al. Feb 2012 B2
8119288 Zhamu et al. Feb 2012 B2
8119314 Heuft et al. Feb 2012 B1
8119315 Heuft et al. Feb 2012 B1
8124245 Budinger et al. Feb 2012 B2
8137525 Harreld et al. Mar 2012 B1
8173010 Ying et al. May 2012 B2
8173269 Narita May 2012 B2
8182939 Kim et al. May 2012 B2
8182943 Visco et al. May 2012 B2
8202649 Visco et al. Jun 2012 B2
8211226 Bredt et al. Jul 2012 B2
8216439 Olevsky et al. Jul 2012 B2
8221921 Ogawa et al. Jul 2012 B2
8236452 Zhamu et al. Aug 2012 B2
8247142 Cote et al. Aug 2012 B1
RE43661 Ying et al. Sep 2012 E
8268099 O'Neill et al. Sep 2012 B2
8268100 O'Neill et al. Sep 2012 B2
8273194 Shaw et al. Sep 2012 B2
8313560 Cote et al. Nov 2012 B1
8319350 Katsurayama et al. Nov 2012 B2
8323820 Visco et al. Dec 2012 B2
8326024 Shkolnik et al. Dec 2012 B2
8334075 Visco et al. Dec 2012 B2
8339837 Inoue et al. Dec 2012 B2
8353574 Heuft et al. Jan 2013 B1
8354136 Li et al. Jan 2013 B2
8357311 Shirota et al. Jan 2013 B2
8357731 Matsushige et al. Jan 2013 B2
8359744 Hislop et al. Jan 2013 B2
8361873 Ohnuma et al. Jan 2013 B2
8367224 Katakura et al. Feb 2013 B2
8372330 El-Siblani et al. Feb 2013 B2
8372685 Robinson et al. Feb 2013 B2
8375581 Romanelli et al. Feb 2013 B2
8377999 Cote et al. Feb 2013 B2
8383985 Twelves, Jr. et al. Feb 2013 B2
8387229 Meyer et al. Mar 2013 B2
8389060 Heuft et al. Mar 2013 B2
8389147 Visco et al. Mar 2013 B2
8394168 Withers et al. Mar 2013 B2
8394495 Heuft et al. Mar 2013 B2
8410016 Cote et al. Apr 2013 B2
8414424 Hebert et al. Apr 2013 B2
8425651 Xu et al. Apr 2013 B2
8428671 Sathyamurthy et al. Apr 2013 B2
8435477 Kambe et al. May 2013 B2
8436130 Cote et al. May 2013 B2
8436833 King et al. May 2013 B2
8440498 Robinson et al. May 2013 B2
8455131 Visco et al. Jun 2013 B2
8455331 Yamazaki et al. Jun 2013 B2
8457930 Schroeder Jun 2013 B2
8465847 Shaw et al. Jun 2013 B2
8466095 Martin et al. Jun 2013 B2
8479393 Abels et al. Jul 2013 B2
8480754 Bojarski et al. Jul 2013 B2
8487439 Tani et al. Jul 2013 B2
8488994 Hanson et al. Jul 2013 B2
8497312 Matsushige et al. Jul 2013 B2
8507132 Wakita et al. Aug 2013 B2
8509933 Steingart et al. Aug 2013 B2
8512808 Yousefiani et al. Aug 2013 B2
8513562 Bichsel Aug 2013 B2
8535049 MacLeod Sep 2013 B2
8546161 Yamazaki et al. Oct 2013 B2
8546717 Stecker Oct 2013 B2
8552088 Shinoda et al. Oct 2013 B2
8556981 Jones et al. Oct 2013 B2
8556983 Bojarski et al. Oct 2013 B2
8563872 Hirai et al. Oct 2013 B2
8568684 Bi et al. Oct 2013 B2
8575513 Abdo et al. Nov 2013 B2
8586199 Sado et al. Nov 2013 B2
8586492 Barefoot et al. Nov 2013 B2
8591997 Heuft et al. Nov 2013 B2
8592057 Katakura et al. Nov 2013 B2
8598523 Stecker et al. Dec 2013 B2
8604350 Himori et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610120 Miyake et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8617640 Robinson et al. Dec 2013 B2
8617661 Newkirk et al. Dec 2013 B2
8617994 Shirota et al. Dec 2013 B2
8623026 Wong et al. Jan 2014 B2
8623554 Nanba et al. Jan 2014 B2
8628987 Yamazaki Jan 2014 B2
8629564 Katsurayama et al. Jan 2014 B2
8632850 Schultz et al. Jan 2014 B2
8634228 Matsuzaki et al. Jan 2014 B2
8636194 Schultz et al. Jan 2014 B2
8637864 Saito et al. Jan 2014 B2
8642965 Hernandez et al. Feb 2014 B2
8652686 Visco et al. Feb 2014 B2
8654566 Nagatsuka et al. Feb 2014 B2
8658304 Visco et al. Feb 2014 B2
RE44817 Koike Mar 2014 E
8666142 Shkolnik et al. Mar 2014 B2
8671726 Clew et al. Mar 2014 B2
8673050 Sakuyama et al. Mar 2014 B2
8673477 Visco et al. Mar 2014 B2
8678802 Jenko Mar 2014 B2
RE44820 Ying et al. Apr 2014 E
8685520 Meyer et al. Apr 2014 B2
8690472 Meyer et al. Apr 2014 B2
8691333 Godfrey et al. Apr 2014 B2
8692127 Horikawa et al. Apr 2014 B2
8697322 Cote et al. Apr 2014 B2
8708458 Zhao et al. Apr 2014 B2
8718522 Chillscyzn et al. May 2014 B2
8723176 Yamazaki May 2014 B2
8728387 Jones et al. May 2014 B2
8728807 Forgacs et al. May 2014 B2
8735773 Lang May 2014 B2
8740598 Jenko et al. Jun 2014 B2
8746013 Geremew et al. Jun 2014 B2
8748241 Isobe et al. Jun 2014 B2
8753105 Scott Jun 2014 B2
8759473 Cote et al. Jun 2014 B2
8765837 Fujinami et al. Jul 2014 B2
8766253 Miyake Jul 2014 B2
8775133 Schroeder Jul 2014 B2
8778538 Kung et al. Jul 2014 B2
8783063 Osakabe et al. Jul 2014 B2
8789626 Can et al. Jul 2014 B2
8789998 Schneider et al. Jul 2014 B2
8790768 Pershing et al. Jul 2014 B2
8790793 Yasukawa et al. Jul 2014 B2
8790858 Hasegawa et al. Jul 2014 B2
8795899 Liu et al. Aug 2014 B2
8796683 Yamazaki Aug 2014 B2
8797487 Koyama Aug 2014 B2
8801418 El-Siblani et al. Aug 2014 B2
8802286 Konishiike et al. Aug 2014 B2
8809780 Wollenhaupt et al. Aug 2014 B2
8810035 Nakamura et al. Aug 2014 B2
8815974 Matsushige et al. Aug 2014 B2
8821060 Meyer et al. Sep 2014 B2
8822875 Webster et al. Sep 2014 B2
8826511 Barnes et al. Sep 2014 B2
8828311 Medina et al. Sep 2014 B2
8828579 Kubota et al. Sep 2014 B2
8829528 Yamazaki et al. Sep 2014 B2
8840831 Davies et al. Sep 2014 B2
8842358 Bareman et al. Sep 2014 B2
8844782 Brown Sep 2014 B2
8844877 Driemeyer et al. Sep 2014 B1
8852801 Takada et al. Oct 2014 B2
8853867 Chopin et al. Oct 2014 B2
8860021 Isobe et al. Oct 2014 B2
8875976 Schultz et al. Nov 2014 B2
8879957 Hanson et al. Nov 2014 B2
8882442 Smarsly et al. Nov 2014 B2
8883314 Chang et al. Nov 2014 B2
8884284 Koyama Nov 2014 B2
8893954 Schultz et al. Nov 2014 B2
8901558 Yamazaki Dec 2014 B2
8906107 Bojarski et al. Dec 2014 B2
8906462 Wigglesworth et al. Dec 2014 B2
8906469 Adachi et al. Dec 2014 B2
8907871 Orsley Dec 2014 B2
8907879 Yoshida et al. Dec 2014 B2
8915728 Mironets et al. Dec 2014 B2
8916085 Jackson et al. Dec 2014 B2
8916406 Ishikawa et al. Dec 2014 B2
8916424 Isobe et al. Dec 2014 B2
8919150 Imai et al. Dec 2014 B2
8921473 Hyman Dec 2014 B1
8926389 Nishido Jan 2015 B2
8926706 Bojarski et al. Jan 2015 B2
8931171 Abels et al. Jan 2015 B2
8931880 Murphy et al. Jan 2015 B2
8932060 Tsuruta et al. Jan 2015 B2
8932184 Redmond Jan 2015 B2
8932771 Visco et al. Jan 2015 B2
8946704 Yamazaki Feb 2015 B2
8951650 Yasukawa et al. Feb 2015 B2
8952380 Honda et al. Feb 2015 B2
8952678 Giboney Feb 2015 B2
8956478 Allemand et al. Feb 2015 B2
8956766 Nishimoto Feb 2015 B2
8956912 Yamazaki Feb 2015 B2
8957468 Uochi Feb 2015 B2
8960523 Szymanski et al. Feb 2015 B2
8962188 Zhamu et al. Feb 2015 B2
8963148 Matsubayashi et al. Feb 2015 B2
8969867 Yamazaki et al. Mar 2015 B2
8974105 Schneider et al. Mar 2015 B2
8974539 Bojarski et al. Mar 2015 B2
8976997 Hecht et al. Mar 2015 B1
8979606 Ma Mar 2015 B2
8980115 Bibi et al. Mar 2015 B2
8983098 Norris Mar 2015 B2
8985497 Mannella et al. Mar 2015 B2
8986234 Summit et al. Mar 2015 B2
8986880 Odani et al. Mar 2015 B2
8987728 Honda et al. Mar 2015 B2
8988116 Inoue et al. Mar 2015 B2
8992703 O'Neill et al. Mar 2015 B2
8994695 King et al. Mar 2015 B2
8999200 Bandyopadhyay et al. Apr 2015 B2
9005821 Odani et al. Apr 2015 B2
9006733 Yamazaki Apr 2015 B2
9011620 Fernie et al. Apr 2015 B2
9020788 Lang et al. Apr 2015 B2
9023566 Martin May 2015 B2
9029058 Martin May 2015 B2
9034048 Choren May 2015 B2
9034442 Chang et al. May 2015 B2
9035867 Yoshida May 2015 B2
9040975 Tani et al. May 2015 B2
9040981 Yamazaki May 2015 B2
9045335 Mitlin et al. Jun 2015 B2
9048665 Wojcik et al. Jun 2015 B2
9054364 Matsui et al. Jun 2015 B2
9061465 Hagiwara et al. Jun 2015 B2
9070399 Hamaguchi et al. Jun 2015 B2
9070729 Ji et al. Jun 2015 B2
9073150 Graichen Jul 2015 B2
9073260 El-Siblani et al. Jul 2015 B2
9073261 El-Siblani et al. Jul 2015 B2
9073262 El-Siblani et al. Jul 2015 B2
9075409 El-Siblani et al. Jul 2015 B2
9076825 Yamamoto et al. Jul 2015 B2
9078294 Doumanidis et al. Jul 2015 B2
9079246 Xu et al. Jul 2015 B2
9079248 Ackelid Jul 2015 B2
9079355 El-Siblani et al. Jul 2015 B2
9079386 Meyer et al. Jul 2015 B2
9082861 Yamazaki Jul 2015 B2
9083054 Hirose et al. Jul 2015 B2
9090428 Batchelder et al. Jul 2015 B2
9090955 Xu et al. Jul 2015 B2
9093383 Chopin et al. Jul 2015 B1
9097995 Heuft et al. Aug 2015 B2
9101978 Xu et al. Aug 2015 B2
9102007 Hosseini Aug 2015 B2
9102099 Karpas et al. Aug 2015 B1
9102566 Sawada Aug 2015 B2
9105869 Nishido Aug 2015 B2
9107725 Abels et al. Aug 2015 B2
9109429 Xu et al. Aug 2015 B2
9112086 Kataishi et al. Aug 2015 B2
9112168 Ishidai et al. Aug 2015 B2
9112272 Finn et al. Aug 2015 B2
9113571 Nakagoshi et al. Aug 2015 B2
9114478 Scott et al. Aug 2015 B2
9114567 Monsheimer et al. Aug 2015 B2
9117662 Isobe et al. Aug 2015 B2
9120270 Chen et al. Sep 2015 B2
9126365 Mark et al. Sep 2015 B1
9126367 Mark et al. Sep 2015 B1
9127515 Xu et al. Sep 2015 B2
9130358 Ma Sep 2015 B2
9133429 Higuera et al. Sep 2015 B2
9136568 Visco et al. Sep 2015 B2
9141015 Hanson et al. Sep 2015 B2
9142679 Yamazaki et al. Sep 2015 B2
9142681 Watanabe et al. Sep 2015 B2
9144940 Martin Sep 2015 B2
9144961 Meyer et al. Sep 2015 B2
9145363 Yabunouchi et al. Sep 2015 B2
9149952 Murphy et al. Oct 2015 B2
9149988 Mark et al. Oct 2015 B2
9153436 Yamazaki et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9156240 Bertrand et al. Oct 2015 B2
9157465 Massoels Oct 2015 B2
9157735 Haisty et al. Oct 2015 B2
9166019 Saito et al. Oct 2015 B2
9166061 Yamazaki Oct 2015 B2
9168573 Hojaji Oct 2015 B2
9168697 Crump et al. Oct 2015 B2
9171787 Hosseini et al. Oct 2015 B2
9175174 Kambe Nov 2015 B2
9176571 Nishijima Nov 2015 B2
9180010 Dong et al. Nov 2015 B2
9181790 Mace et al. Nov 2015 B2
9184160 Yamazaki Nov 2015 B2
9184355 Hirakawa et al. Nov 2015 B2
9186270 Blanck Nov 2015 B2
9186295 Weeks et al. Nov 2015 B2
9186846 Mark et al. Nov 2015 B1
9186848 Mark et al. Nov 2015 B2
9190529 Yamazaki Nov 2015 B2
9190666 Kubota et al. Nov 2015 B2
9192728 Gilmore et al. Nov 2015 B2
9192990 Meyer et al. Nov 2015 B2
9192999 Carter et al. Nov 2015 B2
9196760 Duty et al. Nov 2015 B2
9198829 Weeks et al. Dec 2015 B2
9199044 Bangera et al. Dec 2015 B2
9199345 Flesch et al. Dec 2015 B2
9204945 Korten et al. Dec 2015 B2
9205204 Bangera et al. Dec 2015 B2
9205578 Schultz et al. Dec 2015 B2
9209480 Odani et al. Dec 2015 B2
9211669 Zoppas et al. Dec 2015 B2
9214566 Yamazaki Dec 2015 B2
9218966 Honda et al. Dec 2015 B2
9219161 Yamazaki Dec 2015 B2
9220328 Magness Dec 2015 B2
9221100 Schwarze et al. Dec 2015 B2
9222932 Shepherd et al. Dec 2015 B2
9227243 Xu Jan 2016 B2
9227339 Murphy et al. Jan 2016 B2
9227365 Dikovsky et al. Jan 2016 B2
9228859 Ranky et al. Jan 2016 B2
9231410 Wojcik et al. Jan 2016 B2
9233506 Leavitt Jan 2016 B2
9236428 Isobe et al. Jan 2016 B2
9236606 Tadano Jan 2016 B2
9241869 Weeks et al. Jan 2016 B2
9243475 Xu Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9252283 Matsubayashi et al. Feb 2016 B2
9252286 Isobe et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9258651 Norris et al. Feb 2016 B2
9260390 Kato Feb 2016 B2
9263259 Yamazaki et al. Feb 2016 B2
9264090 Johnson et al. Feb 2016 B2
9269520 Satoh Feb 2016 B2
9269647 Du Feb 2016 B2
9272946 Chang et al. Mar 2016 B2
9278483 Wescott et al. Mar 2016 B2
9279328 Roy et al. Mar 2016 B2
9281517 Matsushita et al. Mar 2016 B2
9283593 Bruck et al. Mar 2016 B2
9284212 Dannoux et al. Mar 2016 B2
9287405 Sasagawa et al. Mar 2016 B2
9287521 Hakii et al. Mar 2016 B2
9287573 Visco et al. Mar 2016 B2
9287916 Wicks et al. Mar 2016 B2
9290407 Barefoot et al. Mar 2016 B2
9296039 Propheter-Hinckley et al. Mar 2016 B2
9296129 Pallari Mar 2016 B2
9296190 Corral et al. Mar 2016 B1
9302338 Zhang et al. Apr 2016 B2
9308583 El-Dasher et al. Apr 2016 B2
9308616 Bliss Apr 2016 B2
9308691 Silvanus et al. Apr 2016 B2
9310188 Snis Apr 2016 B2
9315043 Murphy et al. Apr 2016 B2
9318484 Matsubayashi Apr 2016 B2
9320620 Bojarski et al. Apr 2016 B2
9324875 Yamazaki Apr 2016 B2
9326780 Wong et al. May 2016 B2
9327056 Bandyopadhyay et al. May 2016 B2
9327350 Mannella et al. May 2016 B2
9327447 Batchelder et al. May 2016 B2
9327452 Mark et al. May 2016 B2
9327453 Mark et al. May 2016 B2
9330909 Yamazaki et al. May 2016 B2
9331156 Yamazaki et al. May 2016 B2
9331251 Kuramoto et al. May 2016 B2
9332251 Haisty et al. May 2016 B2
9333148 Suzuki May 2016 B2
9339993 Cites et al. May 2016 B2
9341467 Snis May 2016 B2
9346116 Guldberg May 2016 B2
9346127 Buller et al. May 2016 B2
9347770 Snis May 2016 B2
9350005 Nishimoto May 2016 B2
9351083 Hecht et al. May 2016 B2
9352421 Illston May 2016 B2
9354029 Mace et al. May 2016 B2
9358350 Bangera et al. Jun 2016 B2
9359513 Takashima et al. Jun 2016 B1
9362972 Johnson et al. Jun 2016 B2
9364888 McBrien et al. Jun 2016 B2
9369259 Mohamadi Jun 2016 B2
9369553 Zahler et al. Jun 2016 B2
9370896 Mark Jun 2016 B2
9375298 Boronkay et al. Jun 2016 B2
9375782 McBrien et al. Jun 2016 B2
9387079 Bojarski et al. Jul 2016 B2
9390312 Bangera et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9399264 Stecker Jul 2016 B2
9399321 Ljungblad Jul 2016 B2
9402313 Sakuyama et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9406483 Lock Aug 2016 B1
9406698 Yamazaki et al. Aug 2016 B2
9407746 Schmid et al. Aug 2016 B2
9408781 Qian et al. Aug 2016 B2
9414501 Wicker et al. Aug 2016 B2
9414513 Nakagoshi et al. Aug 2016 B2
9415438 McBrien et al. Aug 2016 B2
9419299 Visco et al. Aug 2016 B2
9419502 Veronesi et al. Aug 2016 B2
9421715 Hartmann et al. Aug 2016 B2
9423756 Hanson et al. Aug 2016 B2
9428826 Ramm Aug 2016 B2
9431430 Yamazaki Aug 2016 B2
9434633 Bookbinder et al. Sep 2016 B2
9435915 Lower et al. Sep 2016 B1
9437744 Sasagawa et al. Sep 2016 B2
9439767 Bojarski et al. Sep 2016 B2
9440397 Fly Sep 2016 B1
9440853 Lee et al. Sep 2016 B2
9442105 Shepherd et al. Sep 2016 B2
9442395 Lafarre et al. Sep 2016 B2
9446475 Norfolk et al. Sep 2016 B2
9446979 Lander et al. Sep 2016 B2
9452474 Xu Sep 2016 B2
9452489 Honda Sep 2016 B2
9453142 Rolland et al. Sep 2016 B2
9456777 Bangera et al. Oct 2016 B2
9456901 Jones et al. Oct 2016 B2
9457428 Webster et al. Oct 2016 B2
9457521 Johnston et al. Oct 2016 B2
9460557 Tran et al. Oct 2016 B1
9463506 Xu Oct 2016 B2
9466725 Shimomura Oct 2016 B2
9468317 Gorham Oct 2016 B2
9471172 Sirois Oct 2016 B2
9472310 Van Den Berghe et al. Oct 2016 B2
9472656 Yamazaki et al. Oct 2016 B2
9474688 Weeks et al. Oct 2016 B2
9474689 Weeks et al. Oct 2016 B2
9475947 Sirois Oct 2016 B2
9476685 Mace et al. Oct 2016 B2
9477346 Sirois Oct 2016 B2
9478422 Davis Oct 2016 B2
9481931 Stempfer Nov 2016 B2
9482103 McBrien et al. Nov 2016 B2
9482105 Gorokhovsky et al. Nov 2016 B1
9482974 Martin Nov 2016 B2
9486878 Buller et al. Nov 2016 B2
9486944 El-Siblani et al. Nov 2016 B2
9486964 Joyce Nov 2016 B2
9488456 Mace et al. Nov 2016 B2
9490350 Koyama Nov 2016 B2
9490351 Honda et al. Nov 2016 B2
9494829 Hayakawa et al. Nov 2016 B2
9496375 Isobe et al. Nov 2016 B2
9499779 Murphy et al. Nov 2016 B2
9505648 Afzal et al. Nov 2016 B2
9507061 Hofmann et al. Nov 2016 B2
9507274 Lafarre et al. Nov 2016 B2
9508667 Prack Nov 2016 B2
9508979 Matsui et al. Nov 2016 B2
9511005 Nakatsuka et al. Dec 2016 B2
9511543 Tyler Dec 2016 B2
9511547 Swanson et al. Dec 2016 B2
9512029 Ehemann et al. Dec 2016 B2
9512544 Heikkila Dec 2016 B2
9517134 Lang Dec 2016 B2
9522836 Gulati et al. Dec 2016 B2
9523934 Orrock et al. Dec 2016 B2
9527165 Bruck et al. Dec 2016 B2
9527240 Batchelder Dec 2016 B2
9527242 Rodgers et al. Dec 2016 B2
9527244 El-Siblani Dec 2016 B2
9527246 Wiesner et al. Dec 2016 B2
9528705 Melton Dec 2016 B2
9528902 Clew et al. Dec 2016 B2
9530895 Honda et al. Dec 2016 B2
RE46275 Ying et al. Jan 2017 E
9533350 Zhuang et al. Jan 2017 B2
9533372 O'Neill Jan 2017 B2
9533450 El-Siblani et al. Jan 2017 B2
9533485 Marshall et al. Jan 2017 B2
9533526 Nevins Jan 2017 B1
9536844 Brewer et al. Jan 2017 B1
9543116 Lock Jan 2017 B2
9545017 Hunrath et al. Jan 2017 B2
9545669 Åklint et al. Jan 2017 B2
9555475 Sidhu et al. Jan 2017 B2
9555612 Kottilingam et al. Jan 2017 B2
9556415 Forgacs et al. Jan 2017 B2
9556505 Rosenzweig et al. Jan 2017 B2
9557331 Bangera et al. Jan 2017 B2
9557661 Martin Jan 2017 B2
9559213 Yamazaki Jan 2017 B2
9561622 Das et al. Feb 2017 B2
9561623 El-Siblani et al. Feb 2017 B2
9564457 Yamazaki Feb 2017 B2
9564589 Awano et al. Feb 2017 B2
9564938 Wang Feb 2017 B1
9565910 Magness Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9570789 Sherrer Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573224 Sparks Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9575037 Acharya et al. Feb 2017 B2
9578695 Jerby et al. Feb 2017 B2
9579718 Hofmann Feb 2017 B2
9579829 Williams Feb 2017 B2
9579851 Mark et al. Feb 2017 B2
9583856 Sherrer et al. Feb 2017 B2
9586285 Abe et al. Mar 2017 B2
9586290 Buller et al. Mar 2017 B2
9586298 Jones et al. Mar 2017 B2
9586364 El-Siblani et al. Mar 2017 B2
9587296 Prest et al. Mar 2017 B2
9587317 Wunderlich et al. Mar 2017 B2
9592530 Rodgers Mar 2017 B2
9593924 Mace et al. Mar 2017 B2
9598606 Rolland et al. Mar 2017 B2
9599766 Ouderkirk et al. Mar 2017 B2
9601779 Visco et al. Mar 2017 B2
9603711 Bojarski et al. Mar 2017 B2
9603775 Weeks et al. Mar 2017 B2
9603780 Stelzig et al. Mar 2017 B2
9604280 Xu Mar 2017 B2
9608124 Yamazaki Mar 2017 B2
9608228 Kuroki Mar 2017 B2
9611167 Brown Apr 2017 B2
9614062 Yamazaki Apr 2017 B2
9614100 Yamazaki et al. Apr 2017 B2
9614160 Kato Apr 2017 B2
9617865 Zotz Apr 2017 B2
9623512 Amaya et al. Apr 2017 B2
9625156 Rudrapatna et al. Apr 2017 B2
9625764 Yamazaki et al. Apr 2017 B2
9626608 Bobbitt, III Apr 2017 B2
9636229 Lang et al. May 2017 B2
9636769 Goehler et al. May 2017 B2
9636770 Schwarze et al. May 2017 B2
9636775 Huang et al. May 2017 B2
9636868 Crump et al. May 2017 B2
9642727 Verschueren et al. May 2017 B2
9643250 Mazyar et al. May 2017 B2
9643279 Schultz et al. May 2017 B2
9643281 Memmen et al. May 2017 B1
9643361 Liu May 2017 B2
9649690 McMahan et al. May 2017 B2
9655293 Schmid May 2017 B2
9656429 Mantha et al. May 2017 B1
9656877 Rahmani Nezhad May 2017 B2
9660265 Visco et al. May 2017 B2
9661423 Hecht et al. May 2017 B2
9662840 Buller et al. May 2017 B1
9663400 O'Malley et al. May 2017 B2
9664504 Snis May 2017 B2
9664505 Snis May 2017 B2
9666896 Todorov et al. May 2017 B2
9668944 Stelzig et al. Jun 2017 B2
9669583 Ferrar Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9676159 Sterman et al. Jun 2017 B2
9676653 Dannoux et al. Jun 2017 B2
9676963 Rolland et al. Jun 2017 B2
9682019 Klee et al. Jun 2017 B2
9682166 Watanabe Jun 2017 B2
9682425 Xu et al. Jun 2017 B2
9688028 Mark et al. Jun 2017 B2
9688540 Davis Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9694423 Bruck et al. Jul 2017 B2
9694545 Skubic et al. Jul 2017 B2
9696142 Bamberg et al. Jul 2017 B2
9700485 Weeks et al. Jul 2017 B2
9700486 Weeks et al. Jul 2017 B2
9705099 Adamovich et al. Jul 2017 B2
9707153 Weeks et al. Jul 2017 B2
9707154 Weeks et al. Jul 2017 B2
9707155 Weeks et al. Jul 2017 B2
9707717 Sand Jul 2017 B2
9708440 Das et al. Jul 2017 B2
9713572 Weeks et al. Jul 2017 B2
9713843 Snyder et al. Jul 2017 B2
9714318 Jaker et al. Jul 2017 B2
9715563 Schroeder Jul 2017 B1
9717648 Weeks et al. Aug 2017 B2
9717649 Weeks et al. Aug 2017 B2
9718127 Xu Aug 2017 B2
9720363 Chillscyzn et al. Aug 2017 B2
9721384 Tran et al. Aug 2017 B1
9721755 Lock Aug 2017 B2
9722275 Zhamu et al. Aug 2017 B2
9724727 Domey et al. Aug 2017 B2
9728648 Sasagawa et al. Aug 2017 B2
9728773 Kung et al. Aug 2017 B2
9729187 Adelmann Aug 2017 B1
9731377 Forsdike et al. Aug 2017 B2
9732239 Clapp et al. Aug 2017 B2
9735428 Tanaka et al. Aug 2017 B2
9737934 Lafarre et al. Aug 2017 B2
9742001 Zhamu et al. Aug 2017 B2
9744722 Rodgers Aug 2017 B2
9744730 Comb Aug 2017 B2
9744743 Jung et al. Aug 2017 B2
9745223 Hojaji Aug 2017 B2
9751610 Hegenbart et al. Sep 2017 B2
9755191 Uezawa et al. Sep 2017 B2
9757802 Cui et al. Sep 2017 B2
9764418 Schroers et al. Sep 2017 B1
9764515 Yost et al. Sep 2017 B2
9765167 Haschick et al. Sep 2017 B2
9765271 Myrick Sep 2017 B2
9765635 Gorokhovsky Sep 2017 B2
9765727 Evers et al. Sep 2017 B2
9768026 Davis Sep 2017 B2
9769573 Hecht et al. Sep 2017 B2
9770758 Xu Sep 2017 B2
9770760 Liu Sep 2017 B2
9770866 Mironets et al. Sep 2017 B2
9771400 Kurland et al. Sep 2017 B2
9771629 Soloway Sep 2017 B2
9772621 Verschueren et al. Sep 2017 B2
9774192 Wojcik et al. Sep 2017 B2
9775680 Bojarski et al. Oct 2017 B2
9776243 Abe et al. Oct 2017 B2
9776282 Subramanian et al. Oct 2017 B2
9776376 Swartz et al. Oct 2017 B2
9777385 Wirth et al. Oct 2017 B2
9780348 Kagami et al. Oct 2017 B2
9782932 Roels et al. Oct 2017 B2
9782935 Yamashita et al. Oct 2017 B2
9783718 Stevenson et al. Oct 2017 B2
9783885 Newman et al. Oct 2017 B2
9785064 Orrock et al. Oct 2017 B2
9788600 Wawrousek et al. Oct 2017 B2
9789665 Lin et al. Oct 2017 B2
9790124 Dejneka et al. Oct 2017 B2
9793057 McConnell et al. Oct 2017 B2
9795541 Fontein et al. Oct 2017 B2
9796048 Lacy et al. Oct 2017 B2
9802253 Jonasson Oct 2017 B2
9808991 Tyler Nov 2017 B2
9812467 Yamazaki et al. Nov 2017 B2
9812582 Yamazaki Nov 2017 B2
9815118 Schmitt et al. Nov 2017 B1
9815139 Bruck et al. Nov 2017 B2
9815144 Grundmueller et al. Nov 2017 B2
9815268 Mark et al. Nov 2017 B2
9818715 Yamada et al. Nov 2017 B2
9821399 Vigdal et al. Nov 2017 B1
9821411 Buller et al. Nov 2017 B2
9821546 Schaafsma et al. Nov 2017 B2
9822045 Jones Nov 2017 B2
9826652 Adelmann Nov 2017 B2
9827754 Swartz et al. Nov 2017 B2
9828679 Brooks Nov 2017 B1
9832866 Ahn et al. Nov 2017 B2
9833838 Mazyar et al. Dec 2017 B2
9833839 Gibson et al. Dec 2017 B2
9833949 Swartz et al. Dec 2017 B2
9833987 Zoppas et al. Dec 2017 B2
9835428 Mace et al. Dec 2017 B2
9836883 Tran et al. Dec 2017 B2
9838018 Ghanea-Hercock Dec 2017 B2
9839579 Weeks et al. Dec 2017 B2
9839977 Liebl et al. Dec 2017 B2
9849066 Weeks et al. Dec 2017 B2
9849510 Lacy et al. Dec 2017 B2
9849543 Scott et al. Dec 2017 B2
9850160 Marjanovic et al. Dec 2017 B2
9850172 Wu et al. Dec 2017 B2
9852904 Yamazaki et al. Dec 2017 B2
9855369 Murphy et al. Jan 2018 B2
9855625 El-Dasher et al. Jan 2018 B2
9855698 Perez et al. Jan 2018 B2
9857860 Tokunaga Jan 2018 B2
9859114 Yamazaki Jan 2018 B2
9861452 Rundlett Jan 2018 B2
9862146 Driessen et al. Jan 2018 B2
9862617 Law et al. Jan 2018 B2
9868255 Comb et al. Jan 2018 B2
9869734 Mathieu et al. Jan 2018 B2
9871059 Isobe et al. Jan 2018 B2
9871176 Maloney et al. Jan 2018 B2
9871209 Yoshida et al. Jan 2018 B2
9873180 Bajaj et al. Jan 2018 B2
9873228 Suzuki et al. Jan 2018 B2
9873281 Cape et al. Jan 2018 B2
9873761 Das et al. Jan 2018 B1
9877790 Bojarski et al. Jan 2018 B2
9878497 Schwarze et al. Jan 2018 B2
9881744 McConnell et al. Jan 2018 B2
9882111 Cauchon et al. Jan 2018 B2
9885987 Chillscyzn et al. Feb 2018 B2
9887066 Ryding et al. Feb 2018 B2
9890091 Jones Feb 2018 B2
9896944 Kamel et al. Feb 2018 B2
9897513 Snis Feb 2018 B2
9899136 Lee et al. Feb 2018 B2
9899672 Zhamu et al. Feb 2018 B2
9902112 El-Siblani et al. Feb 2018 B2
9902588 Mannella et al. Feb 2018 B2
9903037 Ferreira et al. Feb 2018 B2
9903214 Kenyon et al. Feb 2018 B2
9903574 Golle et al. Feb 2018 B2
9904223 Chillscyzn et al. Feb 2018 B2
9905516 Watanabe et al. Feb 2018 B2
9905860 Visco et al. Feb 2018 B2
9908803 Bookbinder et al. Mar 2018 B2
9911874 Harley et al. Mar 2018 B2
9915583 Snis Mar 2018 B2
9915756 Nordahl Mar 2018 B2
9916958 Bhandari et al. Mar 2018 B1
9917263 Yoshida et al. Mar 2018 B2
9919111 Hyde et al. Mar 2018 B2
9919112 Hyde et al. Mar 2018 B2
9919273 Doyen et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9919361 Jonasson Mar 2018 B2
9919472 Cohen et al. Mar 2018 B1
9919479 Baecker et al. Mar 2018 B2
9920433 Engel et al. Mar 2018 B2
9922759 Bharadwaj Mar 2018 B2
9923000 Koyama Mar 2018 B2
9923166 Kinoshita et al. Mar 2018 B2
9925714 Rodgers et al. Mar 2018 B2
9925724 Long Mar 2018 B2
9926427 Zhamu et al. Mar 2018 B2
9931695 Lacy et al. Apr 2018 B2
9931697 Levin et al. Apr 2018 B2
9931814 Lacy et al. Apr 2018 B2
9931817 Rickerl Apr 2018 B2
9932663 Cheah et al. Apr 2018 B2
9932841 Staroselsky et al. Apr 2018 B2
9933718 Martin Apr 2018 B2
9933820 Helot et al. Apr 2018 B2
9937580 Peters et al. Apr 2018 B2
9938839 Rosenzweig et al. Apr 2018 B2
9943927 Zhai Apr 2018 B2
9943929 Schultz et al. Apr 2018 B2
9943981 Gunther Apr 2018 B2
9944021 Easter et al. Apr 2018 B2
9945032 Helvajian Apr 2018 B2
9947964 Hatta et al. Apr 2018 B2
9950367 Backlund et al. Apr 2018 B2
9950465 Linnell et al. Apr 2018 B2
9953899 Chen et al. Apr 2018 B2
9954212 Kagami et al. Apr 2018 B2
9956047 Bojarski et al. May 2018 B2
9956048 Bojarski et al. May 2018 B2
9956107 Blanck May 2018 B2
9956612 Redding et al. May 2018 B1
9956725 Mark et al. May 2018 B2
9956727 Steele May 2018 B2
9959613 Ohno et al. May 2018 B2
9960122 Kato May 2018 B2
9962767 Buller et al. May 2018 B2
9969000 Witney et al. May 2018 B2
9969153 Meisner et al. May 2018 B2
9969930 Florio et al. May 2018 B2
9970824 Cheung et al. May 2018 B2
9972802 Ikemizu et al. May 2018 B2
9975179 Czinger et al. May 2018 B2
9975199 Moagar-Poladian May 2018 B2
9975296 El-Siblani May 2018 B2
9975323 Chan et al. May 2018 B2
9981425 El-Siblani et al. May 2018 B2
9982164 Rolland et al. May 2018 B2
9982684 Moricca May 2018 B2
9987798 Tyler Jun 2018 B2
9987804 El-Siblani et al. Jun 2018 B2
9988720 Johnson Jun 2018 B2
9990965 Atsumi Jun 2018 B2
9991221 Yamada et al. Jun 2018 B2
9991293 Yamazaki et al. Jun 2018 B2
9991395 Sasagawa et al. Jun 2018 B2
9991453 Kita et al. Jun 2018 B2
9993395 Klee et al. Jun 2018 B2
9993976 Coeck et al. Jun 2018 B2
9993982 Sherrer et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996981 Tran et al. Jun 2018 B1
9997545 Yamazaki Jun 2018 B2
9997784 Su et al. Jun 2018 B2
9999576 Klee et al. Jun 2018 B2
9999920 Xu et al. Jun 2018 B2
10000023 El-Siblani et al. Jun 2018 B2
10002685 Kita et al. Jun 2018 B2
10005227 Facci et al. Jun 2018 B2
10005228 Alvarez et al. Jun 2018 B2
10005230 Alvarez et al. Jun 2018 B2
10005237 El-Siblani et al. Jun 2018 B2
10008870 Davison et al. Jun 2018 B2
10011076 El-Siblani et al. Jul 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011352 Dahlstrom Jul 2018 B1
10016262 Sabina et al. Jul 2018 B2
10016661 Madson et al. Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10018937 Martin Jul 2018 B2
10022614 Tran et al. Jul 2018 B1
10023495 Chang et al. Jul 2018 B2
10023739 Rodgers et al. Jul 2018 B2
10029422 Meisner et al. Jul 2018 B2
10029424 Verschueren et al. Jul 2018 B2
10029461 Yamada Jul 2018 B2
10035306 Crump et al. Jul 2018 B2
10035920 Omenetto et al. Jul 2018 B2
10039195 Elmieh et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10040240 Tyler et al. Aug 2018 B1
10040250 Liu et al. Aug 2018 B2
10040252 Mark Aug 2018 B2
10040810 Muller et al. Aug 2018 B2
10045835 Boronkay et al. Aug 2018 B2
10046494 Pruitt et al. Aug 2018 B2
10046521 Walker et al. Aug 2018 B2
10046524 Meyer Aug 2018 B2
10051753 Ehemann et al. Aug 2018 B2
10052159 Bangera et al. Aug 2018 B2
10052691 Heikkila Aug 2018 B2
10054530 Swanner, Jr. et al. Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10059053 Jaker et al. Aug 2018 B2
10059057 Schirtzinger et al. Aug 2018 B2
10059092 Welch et al. Aug 2018 B2
10059595 Farbstein Aug 2018 B1
10060217 Murphree et al. Aug 2018 B2
10061221 Orrock et al. Aug 2018 B2
10064745 Hossainy et al. Sep 2018 B2
10065270 Buller et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10065371 Martin Sep 2018 B2
10065885 Kase et al. Sep 2018 B2
10068863 Prack Sep 2018 B2
10071422 Buller et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081129 Alvarado et al. Sep 2018 B1
10082605 Ibuki et al. Sep 2018 B2
10086564 Batchelder et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10089413 Wirx-Speetjens et al. Oct 2018 B2
10091891 Ilic et al. Oct 2018 B2
10093039 Jayanti et al. Oct 2018 B2
10096537 Chen et al. Oct 2018 B1
10099309 Vigdal et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10105902 Frauens Oct 2018 B2
10105906 Cho et al. Oct 2018 B2
10112345 El-Siblani et al. Oct 2018 B2
10112379 Sreekumar Oct 2018 B2
10116777 Kil et al. Oct 2018 B2
10117806 Chang et al. Nov 2018 B2
10117810 Stelzig et al. Nov 2018 B2
10118054 Maharbiz et al. Nov 2018 B2
10118337 Nowak et al. Nov 2018 B2
10123807 Geebelen Nov 2018 B2
10123947 Takei et al. Nov 2018 B2
10124408 Kenney et al. Nov 2018 B2
10124410 Kanko et al. Nov 2018 B2
10124532 El-Siblani et al. Nov 2018 B2
10124539 Batchelder et al. Nov 2018 B2
10131088 Tyler et al. Nov 2018 B1
10131131 Batchelder et al. Nov 2018 B2
10132578 Knowlen et al. Nov 2018 B2
10134766 Hayakawa et al. Nov 2018 B2
10135002 Ono et al. Nov 2018 B2
10135109 Sherrer Nov 2018 B2
10136689 Pandolfino Nov 2018 B1
10137634 Ruiz et al. Nov 2018 B2
10137636 Meisner et al. Nov 2018 B2
10137642 Gifford et al. Nov 2018 B1
10137667 Cleary et al. Nov 2018 B2
10144178 Meisner et al. Dec 2018 B2
10144205 El-Siblani Dec 2018 B2
10144828 Rodgers et al. Dec 2018 B2
10144840 Hearon Dec 2018 B2
10145271 Brown et al. Dec 2018 B2
10149505 Pandolfino Dec 2018 B2
10150258 Feinberg et al. Dec 2018 B2
10151049 Banin et al. Dec 2018 B2
10151377 Hofmann et al. Dec 2018 B2
10153608 Hemenway et al. Dec 2018 B2
10155882 Rolland et al. Dec 2018 B2
10156185 Hesselink et al. Dec 2018 B2
10157503 Tran et al. Dec 2018 B2
10160022 Butcher et al. Dec 2018 B2
10160061 Helvajian et al. Dec 2018 B2
10160193 Nielsen-Cole et al. Dec 2018 B2
10162084 Hart et al. Dec 2018 B2
10166744 Brown et al. Jan 2019 B2
10170500 Koyama Jan 2019 B2
10170726 Yamazaki et al. Jan 2019 B2
10172400 Pandolfino Jan 2019 B1
10172695 Okada et al. Jan 2019 B2
10173916 Bankaitis et al. Jan 2019 B2
10173945 Buckner et al. Jan 2019 B1
10174205 Keoshkerian et al. Jan 2019 B2
10174276 Murphy et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10181017 Clarke et al. Jan 2019 B2
10182869 Bangera et al. Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183443 Alvarez et al. Jan 2019 B2
10183477 Dean et al. Jan 2019 B2
10189057 Craft et al. Jan 2019 B2
10189114 Stecker Jan 2019 B2
10189204 Fulop et al. Jan 2019 B2
10189210 Rodgers et al. Jan 2019 B2
10189239 Downing Jan 2019 B2
10190244 Ashraf et al. Jan 2019 B2
10190955 Hossain et al. Jan 2019 B2
10195629 Dahlstrom Feb 2019 B1
10195643 Domey et al. Feb 2019 B2
10195693 Buller et al. Feb 2019 B2
10196295 Gulati et al. Feb 2019 B2
10200834 Tran et al. Feb 2019 B2
10201409 Mason et al. Feb 2019 B2
10201931 Batchelder et al. Feb 2019 B2
10202216 Fushimi Feb 2019 B2
20010000889 Yadav et al. May 2001 A1
20010008230 Keicher et al. Jul 2001 A1
20010008317 Gaylo et al. Jul 2001 A1
20010018159 Maemoto Aug 2001 A1
20010021292 Merkel Sep 2001 A1
20010028990 Uesugi et al. Oct 2001 A1
20010038029 Weihs et al. Nov 2001 A1
20010039810 Eda et al. Nov 2001 A1
20010043996 Yamada et al. Nov 2001 A1
20020007751 Inoue et al. Jan 2002 A1
20020009626 Terazono et al. Jan 2002 A1
20020015654 Das et al. Feb 2002 A1
20020025493 Hotta Feb 2002 A1
20020031731 Hosokawa Mar 2002 A1
20020041137 Nishikawa et al. Apr 2002 A1
20020056401 Rupich et al. May 2002 A1
20020062858 Mowles May 2002 A1
20020066233 McArdle et al. Jun 2002 A1
20020069592 Sherman et al. Jun 2002 A1
20020081447 Movchan et al. Jun 2002 A1
20020082171 Schoop et al. Jun 2002 A1
20020084527 Yeoh Jul 2002 A1
20020090821 Yeoh Jul 2002 A1
20020092325 Muschik et al. Jul 2002 A1
20020098381 Coffey et al. Jul 2002 A1
20020098776 Dopper Jul 2002 A1
20020108400 Watanabe et al. Aug 2002 A1
20020110698 Singh Aug 2002 A1
20020144838 Fritzemeier et al. Oct 2002 A1
20020153253 Nishino et al. Oct 2002 A1
20020154741 Rigali et al. Oct 2002 A1
20020160308 Nishino et al. Oct 2002 A1
20020160685 Kodas et al. Oct 2002 A1
20020168051 Lee et al. Nov 2002 A1
20020173416 Ellison et al. Nov 2002 A1
20020177003 Myrick Nov 2002 A1
20020192494 Tzatzov et al. Dec 2002 A1
20020192564 Ota et al. Dec 2002 A1
20020195676 Hamamoto et al. Dec 2002 A1
20030003474 Tanner et al. Jan 2003 A1
20030009126 Zollinger et al. Jan 2003 A1
20030019326 Han et al. Jan 2003 A1
20030022094 Nakamura et al. Jan 2003 A1
20030029910 Goretta et al. Feb 2003 A1
20030039459 Brambilla et al. Feb 2003 A1
20030044593 Vaidyanathan et al. Mar 2003 A1
20030068575 Yanaka Apr 2003 A1
20030070916 Nanno et al. Apr 2003 A1
20030108795 Tamura et al. Jun 2003 A1
20030109202 Matsuno et al. Jun 2003 A1
20030113506 Takahashi et al. Jun 2003 A1
20030114936 Sherwood et al. Jun 2003 A1
20030116503 Wang et al. Jun 2003 A1
20030116542 McGregor et al. Jun 2003 A1
20030119920 Wang et al. Jun 2003 A1
20030127051 Fritzemeier et al. Jul 2003 A1
20030128428 Anderson et al. Jul 2003 A1
20030161750 Moxson et al. Aug 2003 A1
20030162127 Kikuchi Aug 2003 A1
20030173720 Musso et al. Sep 2003 A1
20030180571 Singh Sep 2003 A1
20030189082 Dockus et al. Oct 2003 A1
20030203205 Bi et al. Oct 2003 A1
20030206820 Keicher et al. Nov 2003 A1
20040009402 Adachi et al. Jan 2004 A1
20040016769 Redmond Jan 2004 A1
20040016912 Bandyopadhyay et al. Jan 2004 A1
20040018432 Adachi et al. Jan 2004 A1
20040023087 Redmond Feb 2004 A1
20040035910 Dockus et al. Feb 2004 A1
20040056022 Meiners et al. Mar 2004 A1
20040071882 Rupich et al. Apr 2004 A1
20040081895 Adachi et al. Apr 2004 A1
20040096742 Akashi et al. May 2004 A1
20040099996 Herzog May 2004 A1
20040100164 Murata et al. May 2004 A1
20040106060 Maemoto Jun 2004 A1
20040112478 Bieler et al. Jun 2004 A1
20040133298 Toyserkani et al. Jul 2004 A1
20040147620 Wang et al. Jul 2004 A1
20040149806 Hardwick Aug 2004 A1
20040154488 Tomita et al. Aug 2004 A1
20040161789 Tanner et al. Aug 2004 A1
20040168637 Gorokhovsky Sep 2004 A1
20040182835 Hall Sep 2004 A1
20040191106 O'Neill et al. Sep 2004 A1
20040192063 Koike Sep 2004 A1
20040192171 Koike Sep 2004 A1
20040197650 Kubota et al. Oct 2004 A1
20040202883 Scheydecker et al. Oct 2004 A1
20040206267 Sambasivan et al. Oct 2004 A1
20040209756 Anderson et al. Oct 2004 A1
20040210289 Wang et al. Oct 2004 A1
20040219295 Perepezko et al. Nov 2004 A1
20040221515 McArdle et al. Nov 2004 A1
20040224258 Maemoto Nov 2004 A1
20040231758 Hampden-Smith et al. Nov 2004 A1
20040234866 Yamaguchi et al. Nov 2004 A1
20040234883 Maemoto Nov 2004 A1
20040242792 Sotzing Dec 2004 A1
20040247782 Hampden-Smith et al. Dec 2004 A1
20040249428 Wang et al. Dec 2004 A1
20040254419 Wang et al. Dec 2004 A1
20040261420 Lewis Dec 2004 A1
20040265736 Aoshima et al. Dec 2004 A1
20050007105 Siegle et al. Jan 2005 A1
20050008939 Ota et al. Jan 2005 A1
20050013759 Grow Jan 2005 A1
20050023508 Fujimaki Feb 2005 A1
20050025797 Wang et al. Feb 2005 A1
20050031891 Kaiser et al. Feb 2005 A1
20050036893 Decker Feb 2005 A1
20050036898 Sweetland Feb 2005 A1
20050040090 Wang et al. Feb 2005 A1
20050044987 Takayama et al. Mar 2005 A1
20050045034 Paglieri et al. Mar 2005 A1
20050048571 Danielson et al. Mar 2005 A1
20050054510 Ellison et al. Mar 2005 A1
20050056806 Ellison et al. Mar 2005 A1
20050061107 Hampden-Smith et al. Mar 2005 A1
20050064291 Sato et al. Mar 2005 A1
20050065035 Rupich et al. Mar 2005 A1
20050069640 Kodas et al. Mar 2005 A1
20050079132 Wang et al. Apr 2005 A1
20050089627 Chuntonov Apr 2005 A1
20050095442 Byers et al. May 2005 A1
20050098609 Greenhut et al. May 2005 A1
20050100790 Ota et al. May 2005 A1
20050106495 Fujimaki May 2005 A1
20050107870 Wang et al. May 2005 A1
20050118482 Sriramulu et al. Jun 2005 A1
20050119725 Wang et al. Jun 2005 A1
20050127334 Shibata et al. Jun 2005 A1
20050133527 Dullea et al. Jun 2005 A1
20050142377 Hall Jun 2005 A1
20050147752 Kodas et al. Jul 2005 A1
20050149002 Wang et al. Jul 2005 A1
20050149169 Wang et al. Jul 2005 A1
20050151228 Tanida et al. Jul 2005 A1
20050153161 Narita et al. Jul 2005 A1
20050153208 Konishiike et al. Jul 2005 A1
20050155779 Wang et al. Jul 2005 A1
20050165471 Wang et al. Jul 2005 A1
20050172643 Lewis Aug 2005 A1
20050174208 Sato et al. Aug 2005 A1
20050175822 Ohno et al. Aug 2005 A1
20050182482 Wang et al. Aug 2005 A1
20050202343 Fujimaki Sep 2005 A1
20050216075 Wang et al. Sep 2005 A1
20050227148 Nanno et al. Oct 2005 A1
20050230029 Vaidyanathan et al. Oct 2005 A1
20050233886 Anderson Oct 2005 A1
20050240100 Wang et al. Oct 2005 A1
20050244337 Wang et al. Nov 2005 A1
20050255694 Yeoh Nov 2005 A1
20050261763 Wang et al. Nov 2005 A1
20050278020 Wang et al. Dec 2005 A1
20060001726 Kodas et al. Jan 2006 A1
20060021221 Decker Feb 2006 A1
20060027625 Dockus et al. Feb 2006 A1
20060032838 Muylaert et al. Feb 2006 A1
20060035149 Nanba et al. Feb 2006 A1
20060051600 Rupich et al. Mar 2006 A1
20060062684 Zahrah et al. Mar 2006 A1
20060081571 Hoebel et al. Apr 2006 A1
20060094603 Li et al. May 2006 A1
20060102871 Wang et al. May 2006 A1
20060108567 Charati et al. May 2006 A1
20060118758 Wang et al. Jun 2006 A1
20060119249 Miyata et al. Jun 2006 A1
20060135344 Rigali et al. Jun 2006 A1
20060141362 Nanno et al. Jun 2006 A1
20060142853 Wang et al. Jun 2006 A1
20060147138 Johal et al. Jul 2006 A1
20060147332 Jones et al. Jul 2006 A1
20060147369 Bi et al. Jul 2006 A1
20060147631 Lev et al. Jul 2006 A1
20060151582 Goretta et al. Jul 2006 A1
20060160919 Brugger et al. Jul 2006 A1
20060166159 Abels et al. Jul 2006 A1
20060167120 Wang et al. Jul 2006 A1
20060172073 Groza et al. Aug 2006 A1
20060185473 Withers et al. Aug 2006 A1
20060216539 Takayanagi et al. Sep 2006 A1
20060216604 Kawase et al. Sep 2006 A1
20060224027 Turek et al. Oct 2006 A1
20060225817 Chuntonov Oct 2006 A1
20060226421 Fujiwara et al. Oct 2006 A1
20060227695 Nagaoka Oct 2006 A1
20060228475 Perepezko et al. Oct 2006 A1
20060234127 Kim et al. Oct 2006 A1
20060235060 Yoshida et al. Oct 2006 A1
20060246725 Yeoh Nov 2006 A1
20060249705 Wang et al. Nov 2006 A1
20060274510 Nakada et al. Dec 2006 A1
20060276875 Stinson et al. Dec 2006 A1
20060280998 Ying et al. Dec 2006 A1
20070000129 Hahn et al. Jan 2007 A1
20070002239 Koike Jan 2007 A1
20070010702 Wang et al. Jan 2007 A1
20070029927 Kawamura et al. Feb 2007 A1
20070048531 Nagaoka et al. Mar 2007 A1
20070054189 Matsuno et al. Mar 2007 A1
20070061006 Desatnik et al. Mar 2007 A1
20070065675 Stamm Mar 2007 A1
20070068605 Statnikov Mar 2007 A1
20070072113 Taguchi Mar 2007 A1
20070093006 Basol Apr 2007 A1
20070099088 Kwon et al. May 2007 A1
20070104605 Hampden-Smith et al. May 2007 A1
20070111893 Kodenkandath et al. May 2007 A1
20070122549 Hampden-Smith et al. May 2007 A1
20070122707 Kwon et al. May 2007 A1
20070122710 Kwon et al. May 2007 A1
20070128520 Konishiike et al. Jun 2007 A1
20070128521 Konishiike et al. Jun 2007 A1
20070134096 Mons et al. Jun 2007 A1
20070140065 Levingston Jun 2007 A1
20070141375 Budinger et al. Jun 2007 A1
20070141469 Tokunaga et al. Jun 2007 A1
20070142914 Jones et al. Jun 2007 A1
20070151087 Stern et al. Jul 2007 A1
20070152026 Suh et al. Jul 2007 A1
20070158200 Cohen et al. Jul 2007 A1
20070160315 Johal et al. Jul 2007 A1
20070178384 Kajita et al. Aug 2007 A1
20070183918 Monsheimer et al. Aug 2007 A1
20070187464 Routbort et al. Aug 2007 A1
20070189986 Wang et al. Aug 2007 A1
20070203584 Bandyopadhyay et al. Aug 2007 A1
20070214467 Fukuda et al. Sep 2007 A1
20070227627 Suh et al. Oct 2007 A1
20070251389 Katsir et al. Nov 2007 A1
20070259220 Redmond Nov 2007 A1
20070298325 Kubota et al. Dec 2007 A1
20070298351 Shimada et al. Dec 2007 A1
20080008894 Abdo et al. Jan 2008 A1
20080015284 Cakmak et al. Jan 2008 A1
20080015494 Santini et al. Jan 2008 A1
20080026220 Bi et al. Jan 2008 A9
20080032192 Yokomizo et al. Feb 2008 A1
20080041921 Creehan et al. Feb 2008 A1
20080047599 Buller et al. Feb 2008 A1
20080052904 Schneider et al. Mar 2008 A1
20080057203 Robinson et al. Mar 2008 A1
20080057267 Brocheton et al. Mar 2008 A1
20080057395 Kubota et al. Mar 2008 A1
20080057616 Robinson et al. Mar 2008 A1
20080075878 Perrin et al. Mar 2008 A1
20080075984 Badding et al. Mar 2008 A1
20080087629 Shimomura et al. Apr 2008 A1
20080106261 Romalis et al. May 2008 A1
20080110491 Buller et al. May 2008 A1
20080139342 Hebert et al. Jun 2008 A1
20080145707 Yabunouchi et al. Jun 2008 A1
20080152998 Murakami et al. Jun 2008 A1
20080156475 Suh Jul 2008 A1
20080175982 Robinson et al. Jul 2008 A1
20080188373 Rupich et al. Aug 2008 A1
20080201008 Twelves et al. Aug 2008 A1
20080210413 Hislop et al. Sep 2008 A1
20080213718 Abels et al. Sep 2008 A1
20080233434 Kawamura et al. Sep 2008 A1
20080241660 Ogawa et al. Oct 2008 A1
20080241705 Wakita et al. Oct 2008 A1
20080268618 Yamazaki Oct 2008 A1
20080280201 Konishiike et al. Nov 2008 A1
20080280424 Yamazaki et al. Nov 2008 A1
20080284719 Yoshida Nov 2008 A1
20080284768 Yoshida et al. Nov 2008 A1
20080290329 Yoshida et al. Nov 2008 A1
20080290795 Sado et al. Nov 2008 A1
20080299459 Shiozaki et al. Dec 2008 A1
20080302418 Buller et al. Dec 2008 A1
20080306182 Brugger et al. Dec 2008 A1
20080308792 Takahashi Dec 2008 A1
20080317951 Green Dec 2008 A1
20090000480 Dardas et al. Jan 2009 A1
20090004764 Ohnuma et al. Jan 2009 A1
20090004878 Ohnuma et al. Jan 2009 A1
20090011575 Shimomura et al. Jan 2009 A1
20090014055 Beck et al. Jan 2009 A1
20090043116 Yoshida et al. Feb 2009 A1
20090046441 Funaya et al. Feb 2009 A1
20090075083 Bi et al. Mar 2009 A1
20090076189 Matsushige et al. Mar 2009 A1
20090098674 Yamazaki et al. Apr 2009 A1
20090110954 Allen et al. Apr 2009 A1
20090114797 Beals et al. May 2009 A1
20090117466 Zhamu et al. May 2009 A1
20090117707 Shimomura et al. May 2009 A1
20090123690 Scholl et al. May 2009 A1
20090131203 Hebert et al. May 2009 A1
20090136769 Stamm May 2009 A1
20090155676 Zhamu et al. Jun 2009 A1
20090160325 Yatsunami et al. Jun 2009 A1
20090178741 Xun et al. Jul 2009 A1
20090206065 Kruth et al. Aug 2009 A1
20090214373 Stinson et al. Aug 2009 A1
20090214857 Itoh et al. Aug 2009 A1
20090235915 Doumanidis et al. Sep 2009 A1
20090267491 Takashima et al. Oct 2009 A1
20090269497 Yousefiani et al. Oct 2009 A1
20090269605 Warke et al. Oct 2009 A1
20090283501 Erikson et al. Nov 2009 A1
20090284138 Yasukawa et al. Nov 2009 A1
20090286008 O'Neill et al. Nov 2009 A1
20090288952 Olevsky et al. Nov 2009 A1
20090291312 Perepezko et al. Nov 2009 A1
20090291345 Hommura et al. Nov 2009 A1
20090297718 Sarrafi-Nour et al. Dec 2009 A1
20090311598 Tadano Dec 2009 A1
20090317658 Narita Dec 2009 A1
20100010638 Jones et al. Jan 2010 A1
20100013096 Irumata et al. Jan 2010 A1
20100015330 Koike Jan 2010 A1
20100021565 Handrosch et al. Jan 2010 A1
20100029036 Robinson et al. Feb 2010 A1
20100036075 Ishino et al. Feb 2010 A1
20100048762 Ishino et al. Feb 2010 A1
20100056026 Shirota et al. Mar 2010 A1
20100062179 Adachi et al. Mar 2010 A1
20100068464 Meyer Mar 2010 A1
20100078830 Katsurayama et al. Apr 2010 A1
20100089976 Szymanski et al. Apr 2010 A1
20100089977 Chen et al. Apr 2010 A1
20100102446 Katsurayama et al. Apr 2010 A1
20100112192 Li et al. May 2010 A1
20100119740 Bettger et al. May 2010 A1
20100119846 Sawada May 2010 A1
20100125356 Shkolnik et al. May 2010 A1
20100126132 Merkel May 2010 A1
20100130682 Hinamoto et al. May 2010 A1
20100132765 Cumpston et al. Jun 2010 A1
20100133688 Shigihara et al. Jun 2010 A1
20100139840 Allemand et al. Jun 2010 A1
20100143601 Hawtof et al. Jun 2010 A1
20100178571 Nanba et al. Jul 2010 A1
20100190038 Osakabe et al. Jul 2010 A1
20100190054 Odani et al. Jul 2010 A1
20100196750 Kajita et al. Aug 2010 A1
20100203706 Ohnuma et al. Aug 2010 A1
20100209328 Bi et al. Aug 2010 A1
20100216034 Odani et al. Aug 2010 A1
20100216907 Matsushige et al. Aug 2010 A1
20100221567 Budinger et al. Sep 2010 A1
20100224867 Heuft et al. Sep 2010 A1
20100227071 Heuft et al. Sep 2010 A1
20100227157 Heuft et al. Sep 2010 A1
20100228025 Cote et al. Sep 2010 A1
20100229940 Basol Sep 2010 A1
20100236288 Kodas et al. Sep 2010 A1
20100242843 Peretti et al. Sep 2010 A1
20100255362 Ogawa et al. Oct 2010 A1
20100261144 Fujinami et al. Oct 2010 A1
20100262054 Summit et al. Oct 2010 A1
20100262272 Shkolnik et al. Oct 2010 A1
20100267856 Shinoda et al. Oct 2010 A1
20100279000 Sambasivan et al. Nov 2010 A1
20100285207 Creehan et al. Nov 2010 A1
20100291286 O'Neill et al. Nov 2010 A1
20100291401 Medina et al. Nov 2010 A1
20100291758 Robinson et al. Nov 2010 A1
20100300532 Cumpston et al. Dec 2010 A1
20100305742 Twelves, Jr. et al. Dec 2010 A1
20100310941 Kumta et al. Dec 2010 A1
20100313416 Meura Dec 2010 A1
20100314258 Cohen et al. Dec 2010 A1
20100315796 Sakuyama et al. Dec 2010 A1
20100326429 Cumpston et al. Dec 2010 A1
20100330357 Davies et al. Dec 2010 A1
20110003143 Sugimoto et al. Jan 2011 A1
20110003200 Shizuka et al. Jan 2011 A1
20110006670 Katakura et al. Jan 2011 A1
20110008640 Goto et al. Jan 2011 A1
20110014081 Jones et al. Jan 2011 A1
20110015102 Martin et al. Jan 2011 A1
20110016939 Clew et al. Jan 2011 A1
20110027547 Xun et al. Feb 2011 A1
20110029093 Bojarski et al. Feb 2011 A1
20110032467 Koike Feb 2011 A1
20110047799 Abels et al. Mar 2011 A1
20110052921 Gong et al. Mar 2011 A1
20110061591 Stecker Mar 2011 A1
20110065973 Fernie et al. Mar 2011 A1
20110087332 Bojarski et al. Apr 2011 A1
20110089610 El-Siblani et al. Apr 2011 A1
20110104571 Zhamu et al. May 2011 A1
20110108760 Mukainakano et al. May 2011 A1
20110111303 Kung et al. May 2011 A1
20110114075 Mills May 2011 A1
20110114182 Robinson et al. May 2011 A1
20110114839 Stecker et al. May 2011 A1
20110136162 Sun et al. Jun 2011 A1
20110139251 Robinson et al. Jun 2011 A1
20110143201 Takada et al. Jun 2011 A1
20110165462 Zhamu et al. Jul 2011 A1
20110166824 Haisty et al. Jul 2011 A1
20110169924 Haisty et al. Jul 2011 A1
20110195279 Saeki et al. Aug 2011 A1
20110214799 Szymanski et al. Sep 2011 A1
20110240108 Law et al. Oct 2011 A1
20110240594 Hamaguchi et al. Oct 2011 A1
20110245083 Sathyamurthy et al. Oct 2011 A1
20110248251 Yamamoto et al. Oct 2011 A1
20110253990 Ishikawa et al. Oct 2011 A1
20110259862 Scott et al. Oct 2011 A1
20110269621 Emori et al. Nov 2011 A1
20110278051 Himori et al. Nov 2011 A1
20110290549 Hirai et al. Dec 2011 A1
20110291331 Scott Dec 2011 A1
20110293840 Newkirk et al. Dec 2011 A1
20110293976 Chiba et al. Dec 2011 A1
20110295378 Bojarski et al. Dec 2011 A1
20110297081 Green Dec 2011 A1
20110297450 Can et al. Dec 2011 A1
20110305578 Smarsly et al. Dec 2011 A1
20120009339 Creehan et al. Jan 2012 A1
20120012032 Bi et al. Jan 2012 A1
20120024332 Stefan et al. Feb 2012 A1
20120028176 Cote et al. Feb 2012 A1
20120032329 Shigihara et al. Feb 2012 A1
20120040282 Heuft et al. Feb 2012 A1
20120040283 Heuft et al. Feb 2012 A1
20120041446 Wong et al. Feb 2012 A1
20120044652 Horikawa et al. Feb 2012 A1
20120045688 Liu et al. Feb 2012 A1
20120051116 Inoue et al. Mar 2012 A1
20120052625 Yamazaki Mar 2012 A1
20120056647 Nagatsuka et al. Mar 2012 A1
20120061665 Miyake et al. Mar 2012 A1
20120061677 Miyake Mar 2012 A1
20120062813 Koyama Mar 2012 A1
20120063203 Matsuzaki et al. Mar 2012 A1
20120064650 Yamazaki et al. Mar 2012 A1
20120065755 Steingart et al. Mar 2012 A1
20120067728 Harreld et al. Mar 2012 A1
20120085811 Warke et al. Apr 2012 A1
20120100031 Ljungblad Apr 2012 A1
20120113341 Uochi May 2012 A1
20120114518 Hara et al. May 2012 A1
20120115973 Blackwell May 2012 A1
20120128284 Mordente May 2012 A1
20120129056 Majima et al. May 2012 A1
20120132627 Wescott et al. May 2012 A1
20120132631 Wescott et al. May 2012 A1
20120135153 Osakabe et al. May 2012 A1
20120138586 Webster et al. Jun 2012 A1
20120146014 Kato Jun 2012 A1
20120156323 Macleod Jun 2012 A1
20120164413 Hara et al. Jun 2012 A1
20120171847 Robinson et al. Jul 2012 A1
20120191205 Bojarski et al. Jul 2012 A1
20120191420 Bojarski et al. Jul 2012 A1
20120193063 Yuan et al. Aug 2012 A1
20120193335 Guldberg Aug 2012 A1
20120194756 Hayakawa et al. Aug 2012 A1
20120195994 El-Siblani et al. Aug 2012 A1
20120196952 Suzuki Aug 2012 A1
20120201960 Hartmann et al. Aug 2012 A1
20120205348 Romanelli et al. Aug 2012 A1
20120207264 Van Den Berghe et al. Aug 2012 A1
20120208002 Todd et al. Aug 2012 A1
20120209394 Bojarski et al. Aug 2012 A1
20120214900 Klee et al. Aug 2012 A1
20120219698 Steingart et al. Aug 2012 A1
20120231352 Pol et al. Sep 2012 A1
20120232308 Cote et al. Sep 2012 A1
20120232669 Bojarski et al. Sep 2012 A1
20120232670 Bojarski et al. Sep 2012 A1
20120232671 Bojarski et al. Sep 2012 A1
20120237631 Jenko Sep 2012 A1
20120238658 Matsushige et al. Sep 2012 A1
20120241734 Honda et al. Sep 2012 A1
20120243823 Giboney Sep 2012 A1
20120244060 Bi et al. Sep 2012 A9
20120255176 Flesch et al. Oct 2012 A1
20120261654 Yasukawa et al. Oct 2012 A1
20120264884 Liu et al. Oct 2012 A1
20120270106 Todorov et al. Oct 2012 A1
20120279441 Creehan et al. Nov 2012 A1
20120296029 Liu et al. Nov 2012 A1
20120298873 Hernandez et al. Nov 2012 A1
20120298886 Petersen et al. Nov 2012 A1
20120316716 Odani et al. Dec 2012 A1
20120322197 Robinson et al. Dec 2012 A1
20120326601 Yasukawa et al. Dec 2012 A1
20120328945 Hirose et al. Dec 2012 A1
20130001834 El-Siblani et al. Jan 2013 A1
20130002764 Heuft et al. Jan 2013 A1
20130004680 Godfrey et al. Jan 2013 A1
20130008698 Himori et al. Jan 2013 A1
20130008879 Bichsel Jan 2013 A1
20130017141 Cote et al. Jan 2013 A1
20130017390 Cote et al. Jan 2013 A1
20130025409 Xu Jan 2013 A1
20130026636 Tani et al. Jan 2013 A1
20130028781 Xu Jan 2013 A1
20130029886 Mazyar et al. Jan 2013 A1
20130031753 Massoels Feb 2013 A1
20130034759 Funada et al. Feb 2013 A1
20130034932 Robinson et al. Feb 2013 A1
20130036942 Ramm Feb 2013 A1
20130043573 Williams et al. Feb 2013 A1
20130045093 Wunderlich et al. Feb 2013 A1
20130054061 Nishimoto Feb 2013 A1
20130056912 O'Neill et al. Mar 2013 A1
20130061636 Imai et al. Mar 2013 A1
20130062107 Higuchi et al. Mar 2013 A1
20130064706 Schwarze et al. Mar 2013 A1
20130068513 Hirai et al. Mar 2013 A1
20130071294 Redmond Mar 2013 A1
20130075735 Watanabe et al. Mar 2013 A1
20130079693 Ranky et al. Mar 2013 A1
20130092924 Sasagawa et al. Apr 2013 A1
20130092925 Saito et al. Apr 2013 A1
20130092944 Honda et al. Apr 2013 A1
20130101423 Roy et al. Apr 2013 A1
20130101596 DeMartino et al. Apr 2013 A1
20130101729 Keremes et al. Apr 2013 A1
20130101761 Bunker et al. Apr 2013 A1
20130105791 Honda et al. May 2013 A1
20130108460 Szwedowicz et al. May 2013 A1
20130109194 Shirota et al. May 2013 A1
20130112672 Keremes et al. May 2013 A1
20130119360 Katakura et al. May 2013 A1
20130119373 Yamazaki May 2013 A1
20130119374 Kataishi et al. May 2013 A1
20130126868 Yamazaki et al. May 2013 A1
20130134414 Yamazaki et al. May 2013 A1
20130134637 Wiesner et al. May 2013 A1
20130136868 Bruck et al. May 2013 A1
20130137033 Heuft et al. May 2013 A1
20130140554 Yamazaki et al. Jun 2013 A1
20130140741 El-Siblani et al. Jun 2013 A1
20130147092 Jenko et al. Jun 2013 A1
20130149632 Yoo et al. Jun 2013 A1
20130153889 Yamazaki et al. Jun 2013 A1
20130155790 Atsumi Jun 2013 A1
20130161606 Isobe et al. Jun 2013 A1
20130161608 Yamazaki Jun 2013 A1
20130161609 Koyama Jun 2013 A1
20130161621 Isobe et al. Jun 2013 A1
20130162306 Inoue et al. Jun 2013 A1
20130166256 Wirx-Speetjens et al. Jun 2013 A1
20130168257 Mazyar et al. Jul 2013 A1
20130168902 Herzog et al. Jul 2013 A1
20130172642 Behrens et al. Jul 2013 A1
20130181214 Yamazaki et al. Jul 2013 A1
20130184415 Yoshikawa et al. Jul 2013 A1
20130186265 Massoels Jul 2013 A1
20130186514 Zhuang et al. Jul 2013 A1
20130187151 Yamazaki Jul 2013 A1
20130192304 Nakae et al. Aug 2013 A1
20130193433 Yamazaki Aug 2013 A1
20130193493 Yamazaki Aug 2013 A1
20130193620 Mironets et al. Aug 2013 A1
20130196094 Weeks et al. Aug 2013 A1
20130196095 Weeks et al. Aug 2013 A1
20130196096 Weeks et al. Aug 2013 A1
20130196097 Weeks et al. Aug 2013 A1
20130196468 Yamazaki Aug 2013 A1
20130197683 Zhang et al. Aug 2013 A1
20130199013 Graichen Aug 2013 A1
20130199241 Sawada Aug 2013 A1
20130200365 Yamazaki Aug 2013 A1
20130200375 Yamazaki Aug 2013 A1
20130202823 Weeks et al. Aug 2013 A1
20130203214 Isobe et al. Aug 2013 A1
20130209698 Schlesinger et al. Aug 2013 A1
20130209932 Hasegawa et al. Aug 2013 A1
20130210618 Mitlin et al. Aug 2013 A1
20130211531 Steines et al. Aug 2013 A1
20130213848 Weeks et al. Aug 2013 A1
20130216597 Mathias et al. Aug 2013 A1
20130216742 DeMartino et al. Aug 2013 A1
20130219890 Majima et al. Aug 2013 A1
20130232366 Nishijima Sep 2013 A1
20130233303 Majima et al. Sep 2013 A1
20130233846 Jakimov et al. Sep 2013 A1
20130236662 Dua et al. Sep 2013 A1
20130241069 Nakamura et al. Sep 2013 A1
20130248528 Fushimi Sep 2013 A1
20130260217 Matsui et al. Oct 2013 A1
20130263977 Rickenbacher et al. Oct 2013 A1
20130266915 Tsuruta et al. Oct 2013 A1
20130268085 Dong et al. Oct 2013 A1
20130270750 Green Oct 2013 A1
20130274373 Yoshikawa et al. Oct 2013 A1
20130280091 Propheter-Hinckley et al. Oct 2013 A1
20130289216 Klee et al. Oct 2013 A1
20130291385 Abels et al. Nov 2013 A1
20130295212 Chen et al. Nov 2013 A1
20130300284 Nishido Nov 2013 A1
20130305727 Yousefiani et al. Nov 2013 A1
20130309946 Hamaguchi Nov 2013 A1
20130313708 Shigihara et al. Nov 2013 A1
20130338252 Klee et al. Dec 2013 A1
20130343023 Nakagoshi et al. Dec 2013 A1
20130344258 Covey Dec 2013 A1
20130344765 Ma Dec 2013 A1
20140001155 Hamaguchi Jan 2014 A1
20140008327 Prest et al. Jan 2014 A1
20140008686 Hirakawa et al. Jan 2014 A1
20140013554 Hojaji Jan 2014 A1
20140014629 Stecker Jan 2014 A1
20140021171 Jerby et al. Jan 2014 A1
20140025978 Tokunaga Jan 2014 A1
20140034544 Chang et al. Feb 2014 A1
20140034626 Illston Feb 2014 A1
20140035205 Hagiwara et al. Feb 2014 A1
20140035423 Veronesi et al. Feb 2014 A1
20140035995 Chou et al. Feb 2014 A1
20140037873 Cheung et al. Feb 2014 A1
20140037969 Margolies et al. Feb 2014 A1
20140039087 Stelzig et al. Feb 2014 A1
20140039088 Stelzig et al. Feb 2014 A1
20140039451 Bangera et al. Feb 2014 A1
20140039452 Bangera et al. Feb 2014 A1
20140039631 Bojarski et al. Feb 2014 A1
20140039658 Bangera et al. Feb 2014 A1
20140047996 Kambe Feb 2014 A1
20140050921 Lyons et al. Feb 2014 A1
20140051335 Morinaga et al. Feb 2014 A1
20140052288 El-Siblani et al. Feb 2014 A1
20140061165 Stempfer Mar 2014 A1
20140061167 Stecker et al. Mar 2014 A1
20140061977 Silvanus et al. Mar 2014 A1
20140063432 Yamazaki et al. Mar 2014 A1
20140065361 Rosenzweig et al. Mar 2014 A1
20140065430 Yamazaki et al. Mar 2014 A1
20140079741 Bink et al. Mar 2014 A1
20140091299 Tani et al. Apr 2014 A1
20140095107 Haisty et al. Apr 2014 A1
20140099476 Subramanian et al. Apr 2014 A1
20140103338 Yamazaki et al. Apr 2014 A1
20140103340 Yamazaki et al. Apr 2014 A1
20140103346 Yamazaki Apr 2014 A1
20140104133 Finn et al. Apr 2014 A1
20140106504 Yamazaki et al. Apr 2014 A1
20140109440 McDowell et al. Apr 2014 A1
20140110153 Kashiwagi et al. Apr 2014 A1
20140110706 Yamazaki Apr 2014 A1
20140113021 Zoppas et al. Apr 2014 A1
20140120195 Ploskonka May 2014 A1
20140120417 Matsushita et al. May 2014 A1
20140127868 Saito et al. May 2014 A1
20140130736 Schultz et al. May 2014 A1
20140131700 Yamazaki May 2014 A1
20140131702 Matsubayashi et al. May 2014 A1
20140134325 Schultz et al. May 2014 A1
20140136154 Bojarski et al. May 2014 A1
20140140030 Sakuyama et al. May 2014 A1
20140140882 Syassen May 2014 A1
20140141303 Matsushita et al. May 2014 A1
20140145522 Gershenfeld et al. May 2014 A1
20140151320 Chang et al. Jun 2014 A1
20140151321 Chang et al. Jun 2014 A1
20140151370 Chang et al. Jun 2014 A1
20140151371 Chang et al. Jun 2014 A1
20140151691 Matsubayashi et al. Jun 2014 A1
20140154088 Etter et al. Jun 2014 A1
20140154646 Blackwell et al. Jun 2014 A1
20140162043 Schmid Jun 2014 A1
20140163445 Pallari et al. Jun 2014 A1
20140163568 Wong et al. Jun 2014 A1
20140172111 Lang et al. Jun 2014 A1
20140174344 Schultz et al. Jun 2014 A1
20140175435 Yamazaki et al. Jun 2014 A1
20140177132 McConnell et al. Jun 2014 A1
20140182170 Wawrousek et al. Jul 2014 A1
20140184757 Haisty et al. Jul 2014 A1
20140189989 Flitsch Jul 2014 A1
20140190942 Wescott et al. Jul 2014 A1
20140194996 Bojarski et al. Jul 2014 A1
20140203277 Shimomura Jul 2014 A1
20140204160 Cote et al. Jul 2014 A1
20140209886 Ishidai et al. Jul 2014 A1
20140209898 Yamamoto et al. Jul 2014 A1
20140216123 Clew et al. Aug 2014 A1
20140217647 Pallari Aug 2014 A1
20140222184 Verschueren et al. Aug 2014 A1
20140227548 Myrick Aug 2014 A1
20140228474 Qian et al. Aug 2014 A1
20140228860 Steines et al. Aug 2014 A1
20140231126 Hunrath et al. Aug 2014 A1
20140231266 Sherrer et al. Aug 2014 A1
20140231799 Matsubayashi Aug 2014 A1
20140231803 Yamazaki Aug 2014 A1
20140246809 Hofmann et al. Sep 2014 A1
20140249643 Jones et al. Sep 2014 A1
20140252351 Isobe et al. Sep 2014 A1
20140252687 El-Dasher et al. Sep 2014 A1
20140255785 Do et al. Sep 2014 A1
20140263209 Burris et al. Sep 2014 A1
20140264323 Sasagawa et al. Sep 2014 A1
20140265040 Batchelder Sep 2014 A1
20140265046 Burris et al. Sep 2014 A1
20140265047 Burris et al. Sep 2014 A1
20140265048 Burris et al. Sep 2014 A1
20140265049 Burris et al. Sep 2014 A1
20140265812 Ma Sep 2014 A1
20140271328 Burris et al. Sep 2014 A1
20140271965 Ferrar Sep 2014 A1
20140272154 Wigglesworth et al. Sep 2014 A1
20140272398 Hakii et al. Sep 2014 A1
20140286048 Riello et al. Sep 2014 A1
20140291886 Mark et al. Oct 2014 A1
20140294567 Zotz Oct 2014 A1
20140295087 Rickenbacher et al. Oct 2014 A1
20140306380 El-Siblani et al. Oct 2014 A1
20140314581 McBrien et al. Oct 2014 A1
20140319735 El-Siblani et al. Oct 2014 A1
20140319736 El-Siblani et al. Oct 2014 A1
20140319737 El-Siblani et al. Oct 2014 A1
20140319738 El-Siblani et al. Oct 2014 A1
20140322374 El-Siblani et al. Oct 2014 A1
20140328964 Mark et al. Nov 2014 A1
20140335653 Koyama Nov 2014 A1
20140336680 Medina et al. Nov 2014 A1
20140338552 Mace et al. Nov 2014 A1
20140338894 Mace et al. Nov 2014 A1
20140339122 Weeks et al. Nov 2014 A1
20140339125 Weeks et al. Nov 2014 A1
20140339126 Weeks et al. Nov 2014 A1
20140339555 Yamazaki Nov 2014 A1
20140341883 Weeks et al. Nov 2014 A1
20140341888 Weeks et al. Nov 2014 A1
20140341889 Weeks et al. Nov 2014 A1
20140341890 Weeks et al. Nov 2014 A1
20140341891 Weeks et al. Nov 2014 A1
20140341945 Weeks et al. Nov 2014 A1
20140342979 Weeks et al. Nov 2014 A1
20140346216 Rigal et al. Nov 2014 A1
20140349191 Kung et al. Nov 2014 A1
20140353808 Hosseini et al. Dec 2014 A1
20140361460 Mark Dec 2014 A1
20140363585 Pialot et al. Dec 2014 A1
20140366761 Mace et al. Dec 2014 A1
20140368804 Lafarre et al. Dec 2014 A1
20140370111 Boyan et al. Dec 2014 A1
20140370323 Ackelid Dec 2014 A1
20140370337 Matsui et al. Dec 2014 A1
20140370654 Yamazaki et al. Dec 2014 A1
20140373743 Mace et al. Dec 2014 A1
20140374084 Mace et al. Dec 2014 A1
20140374728 Adamovich et al. Dec 2014 A1
20150001093 Carter et al. Jan 2015 A1
20150001516 Yoshida et al. Jan 2015 A1
20150017475 Ward-Close Jan 2015 A1
20150021379 Albrecht et al. Jan 2015 A1
20150021603 Isobe et al. Jan 2015 A1
20150021815 Albrecht et al. Jan 2015 A1
20150024169 Martin Jan 2015 A1
20150024309 Martin Jan 2015 A1
20150024319 Martin Jan 2015 A1
20150027948 Doyen et al. Jan 2015 A1
20150029485 Lafarre et al. Jan 2015 A1
20150030494 Ward-Close Jan 2015 A1
20150030932 Yoshida et al. Jan 2015 A1
20150032215 Slamin et al. Jan 2015 A1
20150034604 Subramanian et al. Feb 2015 A1
20150037601 Blackmore Feb 2015 A1
20150041025 Wescott et al. Feb 2015 A1
20150041788 Ishidai et al. Feb 2015 A1
20150044415 Read et al. Feb 2015 A1
20150045924 Cluckers et al. Feb 2015 A1
20150045928 Perez et al. Feb 2015 A1
20150048209 Hoyt et al. Feb 2015 A1
20150050463 Nakano et al. Feb 2015 A1
20150054193 Meyer Feb 2015 A1
20150054930 Bangera et al. Feb 2015 A1
20150054944 Bangera et al. Feb 2015 A1
20150054945 Bangera et al. Feb 2015 A1
20150060422 Liebl et al. Mar 2015 A1
20150064050 Retze et al. Mar 2015 A1
20150064374 Jain et al. Mar 2015 A1
20150064474 Dejneka et al. Mar 2015 A1
20150064841 Koyama Mar 2015 A1
20150069449 Nishido Mar 2015 A1
20150069668 Mironets et al. Mar 2015 A1
20150071913 Weeks et al. Mar 2015 A1
20150076469 Ikemizu et al. Mar 2015 A1
20150079298 Ferreira et al. Mar 2015 A1
20150080495 Heikkila Mar 2015 A1
20150089881 Stevenson et al. Apr 2015 A1
20150090074 Etter et al. Apr 2015 A1
20150093283 Miller et al. Apr 2015 A1
20150093589 Mazyar et al. Apr 2015 A1
20150093880 Ji et al. Apr 2015 A1
20150094396 Nakatsuka et al. Apr 2015 A1
20150100149 Coeck et al. Apr 2015 A1
20150102531 El-Siblani et al. Apr 2015 A1
20150103495 Nakagoshi et al. Apr 2015 A1
20150104344 Webster et al. Apr 2015 A1
20150104345 Abels et al. Apr 2015 A1
20150108677 Mark et al. Apr 2015 A1
20150108694 Shimosoyama et al. Apr 2015 A1
20150113993 Rudrapatna et al. Apr 2015 A1
20150116968 Yamada et al. Apr 2015 A1
20150118570 Nishimoto Apr 2015 A1
20150123091 Hakii et al. May 2015 A1
20150125333 Bruck et al. May 2015 A1
20150125335 Bruck et al. May 2015 A1
20150126641 Suzuki May 2015 A1
20150129544 Davis May 2015 A1
20150129583 Richter et al. May 2015 A1
20150130754 Yairi et al. May 2015 A1
20150132173 Bruck et al. May 2015 A1
20150132548 Davis May 2015 A1
20150132563 O'Malley et al. May 2015 A1
20150135897 Sutcliffe et al. May 2015 A1
20150136908 Hegenbart et al. May 2015 A1
20150137122 Yamazaki May 2015 A1
20150139849 Pialot, Jr. et al. May 2015 A1
20150140230 Jones et al. May 2015 A1
20150140731 Isobe et al. May 2015 A1
20150141234 Sander et al. May 2015 A1
20150145174 Comb May 2015 A1
20150145177 El-Siblani et al. May 2015 A1
20150147540 Davis May 2015 A1
20150147585 Schwarze et al. May 2015 A1
20150155312 Yamazaki Jun 2015 A1
20150155392 Yamazaki Jun 2015 A1
20150155399 Mu et al. Jun 2015 A1
20150155456 Kuramoto et al. Jun 2015 A1
20150158111 Schwarze et al. Jun 2015 A1
20150161299 Summit et al. Jun 2015 A1
20150165525 Jonasson Jun 2015 A1
20150165545 Goehler et al. Jun 2015 A1
20150165556 Jones et al. Jun 2015 A1
20150167130 Steinwandel et al. Jun 2015 A1
20150174827 Schwarze et al. Jun 2015 A1
20150179777 Honda et al. Jun 2015 A1
20150179804 Yamazaki et al. Jun 2015 A1
20150179998 Kagami et al. Jun 2015 A1
20150182315 Okada et al. Jul 2015 A1
20150183070 Jones et al. Jul 2015 A1
20150184540 Winkler et al. Jul 2015 A1
20150196971 Schneider et al. Jul 2015 A1
20150197064 Walker et al. Jul 2015 A1
20150197862 Engel et al. Jul 2015 A1
20150198052 Pavlov et al. Jul 2015 A1
20150202687 Pialot et al. Jul 2015 A1
20150202716 Bruck et al. Jul 2015 A1
20150202717 Bruck et al. Jul 2015 A1
20150207080 Yoshida et al. Jul 2015 A1
20150207146 Tanaka et al. Jul 2015 A1
20150209162 Verschueren et al. Jul 2015 A1
20150209889 Peters et al. Jul 2015 A1
20150210013 Teulet Jul 2015 A1
20150214342 Yamazaki Jul 2015 A1
20150214555 Visco et al. Jul 2015 A1
20150217367 Dickey et al. Aug 2015 A1
20150219133 Meyer et al. Aug 2015 A1
20150219444 Bamberg et al. Aug 2015 A1
20150219521 Clew et al. Aug 2015 A1
20150224607 Bruck et al. Aug 2015 A1
20150224710 El-Siblani Aug 2015 A1
20150227062 Martin Aug 2015 A1
20150227070 Martin Aug 2015 A1
20150228801 Yamazaki Aug 2015 A1
20150231040 Stelzig et al. Aug 2015 A1
20150231796 Kottilingam et al. Aug 2015 A1
20150231825 Swartz et al. Aug 2015 A1
20150231828 El-Siblani et al. Aug 2015 A1
20150231831 El-Siblani Aug 2015 A1
20150239046 McMahan et al. Aug 2015 A1
20150243792 Honda et al. Aug 2015 A1
20150246482 El-Siblani et al. Sep 2015 A1
20150246486 El-Siblani et al. Sep 2015 A1
20150247474 Evers et al. Sep 2015 A1
20150251247 Monsheimer et al. Sep 2015 A1
20150251250 Schlick et al. Sep 2015 A1
20150251351 Feygin Sep 2015 A1
20150251353 Rodgers et al. Sep 2015 A1
20150252190 Rodgers et al. Sep 2015 A1
20150258735 O'Neill et al. Sep 2015 A1
20150259263 Sherman et al. Sep 2015 A1
20150259530 Rodgers et al. Sep 2015 A1
20150259790 Newman et al. Sep 2015 A1
20150266237 Comb et al. Sep 2015 A1
20150266285 James et al. Sep 2015 A1
20150270088 Satoh Sep 2015 A1
20150270531 Matsui et al. Sep 2015 A1
20150273586 Ross Oct 2015 A1
20150273622 Manabe Oct 2015 A1
20150273631 Kenney et al. Oct 2015 A1
20150275916 Marshall et al. Oct 2015 A1
20150283613 Backlund et al. Oct 2015 A1
20150283614 Wu et al. Oct 2015 A1
20150283642 Forsdike et al. Oct 2015 A1
20150283646 Amaya et al. Oct 2015 A1
20150283649 Amaya et al. Oct 2015 A1
20150285502 DiCintio et al. Oct 2015 A1
20150285504 Melton Oct 2015 A1
20150290707 Xu Oct 2015 A1
20150290711 Norfolk et al. Oct 2015 A1
20150290741 Abe et al. Oct 2015 A1
20150290875 Mark et al. Oct 2015 A1
20150298263 Goncharov et al. Oct 2015 A1
20150299035 Kuksenkov Oct 2015 A1
20150300179 Kamel et al. Oct 2015 A1
20150306664 klint et al. Oct 2015 A1
20150306665 Sidhu et al. Oct 2015 A1
20150306667 Yao Oct 2015 A1
20150306699 Honda Oct 2015 A1
20150306700 Honda Oct 2015 A1
20150311452 Yoshida et al. Oct 2015 A1
20150314389 Yamada Nov 2015 A1
20150314390 Otsuka et al. Nov 2015 A1
20150315392 Otani et al. Nov 2015 A1
20150320158 Duffy, Jr. et al. Nov 2015 A1
20150321250 Xu Nov 2015 A1
20150321289 Bruck et al. Nov 2015 A1
20150322808 Wulf Nov 2015 A1
20150328713 Miyazaki et al. Nov 2015 A1
20150328719 Jarvis et al. Nov 2015 A1
20150333160 Yamazaki et al. Nov 2015 A1
20150336171 Czyk et al. Nov 2015 A1
20150338709 Yoshida Nov 2015 A1
20150340641 Kuroki Nov 2015 A1
20150343564 Bruck et al. Dec 2015 A1
20150343673 Williams Dec 2015 A1
20150348863 Du Dec 2015 A1
20150349154 Harley et al. Dec 2015 A1
20150351493 Ashcroft et al. Dec 2015 A1
20150352668 Scott et al. Dec 2015 A1
20150352770 Busenbecker Dec 2015 A1
20150357581 Yoshida et al. Dec 2015 A1
20150360372 Schtettecatte et al. Dec 2015 A1
20150360954 Davis Dec 2015 A1
20150366756 Weeks et al. Dec 2015 A1
20150367415 Buller et al. Dec 2015 A1
20150367416 Buller et al. Dec 2015 A1
20150367417 Buller et al. Dec 2015 A1
20150367418 Buller et al. Dec 2015 A1
20150367419 Buller et al. Dec 2015 A1
20150367446 Buller et al. Dec 2015 A1
20150367447 Buller et al. Dec 2015 A1
20150367448 Buller et al. Dec 2015 A1
20150367453 Herzog Dec 2015 A1
20150367575 Roels et al. Dec 2015 A1
20150367577 Coeck Dec 2015 A1
20150371279 Gerard et al. Dec 2015 A1
20150371854 Davis Dec 2015 A1
20150372123 Yamazaki et al. Dec 2015 A1
20150374582 Weeks et al. Dec 2015 A1
20150374915 Hyde et al. Dec 2015 A1
20150374929 Hyde et al. Dec 2015 A1
20150374930 Hyde et al. Dec 2015 A1
20150375336 Webster et al. Dec 2015 A9
20150375340 Cui et al. Dec 2015 A1
20150376248 Kurland et al. Dec 2015 A1
20150380364 Watanabe et al. Dec 2015 A1
20150380529 Isobe et al. Dec 2015 A1
20160001364 Mironets et al. Jan 2016 A1
20160001365 Blanchet Jan 2016 A1
20160001401 Dimter et al. Jan 2016 A1
20160001509 Long Jan 2016 A1
20160003063 Rosenzweig et al. Jan 2016 A1
20160005878 Yamazaki Jan 2016 A1
20160008887 Earle et al. Jan 2016 A1
20160008889 Xu Jan 2016 A1
20160008922 Schwarze Jan 2016 A1
20160009027 Martin Jan 2016 A1
20160009028 Tjellesen et al. Jan 2016 A1
20160009029 Cohen et al. Jan 2016 A1
20160009030 Mark et al. Jan 2016 A1
20160009039 Blanchet Jan 2016 A1
20160010457 Striedelmeyer et al. Jan 2016 A1
20160010469 Guo Jan 2016 A1
20160013439 Kinoshita Jan 2016 A1
20160014906 Ilic et al. Jan 2016 A1
20160018371 Acharya et al. Jan 2016 A1
20160022383 Abels et al. Jan 2016 A1
20160023272 Mongillo, Jr. et al. Jan 2016 A1
20160023307 Suciu et al. Jan 2016 A1
20160023438 Johnson et al. Jan 2016 A1
20160023948 Hojaji Jan 2016 A1
20160024293 Nestle et al. Jan 2016 A1
20160024676 Willigan et al. Jan 2016 A1
20160030105 Mayer et al. Feb 2016 A1
20160032416 Propheter-Hinckley et al. Feb 2016 A1
20160033248 Mace et al. Feb 2016 A1
20160038633 Watanabe Feb 2016 A1
20160039054 Ghasripoor et al. Feb 2016 A1
20160039851 Muller et al. Feb 2016 A1
20160040312 Chen et al. Feb 2016 A1
20160043384 Zhamu et al. Feb 2016 A1
20160043392 Fujiki et al. Feb 2016 A1
20160043429 Hatta et al. Feb 2016 A1
20160045967 Carter et al. Feb 2016 A1
20160045981 Zurecki et al. Feb 2016 A1
20160047255 Vargas et al. Feb 2016 A1
20160052056 Fager Feb 2016 A1
20160052057 Xu Feb 2016 A1
20160052079 Ackelid Feb 2016 A1
20160052087 O'Neill Feb 2016 A1
20160052176 Zoppas et al. Feb 2016 A1
20160052208 Debora et al. Feb 2016 A1
20160054115 Snis Feb 2016 A1
20160054121 Snis Feb 2016 A1
20160054347 Snis Feb 2016 A1
20160056392 Ono et al. Feb 2016 A1
20160056396 Sugino et al. Feb 2016 A1
20160059154 Fockele et al. Mar 2016 A1
20160059302 McBrien et al. Mar 2016 A1
20160059315 Baudimont Mar 2016 A1
20160059352 Sparks Mar 2016 A1
20160059437 Lacy et al. Mar 2016 A1
20160061044 McBrien et al. Mar 2016 A1
20160061381 Kotliar Mar 2016 A1
20160061806 Reid et al. Mar 2016 A1
20160064422 Yamazaki Mar 2016 A1
20160064669 Kato Mar 2016 A1
20160066930 Geeblen et al. Mar 2016 A1
20160067766 Verreault et al. Mar 2016 A1
20160067778 Liu Mar 2016 A1
20160067779 Dautova et al. Mar 2016 A1
20160067780 Zediker Mar 2016 A1
20160067781 Kawada et al. Mar 2016 A1
20160067820 Mironets et al. Mar 2016 A1
20160067928 Mark et al. Mar 2016 A1
20160069622 Alexiou et al. Mar 2016 A1
20160071625 Kita et al. Mar 2016 A1
20160074558 Murphy et al. Mar 2016 A1
20160074938 Kitani et al. Mar 2016 A1
20160074965 Jakimov et al. Mar 2016 A1
20160075089 Duro Royo et al. Mar 2016 A1
20160075119 Cook Mar 2016 A1
20160079548 Kita et al. Mar 2016 A1
20160082547 Szwedowicz et al. Mar 2016 A1
20160082550 Jarvis et al. Mar 2016 A1
20160082657 Swartz et al. Mar 2016 A1
20160082658 Swartz et al. Mar 2016 A1
20160082695 Swartz et al. Mar 2016 A1
20160083135 Fushimi Mar 2016 A1
20160083516 Elomaa et al. Mar 2016 A1
20160089719 Lacy et al. Mar 2016 A1
20160089859 Lacy et al. Mar 2016 A1
20160090848 Engeli et al. Mar 2016 A1
20160093642 Isobe et al. Mar 2016 A1
20160095795 Weeks et al. Apr 2016 A1
20160095796 Weeks et al. Apr 2016 A1
20160096326 Naware Apr 2016 A1
20160098495 Dong et al. Apr 2016 A1
20160099353 Yamazaki Apr 2016 A1
20160101433 Bruck et al. Apr 2016 A1
20160101643 Cape et al. Apr 2016 A1
20160101988 Law et al. Apr 2016 A1
20160104877 Tadano Apr 2016 A1
20160107232 Okazaki et al. Apr 2016 A1
20160107261 Guldberg Apr 2016 A1
20160107262 Schultz et al. Apr 2016 A1
20160107287 Bajaj et al. Apr 2016 A1
20160107290 Bajaj et al. Apr 2016 A1
20160107295 Bajaj et al. Apr 2016 A1
20160114431 Cheverton et al. Apr 2016 A1
20160114432 Ferrar et al. Apr 2016 A1
20160114458 Bajaj et al. Apr 2016 A1
20160115083 Wu et al. Apr 2016 A1
20160120040 Elmieh et al. Apr 2016 A1
20160121399 Buller et al. May 2016 A1
20160121430 Deiss et al. May 2016 A1
20160122541 Jaker et al. May 2016 A1
20160126360 Sasagawa et al. May 2016 A1
20160129503 El-Dasher et al. May 2016 A1
20160129643 Mark et al. May 2016 A1
20160131564 Hossain et al. May 2016 A1
20160135537 Wawrousek et al. May 2016 A1
20160136759 Broda May 2016 A1
20160136787 Bajaj et al. May 2016 A1
20160136885 Nielsen-Cole et al. May 2016 A1
20160136887 Guillemette et al. May 2016 A1
20160136889 Rolland et al. May 2016 A1
20160136897 Nielsen-Cole et al. May 2016 A1
20160137838 Rolland et al. May 2016 A1
20160137839 Rolland et al. May 2016 A1
20160141422 Matsubayashi et al. May 2016 A1
20160143744 Bojarski et al. May 2016 A1
20160144428 Mironets et al. May 2016 A1
20160144430 Haack et al. May 2016 A1
20160144566 Mark et al. May 2016 A1
20160145722 Chou et al. May 2016 A1
20160145990 Mace et al. May 2016 A1
20160146153 Hesselink et al. May 2016 A1
20160151854 Zhai Jun 2016 A1
20160151856 Cook Jun 2016 A1
20160151859 Sparks Jun 2016 A1
20160151860 Engeli et al. Jun 2016 A1
20160151861 Soracco et al. Jun 2016 A1
20160153271 Mace et al. Jun 2016 A1
20160153272 Mace et al. Jun 2016 A1
20160158843 Yolton et al. Jun 2016 A1
20160158889 Carter et al. Jun 2016 A1
20160159955 Haschick et al. Jun 2016 A1
20160160077 Rolland et al. Jun 2016 A1
20160163744 Yamazaki et al. Jun 2016 A1
20160163948 Wang Jun 2016 A1
20160164046 Uezawa et al. Jun 2016 A1
20160166284 Hacking et al. Jun 2016 A1
20160167160 Hellestam Jun 2016 A1
20160167299 Jallouli et al. Jun 2016 A1
20160167303 Petelet Jun 2016 A1
20160167312 Feinberg et al. Jun 2016 A1
20160168453 Florio et al. Jun 2016 A1
20160168715 Ma et al. Jun 2016 A1
20160172655 Rigobert et al. Jun 2016 A1
20160175787 Merrigan et al. Jun 2016 A1
20160175929 Colin et al. Jun 2016 A1
20160175932 Dimter et al. Jun 2016 A1
20160175934 Lacy et al. Jun 2016 A1
20160175935 Ladewig et al. Jun 2016 A1
20160181217 Prack Jun 2016 A1
20160181601 Usui et al. Jun 2016 A1
20160184891 Mironets Jun 2016 A1
20160184925 Huang et al. Jun 2016 A1
20160184931 Green Jun 2016 A1
20160186579 Suciu et al. Jun 2016 A1
20160186620 Knudsen Jun 2016 A1
20160187166 Ranky et al. Jun 2016 A1
20160190329 Matsumoto et al. Jun 2016 A1
20160190640 Visco et al. Jun 2016 A1
20160193695 Haynes Jul 2016 A1
20160193696 McFarland et al. Jul 2016 A1
20160193697 Shearn Jul 2016 A1
20160193790 Shuck et al. Jul 2016 A1
20160199933 Silvanus et al. Jul 2016 A1
20160200045 Hopkins et al. Jul 2016 A1
20160200046 Zeman et al. Jul 2016 A1
20160200047 Mark et al. Jul 2016 A1
20160201155 Niendorf et al. Jul 2016 A1
20160202042 Snis Jul 2016 A1
20160202043 Snis Jul 2016 A1
20160202101 Sparks Jul 2016 A1
20160204271 Yamazaki et al. Jul 2016 A1
20160207106 Mazyar et al. Jul 2016 A1
20160207109 Buller et al. Jul 2016 A1
20160207112 Pallari Jul 2016 A1
20160211116 Lock Jul 2016 A1
20160211119 Lock Jul 2016 A1
20160214173 Fisser Jul 2016 A1
20160214211 Gregg et al. Jul 2016 A1
20160218106 Matsubayashi Jul 2016 A1
20160221114 Dietrich Aug 2016 A1
20160221115 Loeffel et al. Aug 2016 A1
20160221122 D'Orlando et al. Aug 2016 A1
20160221262 Das et al. Aug 2016 A1
20160221733 Prouvost et al. Aug 2016 A1
20160222807 Liebl et al. Aug 2016 A1
20160223041 Saga et al. Aug 2016 A1
20160228255 Samuelson et al. Aug 2016 A1
20160228929 Williamson et al. Aug 2016 A1
20160228975 Blackmore Aug 2016 A1
20160228987 Baudimont et al. Aug 2016 A1
20160228990 Bruck et al. Aug 2016 A1
20160228991 Ryan et al. Aug 2016 A1
20160228992 Bandyopadhyay et al. Aug 2016 A1
20160229005 Ryan et al. Aug 2016 A1
20160233474 Kagami et al. Aug 2016 A1
20160233487 Jun et al. Aug 2016 A1
20160235929 Bangera et al. Aug 2016 A1
20160236299 Oberhofer Aug 2016 A1
20160237827 Campbell et al. Aug 2016 A1
20160240690 Yamazaki et al. Aug 2016 A1
20160242853 Bangera et al. Aug 2016 A1
20160242931 Wong et al. Aug 2016 A1
20160243620 Butcher Aug 2016 A1
20160243644 Moneta et al. Aug 2016 A1
20160243649 Zheng et al. Aug 2016 A1
20160243652 El-Dasher et al. Aug 2016 A1
20160244212 Destal et al. Aug 2016 A1
20160244625 Clapp et al. Aug 2016 A1
20160244980 Urban et al. Aug 2016 A1
20160247665 Belmonte et al. Aug 2016 A1
20160248115 Hatta et al. Aug 2016 A1
20160250688 Coppola Sep 2016 A1
20160250711 Moagar-Poladian Sep 2016 A1
20160250715 Burbaum et al. Sep 2016 A1
20160250717 Kruger et al. Sep 2016 A1
20160250724 Krol et al. Sep 2016 A1
20160254097 McConnell et al. Sep 2016 A1
20160254511 Hatta et al. Sep 2016 A1
20160254687 Tanaka et al. Sep 2016 A1
20160256925 Heikkila Sep 2016 A1
20160258383 Kobayashi et al. Sep 2016 A1
20160260261 Hsu Sep 2016 A1
20160260948 Nishimoto Sep 2016 A1
20160263704 Schwarze et al. Sep 2016 A1
20160264479 Tomita et al. Sep 2016 A1
20160265362 Slavens et al. Sep 2016 A1
20160265366 Snyder et al. Sep 2016 A1
20160271732 Dutta Sep 2016 A1
20160271870 Brown, Jr. Sep 2016 A1
20160271875 Brown, Jr. Sep 2016 A1
20160271877 Suzuki et al. Sep 2016 A1
20160271878 Nuechterlein et al. Sep 2016 A1
20160271879 Yamashita et al. Sep 2016 A1
20160271884 Herzog Sep 2016 A1
20160273074 Smarsly et al. Sep 2016 A1
20160273079 Das et al. Sep 2016 A1
20160273368 Smarsly et al. Sep 2016 A1
20160273369 McBrien et al. Sep 2016 A1
20160273687 Rubinski et al. Sep 2016 A1
20160276056 Stolyarov et al. Sep 2016 A1
20160279703 Clare et al. Sep 2016 A1
20160279706 Domrose et al. Sep 2016 A1
20160279707 Mattes et al. Sep 2016 A1
20160279708 Hann et al. Sep 2016 A1
20160279734 Schick et al. Sep 2016 A1
20160279735 Hellestam Sep 2016 A1
20160282848 Hellestam Sep 2016 A1
20160288200 Xu et al. Oct 2016 A1
20160288209 Jakimov et al. Oct 2016 A1
20160288244 Stecker Oct 2016 A1
20160288254 Pettit et al. Oct 2016 A1
20160288264 Jones et al. Oct 2016 A1
20160288265 Suzuki et al. Oct 2016 A1
20160288266 Rockstroh et al. Oct 2016 A1
20160288414 Ozbolat et al. Oct 2016 A1
20160289483 Yamamoto et al. Oct 2016 A1
20160297006 Buller et al. Oct 2016 A1
20160297007 Buller et al. Oct 2016 A1
20160297104 Guillemette et al. Oct 2016 A1
20160297141 El-Siblani et al. Oct 2016 A1
20160297148 Ladewig Oct 2016 A1
20160298218 Kilmer et al. Oct 2016 A1
20160298220 Bruck et al. Oct 2016 A1
20160298268 Gallucci et al. Oct 2016 A1
20160301071 Shizuka et al. Oct 2016 A1
20160303656 Lacy et al. Oct 2016 A1
20160303687 Ljungblad Oct 2016 A1
20160303762 Gunther Oct 2016 A1
20160303798 Mironets et al. Oct 2016 A1
20160305256 Knittel et al. Oct 2016 A1
20160305271 Schmidt et al. Oct 2016 A1
20160307678 Unosson et al. Oct 2016 A1
20160307731 Lock Oct 2016 A1
20160310077 Hunter et al. Oct 2016 A1
20160310236 Kopelman et al. Oct 2016 A1
20160310279 Samuelson et al. Oct 2016 A1
20160310282 Bojarski et al. Oct 2016 A1
20160311020 Abeshaus et al. Oct 2016 A1
20160311022 Krebs et al. Oct 2016 A1
20160311160 Nam et al. Oct 2016 A1
20160311162 Liu et al. Oct 2016 A1
20160311165 Mark et al. Oct 2016 A1
20160311230 Conrads et al. Oct 2016 A1
20160312338 Miller Oct 2016 A1
20160312653 DiDomizio et al. Oct 2016 A1
20160313306 Ingber et al. Oct 2016 A1
20160317312 Bojarski et al. Nov 2016 A1
20160318072 Martin et al. Nov 2016 A1
20160318128 Dutton Nov 2016 A1
20160318129 Hu Nov 2016 A1
20160318130 Stempfer et al. Nov 2016 A1
20160318253 Barnhart Nov 2016 A1
20160319677 McBrien et al. Nov 2016 A1
20160319678 Staroselsky et al. Nov 2016 A1
20160321384 Pal et al. Nov 2016 A1
20160324581 Bojarski et al. Nov 2016 A1
20160325355 Nardi et al. Nov 2016 A1
20160325358 Nardi et al. Nov 2016 A1
20160325378 Ohno et al. Nov 2016 A1
20160325383 Xu et al. Nov 2016 A1
20160325492 Hartmann et al. Nov 2016 A1
20160325498 Gelbart Nov 2016 A1
20160325541 Lavrentyev et al. Nov 2016 A1
20160326613 Cui et al. Nov 2016 A1
20160326880 Slavens et al. Nov 2016 A1
20160326892 Grant et al. Nov 2016 A1
20160332229 Snyder et al. Nov 2016 A1
20160332250 Xu et al. Nov 2016 A1
20160332253 Nardi et al. Nov 2016 A1
20160332259 Jones et al. Nov 2016 A1
20160332266 Xu Nov 2016 A1
20160332366 Donovan Nov 2016 A1
20160332371 Staroselsky et al. Nov 2016 A1
20160332379 Paternoster et al. Nov 2016 A1
20160332380 De Pena et al. Nov 2016 A1
20160332384 De Pena et al. Nov 2016 A1
20160336538 Yamazaki et al. Nov 2016 A1
20160339516 Xu Nov 2016 A1
20160339518 Nardi et al. Nov 2016 A1
20160339520 Zhang et al. Nov 2016 A1
20160339521 Dardas et al. Nov 2016 A1
20160339536 Goto Nov 2016 A1
20160339542 Paetz Nov 2016 A1
20160339639 Chivel Nov 2016 A1
20160339642 Donovan Nov 2016 A1
20160339646 Baecker et al. Nov 2016 A1
20160340256 Oribe et al. Nov 2016 A1
20160340768 Margolies et al. Nov 2016 A1
20160346998 Mark et al. Dec 2016 A1
20160348203 Monroe et al. Dec 2016 A1
20160348517 Kenyon et al. Dec 2016 A1
20160349029 Mace et al. Dec 2016 A1
20160351321 Lyoo et al. Dec 2016 A1
20160354064 Bangera et al. Dec 2016 A1
20160354839 Schick et al. Dec 2016 A1
20160354842 Schick et al. Dec 2016 A1
20160354843 Lacy et al. Dec 2016 A1
20160355433 Jedamzik et al. Dec 2016 A1
20160355904 Achuthan et al. Dec 2016 A1
20160358575 Kobayashi et al. Dec 2016 A1
20160358795 Flitsch Dec 2016 A1
20160359050 Sasagawa et al. Dec 2016 A1
20160361765 Danger et al. Dec 2016 A1
20160361872 El-Siblani Dec 2016 A1
20160361873 Maier Dec 2016 A1
20160367264 Geebelen Dec 2016 A1
20160368050 Morris et al. Dec 2016 A1
20160368055 Swaminathan et al. Dec 2016 A1
20160368056 Swaminathan et al. Dec 2016 A1
20160368057 Hopkins et al. Dec 2016 A1
20160368213 Mark Dec 2016 A1
20160369040 Das et al. Dec 2016 A1
20160369096 Rolland et al. Dec 2016 A1
20160370898 Kobayashi Dec 2016 A1
20160375676 Ritchie et al. Dec 2016 A1
20160376453 Hearon Dec 2016 A1
20160376674 Soloway Dec 2016 A1
20160377994 Lafarre et al. Dec 2016 A1
20160378004 Martin Dec 2016 A1
20160380634 Ghanea-Hercock Dec 2016 A1
20160381794 Ahn et al. Dec 2016 A1
20170001253 Stempfer Jan 2017 A1
20170001258 Hildebrand et al. Jan 2017 A1
20170001263 Steiner Jan 2017 A1
20170001374 Graham et al. Jan 2017 A1
20170001377 Meisner et al. Jan 2017 A1
20170001379 Long Jan 2017 A1
20170001919 Kobayashi Jan 2017 A1
20170002978 Ballinger et al. Jan 2017 A1
20170005048 Shigihara et al. Jan 2017 A1
20170005361 Kamezaki et al. Jan 2017 A1
20170007359 Kopelman et al. Jan 2017 A1
20170007360 Kopelman et al. Jan 2017 A1
20170007362 Chen et al. Jan 2017 A1
20170007363 Boronkay Jan 2017 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170007386 Mason et al. Jan 2017 A1
20170008080 Xu Jan 2017 A1
20170008084 Witney et al. Jan 2017 A1
20170008085 Nguyen et al. Jan 2017 A1
20170008086 Jones Jan 2017 A1
20170008123 Mezawa et al. Jan 2017 A1
20170008126 Long et al. Jan 2017 A1
20170008236 Easter et al. Jan 2017 A1
20170008333 Mason et al. Jan 2017 A1
20170009584 Cui et al. Jan 2017 A1
20170014169 Dean et al. Jan 2017 A1
20170014235 Jones et al. Jan 2017 A1
20170014312 Suzuki Jan 2017 A1
20170014903 Sugiura Jan 2017 A1
20170014909 Tanaka et al. Jan 2017 A1
20170014937 Wilhelmy et al. Jan 2017 A1
20170014950 Okada Jan 2017 A1
20170015452 Heuser et al. Jan 2017 A1
20170016093 Karlen et al. Jan 2017 A1
20170016094 Karlen et al. Jan 2017 A1
20170016703 Mace et al. Jan 2017 A1
20170016781 Dave et al. Jan 2017 A1
20170021383 Takai et al. Jan 2017 A1
20170021420 Buller et al. Jan 2017 A1
20170021452 Tanaka et al. Jan 2017 A1
20170021453 Engeli et al. Jan 2017 A1
20170021454 Dallarosa et al. Jan 2017 A1
20170021455 Dallarosa et al. Jan 2017 A1
20170021456 Varetti Jan 2017 A1
20170021562 El-Siblani et al. Jan 2017 A1
20170021565 Deaville Jan 2017 A1
20170021572 Wiesner et al. Jan 2017 A1
20170022608 King et al. Jan 2017 A1
20170023168 Kobayashi et al. Jan 2017 A1
20170025440 Koyama Jan 2017 A1
20170027624 Wilson et al. Feb 2017 A1
20170028472 Shaw et al. Feb 2017 A1
20170028475 Heikkila Feb 2017 A1
20170028589 Capobianco et al. Feb 2017 A1
20170028622 Westlind et al. Feb 2017 A1
20170028631 Hyatt et al. Feb 2017 A1
20170028682 Johnson et al. Feb 2017 A9
20170028703 Xu Feb 2017 A1
20170029300 Yeung et al. Feb 2017 A1
20170030204 Gorokhovsky Feb 2017 A1
20170030399 Sanders et al. Feb 2017 A1
20170031057 Nordahl Feb 2017 A1
20170033068 Prack Feb 2017 A1
20170033129 Hayakawa et al. Feb 2017 A1
20170036238 Zhuang et al. Feb 2017 A1
20170036272 Lafarre et al. Feb 2017 A1
20170036300 Takashima et al. Feb 2017 A1
20170036303 Oribe et al. Feb 2017 A1
20170036783 Snyder Feb 2017 A1
20170036951 Chang et al. Feb 2017 A1
20170037674 Hooper et al. Feb 2017 A1
20170037867 Moricca Feb 2017 A1
20170038047 Golle et al. Feb 2017 A1
20170043395 She et al. Feb 2017 A1
20170043402 Di Serio et al. Feb 2017 A1
20170044416 Sharon et al. Feb 2017 A1
20170047583 Kamezaki et al. Feb 2017 A1
20170050198 Ohno et al. Feb 2017 A1
20170050241 Thomas et al. Feb 2017 A1
20170050242 Melton Feb 2017 A1
20170050254 Holverson et al. Feb 2017 A1
20170050261 Li et al. Feb 2017 A1
20170050268 Fujiya et al. Feb 2017 A1
20170050270 Miyano et al. Feb 2017 A1
20170050271 Wendt et al. Feb 2017 A1
20170050349 Hara et al. Feb 2017 A1
20170051386 Carter et al. Feb 2017 A1
20170051613 Saha et al. Feb 2017 A1
20170051675 Mcmasters et al. Feb 2017 A1
20170053584 Takahashi Feb 2017 A1
20170056179 Lorio Mar 2017 A1
20170057013 Gillespie et al. Mar 2017 A1
20170059529 Kamel et al. Mar 2017 A1
20170066051 Ackelid et al. Mar 2017 A1
20170066052 Abe et al. Mar 2017 A1
20170066187 Mark et al. Mar 2017 A1
20170066928 Camps et al. Mar 2017 A1
20170067154 Grotjohn Mar 2017 A1
20170067344 Willett, Jr. et al. Mar 2017 A1
20170067788 Dautova et al. Mar 2017 A1
20170068774 Cluckers et al. Mar 2017 A1
20170069817 Cauchon et al. Mar 2017 A1
20170072104 Sugawara Mar 2017 A1
20170072465 Welch et al. Mar 2017 A1
20170072466 Zehavi et al. Mar 2017 A1
20170072468 Schilling et al. Mar 2017 A1
20170072635 El-Siblani et al. Mar 2017 A1
20170074285 Marshall et al. Mar 2017 A1
20170080641 El-Siblani Mar 2017 A1
20170087635 Wilkes et al. Mar 2017 A1
20170087661 Backlund et al. Mar 2017 A1
20170087666 Sasaki et al. Mar 2017 A1
20170087670 Kalentics et al. Mar 2017 A1
20170087765 Rundlett et al. Mar 2017 A1
20170088918 Cui et al. Mar 2017 A1
20170090462 Dave et al. Mar 2017 A1
20170092400 Bharadwaj Mar 2017 A1
20170092565 Chen et al. Mar 2017 A1
20170095882 Mireles et al. Apr 2017 A1
20170095888 Butcher Apr 2017 A1
20170100209 Wen Apr 2017 A1
20170100210 Wen Apr 2017 A1
20170100214 Wen Apr 2017 A1
20170100215 Khouri Apr 2017 A1
20170100817 Ganapathiappan et al. Apr 2017 A1
20170100888 Batchelder Apr 2017 A1
20170100891 Meisner et al. Apr 2017 A1
20170100893 Meisner et al. Apr 2017 A1
20170100899 El-Siblani et al. Apr 2017 A1
20170101707 Kottilingam et al. Apr 2017 A1
20170101875 Rosenzweig et al. Apr 2017 A1
20170103714 Yamamoto et al. Apr 2017 A1
20170106432 Clew et al. Apr 2017 A1
20170106438 Cook et al. Apr 2017 A1
20170106443 Karlsson Apr 2017 A1
20170106444 Ishida et al. Apr 2017 A1
20170106445 Schwarze et al. Apr 2017 A1
20170106446 Okamoto et al. Apr 2017 A1
20170106474 Bruck et al. Apr 2017 A1
20170106477 Mironets et al. Apr 2017 A1
20170106570 Karlsson Apr 2017 A1
20170106593 Khairallah Apr 2017 A1
20170107385 Kumai et al. Apr 2017 A1
20170107636 Barzi et al. Apr 2017 A1
20170107764 Grant et al. Apr 2017 A1
20170107821 Schwarz Apr 2017 A1
20170108780 Eva Apr 2017 A1
20170110728 Kobayashi et al. Apr 2017 A1
20170110760 Hatta et al. Apr 2017 A1
20170113303 Rockstroh et al. Apr 2017 A1
20170113416 DeSimone et al. Apr 2017 A1
20170114233 Asami et al. Apr 2017 A1
20170115594 Martin Apr 2017 A1
20170119531 Bojarski et al. May 2017 A1
20170120326 La May 2017 A1
20170120332 DeMuth et al. May 2017 A1
20170120333 DeMuth et al. May 2017 A1
20170120334 DeMuth et al. May 2017 A1
20170120335 DeMuth et al. May 2017 A1
20170120336 DeMuth et al. May 2017 A1
20170120337 Kanko et al. May 2017 A1
20170120359 Carter et al. May 2017 A1
20170120370 Ahn et al. May 2017 A1
20170120376 Cheverton et al. May 2017 A1
20170120377 Webster et al. May 2017 A1
20170120385 Tsuji et al. May 2017 A1
20170120386 Lin et al. May 2017 A1
20170120387 DeMuth et al. May 2017 A1
20170120393 Lin et al. May 2017 A1
20170120416 Chockalingam et al. May 2017 A1
20170120518 DeMuth et al. May 2017 A1
20170120519 Mark May 2017 A1
20170120529 DeMuth et al. May 2017 A1
20170120530 DeMuth et al. May 2017 A1
20170120537 DeMuth et al. May 2017 A1
20170120538 DeMuth et al. May 2017 A1
20170122322 Zinniel et al. May 2017 A1
20170123222 DeMuth et al. May 2017 A1
20170123237 DeMuth et al. May 2017 A1
20170125908 Pance et al. May 2017 A1
20170125909 Pance et al. May 2017 A1
20170125910 Pance et al. May 2017 A1
20170126087 Soderberg May 2017 A1
20170128174 Mayr et al. May 2017 A1
20170128961 Richardson May 2017 A1
20170129049 Schwarze et al. May 2017 A1
20170129052 Buller et al. May 2017 A1
20170129060 Szuromi et al. May 2017 A1
20170129168 El-Siblani et al. May 2017 A1
20170129180 Coates et al. May 2017 A1
20170129184 Buller et al. May 2017 A1
20170129185 Buller et al. May 2017 A1
20170129806 Fujii et al. May 2017 A1
20170130591 Bunker May 2017 A1
20170130599 Bunker et al. May 2017 A1
20170135909 Takei et al. May 2017 A1
20170136540 Dods May 2017 A1
20170136541 Eager May 2017 A1
20170136542 Nordkvist et al. May 2017 A1
20170136543 Hermann et al. May 2017 A1
20170136545 Yoshimura et al. May 2017 A1
20170136574 Zenzinger et al. May 2017 A1
20170136578 Yoshimura May 2017 A1
20170136603 Ganapathiappan et al. May 2017 A1
20170136699 Erb et al. May 2017 A1
20170136708 Das et al. May 2017 A1
20170137327 Capobianco et al. May 2017 A1
20170138164 Mace et al. May 2017 A1
20170139082 Takai et al. May 2017 A1
20170143315 Bangera et al. May 2017 A1
20170144219 Xu May 2017 A1
20170144223 Gold et al. May 2017 A1
20170144224 DeMuth et al. May 2017 A1
20170144248 Yoshimura et al. May 2017 A1
20170144250 Gold et al. May 2017 A1
20170144254 Buller et al. May 2017 A1
20170145578 Wirth et al. May 2017 A1
20170145584 Wirth et al. May 2017 A1
20170145586 Xiao May 2017 A1
20170148562 Lee et al. May 2017 A1
20170151631 Kuo et al. Jun 2017 A1
20170151718 Rolland et al. Jun 2017 A1
20170151719 Swartz et al. Jun 2017 A1
20170154713 Simon et al. Jun 2017 A1
20170155309 Jassal et al. Jun 2017 A1
20170157850 Duan et al. Jun 2017 A1
20170159447 Clum et al. Jun 2017 A1
20170162701 Yamazaki Jun 2017 A1
20170162790 Kato Jun 2017 A1
20170164700 Zito Jun 2017 A1
20170165532 Khan et al. Jun 2017 A1
20170165751 Buller et al. Jun 2017 A1
20170165752 Buller et al. Jun 2017 A1
20170165753 Buller et al. Jun 2017 A1
20170165754 Buller et al. Jun 2017 A1
20170165781 Veldsman et al. Jun 2017 A1
20170165790 McCarthy et al. Jun 2017 A1
20170165791 Kamachi et al. Jun 2017 A1
20170165792 Buller et al. Jun 2017 A1
20170165916 El-Siblani Jun 2017 A1
20170166730 Tsutsumi et al. Jun 2017 A1
20170167000 Dial et al. Jun 2017 A1
20170167270 Itzel et al. Jun 2017 A1
20170167274 Itzel Jun 2017 A1
20170173628 Downing Jun 2017 A1
20170173681 Moricca et al. Jun 2017 A1
20170173683 Simpson et al. Jun 2017 A1
20170173688 Miyashita Jun 2017 A1
20170173691 Jonasson Jun 2017 A1
20170173692 Myerberg et al. Jun 2017 A1
20170173693 Myerberg et al. Jun 2017 A1
20170173694 Myerberg et al. Jun 2017 A1
20170173695 Myerberg et al. Jun 2017 A1
20170173696 Sheinman Jun 2017 A1
20170173697 Myerberg et al. Jun 2017 A1
20170173735 Hsu Jun 2017 A1
20170173736 Gray Jun 2017 A1
20170173737 Gray Jun 2017 A1
20170173747 Jones et al. Jun 2017 A1
20170173868 Mark Jun 2017 A1
20170173872 McCall et al. Jun 2017 A1
20170173874 Batchelder et al. Jun 2017 A1
20170173877 Myerberg et al. Jun 2017 A1
20170173878 Myerberg et al. Jun 2017 A1
20170173879 Myerberg et al. Jun 2017 A1
20170173883 Gray et al. Jun 2017 A1
20170173892 Steele Jun 2017 A1
20170174545 Kunisa et al. Jun 2017 A1
20170174565 Kase et al. Jun 2017 A1
20170175756 Zotz Jun 2017 A1
20170179482 Verbrugge et al. Jun 2017 A1
20170181291 Bell et al. Jun 2017 A1
20170182556 Ramaswamy et al. Jun 2017 A1
20170182558 Shimizu et al. Jun 2017 A1
20170182560 Myerberg et al. Jun 2017 A1
20170182594 Crear et al. Jun 2017 A1
20170182596 Toru Jun 2017 A1
20170182598 Crear et al. Jun 2017 A1
20170183257 Apitz et al. Jun 2017 A1
20170183497 Rodgers et al. Jun 2017 A9
20170183870 Cheung et al. Jun 2017 A1
20170186143 Ohno et al. Jun 2017 A1
20170189553 Hunter Jul 2017 A1
20170189961 Ferrar Jul 2017 A1
20170189962 Kestler et al. Jul 2017 A1
20170189963 Buller et al. Jul 2017 A1
20170189964 Backlund et al. Jul 2017 A1
20170189965 Vaidya et al. Jul 2017 A1
20170191177 Whitaker et al. Jul 2017 A1
20170194263 Kato Jul 2017 A1
20170194686 Ito et al. Jul 2017 A1
20170197246 Wachter et al. Jul 2017 A1
20170197278 Garry et al. Jul 2017 A1
20170197330 Surjaatmadja Jul 2017 A1
20170197359 Yang et al. Jul 2017 A1
20170197875 Fujii et al. Jul 2017 A1
20170203355 Satoh et al. Jul 2017 A1
20170203363 Rowland et al. Jul 2017 A1
20170203364 Ramaswamy et al. Jul 2017 A1
20170203365 Pays et al. Jul 2017 A1
20170203387 Ladewig et al. Jul 2017 A1
20170203391 Budge Jul 2017 A1
20170203406 Ganapathiappan et al. Jul 2017 A1
20170203408 Ganapathiappan et al. Jul 2017 A1
20170203517 Crear et al. Jul 2017 A1
20170209908 Smathers et al. Jul 2017 A1
20170209923 Giovannetti et al. Jul 2017 A1
20170209929 Ishida et al. Jul 2017 A1
20170209931 Ishida et al. Jul 2017 A1
20170209954 Kato et al. Jul 2017 A1
20170209958 Soshi Jul 2017 A1
20170209963 Smathers et al. Jul 2017 A1
20170210070 Sreekumar Jul 2017 A1
20170210144 Hosaka Jul 2017 A1
20170210662 Wagner et al. Jul 2017 A1
20170211331 Vempati et al. Jul 2017 A1
20170211990 Gouko et al. Jul 2017 A1
20170212088 Acharya et al. Jul 2017 A1
20170216916 Nyrhila et al. Aug 2017 A1
20170216921 Oswald et al. Aug 2017 A1
20170216962 Schultz et al. Aug 2017 A1
20170216966 DeMuth et al. Aug 2017 A1
20170217093 DeMuth et al. Aug 2017 A1
20170217095 Buller et al. Aug 2017 A1
20170217105 Taniuchi Aug 2017 A1
20170217181 Yamada Aug 2017 A1
20170218228 Jose et al. Aug 2017 A1
20170219855 DeMuth et al. Aug 2017 A1
20170220031 Morovic, Jr. et al. Aug 2017 A1
20170225227 Volk Aug 2017 A1
20170225228 Nagahama Aug 2017 A1
20170225229 Liu Aug 2017 A1
20170225393 Shkolnik Aug 2017 A1
20170225394 Rodgers et al. Aug 2017 A9
20170225398 Verschueren et al. Aug 2017 A1
20170226362 Fratello et al. Aug 2017 A1
20170227800 Yamazaki et al. Aug 2017 A1
20170229731 Visco et al. Aug 2017 A1
20170231783 Lang et al. Aug 2017 A1
20170231873 Sakamoto et al. Aug 2017 A1
20170231874 Sakamoto et al. Aug 2017 A1
20170232511 Fieldman et al. Aug 2017 A1
20170232513 Coffman Aug 2017 A1
20170232514 Bruck Aug 2017 A1
20170232515 DeMuth et al. Aug 2017 A1
20170232518 Shi et al. Aug 2017 A1
20170232519 Pan et al. Aug 2017 A1
20170232549 Lacaze et al. Aug 2017 A1
20170232552 Crear et al. Aug 2017 A1
20170232557 DeMuth et al. Aug 2017 A1
20170232637 DeMuth et al. Aug 2017 A1
20170232674 Mark Aug 2017 A1
20170233287 Li et al. Aug 2017 A1
20170233574 Rodgers et al. Aug 2017 A9
20170234138 Bunker Aug 2017 A1
20170235852 Joshi et al. Aug 2017 A1
20170239718 Steinhoff, Jr. et al. Aug 2017 A1
20170239719 Buller et al. Aug 2017 A1
20170239720 Levin et al. Aug 2017 A1
20170239721 Buller et al. Aug 2017 A1
20170239722 Goehlich et al. Aug 2017 A1
20170239723 Hoyt et al. Aug 2017 A1
20170239724 Diaz et al. Aug 2017 A1
20170239725 Ufton Aug 2017 A1
20170239752 Buller et al. Aug 2017 A1
20170239887 Rolland et al. Aug 2017 A1
20170239891 Buller et al. Aug 2017 A1
20170239892 Buller et al. Aug 2017 A1
20170241830 Jaaskelainen Aug 2017 A1
20170242424 Spears Aug 2017 A1
20170243900 Yamazaki Aug 2017 A1
20170246682 Duerig Aug 2017 A1
20170246689 Garry Aug 2017 A1
20170246709 Guerrier et al. Aug 2017 A1
20170246804 El-Siblani et al. Aug 2017 A1
20170247785 Bandyopadhyay et al. Aug 2017 A1
20170248319 McMahan et al. Aug 2017 A1
20170249440 Lang et al. Aug 2017 A1
20170252271 Klee et al. Sep 2017 A1
20170252787 Stawovy Sep 2017 A1
20170252806 Wienberg Sep 2017 A1
20170252812 Mykulowycz et al. Sep 2017 A1
20170252813 Myerberg et al. Sep 2017 A1
20170252814 Myerberg et al. Sep 2017 A1
20170252815 Fontana et al. Sep 2017 A1
20170252816 Shim et al. Sep 2017 A1
20170252817 Mykulowycz et al. Sep 2017 A1
20170252818 Gibson et al. Sep 2017 A1
20170252819 Gibson et al. Sep 2017 A1
20170252820 Myerberg et al. Sep 2017 A1
20170252846 Stawovy Sep 2017 A1
20170252851 Fulop et al. Sep 2017 A1
20170252854 Maier et al. Sep 2017 A1
20170252860 Bamberg et al. Sep 2017 A1
20170252967 Guillemette et al. Sep 2017 A9
20170252978 Claes Sep 2017 A1
20170253523 O'Malley et al. Sep 2017 A1
20170259502 Chapiro et al. Sep 2017 A1
20170260865 Schloffer Sep 2017 A1
20170266081 Blackwell et al. Sep 2017 A1
20170266759 Fieret et al. Sep 2017 A1
20170266879 Mathur Sep 2017 A1
20170271674 Cheng et al. Sep 2017 A1
20170271837 Hemenway et al. Sep 2017 A1
20170274454 Feng Sep 2017 A1
20170274456 Walker et al. Sep 2017 A1
20170276023 Richter Sep 2017 A1
20170278975 Yamazaki et al. Sep 2017 A1
20170282246 Liebl et al. Oct 2017 A1
20170282247 Cullinan et al. Oct 2017 A1
20170282296 Kitani et al. Oct 2017 A1
20170282297 Ohno Oct 2017 A1
20170282455 DeFelice et al. Oct 2017 A1
20170284676 North et al. Oct 2017 A1
20170285227 Chen et al. Oct 2017 A1
20170288224 Cheng et al. Oct 2017 A1
20170290746 Ida et al. Oct 2017 A1
20170291077 Madson et al. Oct 2017 A1
20170291260 McCarren et al. Oct 2017 A1
20170291261 Mathur Oct 2017 A1
20170291263 Mironets et al. Oct 2017 A1
20170291362 Tombs et al. Oct 2017 A1
20170292174 Karabin et al. Oct 2017 A1
20170292195 Roberge Oct 2017 A1
20170294288 Lock Oct 2017 A1
20170294291 Saleh et al. Oct 2017 A1
20170296441 Renn et al. Oct 2017 A1
20170296442 Renn et al. Oct 2017 A1
20170297097 Gibson et al. Oct 2017 A1
20170297098 Myerberg et al. Oct 2017 A1
20170297099 Gibson et al. Oct 2017 A1
20170297100 Gibson et al. Oct 2017 A1
20170297101 Casper et al. Oct 2017 A1
20170297102 Chin et al. Oct 2017 A1
20170297103 Myerberg et al. Oct 2017 A1
20170297104 Gibson et al. Oct 2017 A1
20170297106 Myerberg et al. Oct 2017 A1
20170297108 Gibson et al. Oct 2017 A1
20170297109 Gibson et al. Oct 2017 A1
20170297111 Myerberg et al. Oct 2017 A1
20170297267 Liu et al. Oct 2017 A1
20170297275 Mark et al. Oct 2017 A1
20170297674 Zahlen et al. Oct 2017 A1
20170299181 Graichen et al. Oct 2017 A1
20170299973 Frauens Oct 2017 A1
20170304894 Buller Oct 2017 A1
20170304895 Porch et al. Oct 2017 A1
20170304896 Kovalchuk et al. Oct 2017 A1
20170304897 Walrand et al. Oct 2017 A1
20170304900 Strangman Oct 2017 A1
20170304933 Miles et al. Oct 2017 A1
20170304944 Symeonidis et al. Oct 2017 A1
20170304945 Sutcliffe Oct 2017 A1
20170304946 Shibazaki Oct 2017 A1
20170304947 Shibazaki Oct 2017 A1
20170306221 Koole et al. Oct 2017 A1
20170306447 Lin et al. Oct 2017 A1
20170306448 Lin et al. Oct 2017 A1
20170306449 Lin et al. Oct 2017 A1
20170306450 Lin et al. Oct 2017 A1
20170306457 Lin et al. Oct 2017 A1
20170306458 Lin et al. Oct 2017 A1
20170306459 Lin et al. Oct 2017 A1
20170306460 Lin et al. Oct 2017 A1
20170306766 Munzer Oct 2017 A1
20170307859 Li et al. Oct 2017 A1
20170309710 Davis Oct 2017 A1
20170312821 DeFelice et al. Nov 2017 A1
20170312822 Kimblad Nov 2017 A1
20170312826 Lafarre et al. Nov 2017 A1
20170312857 Bourell et al. Nov 2017 A1
20170312858 Eriksson et al. Nov 2017 A1
20170312984 Ruiz et al. Nov 2017 A1
20170312985 Talgorn et al. Nov 2017 A1
20170314109 McCloskey Nov 2017 A1
20170314114 Ozbaysal et al. Nov 2017 A1
20170315538 Sauer et al. Nov 2017 A1
20170317336 Zhamu et al. Nov 2017 A1
20170320162 Wang Nov 2017 A1
20170320168 Martinsen Nov 2017 A1
20170320264 Herzog et al. Nov 2017 A1
20170320277 Wang Nov 2017 A1
20170320773 Bookbinder et al. Nov 2017 A1
20170322487 Baur et al. Nov 2017 A1
20170323627 Barefoot Nov 2017 A1
20170326668 Grabau Nov 2017 A1
20170326681 Sidhu et al. Nov 2017 A1
20170326690 Heard et al. Nov 2017 A1
20170326788 Alvarez et al. Nov 2017 A1
20170326797 Alvarez et al. Nov 2017 A1
20170326805 Alvarez et al. Nov 2017 A1
20170326816 Seepersad et al. Nov 2017 A1
20170330674 Lee et al. Nov 2017 A1
20170332733 Cluckers et al. Nov 2017 A1
20170333295 Hatanaka et al. Nov 2017 A1
20170333994 Schmitt et al. Nov 2017 A1
20170333995 Ott et al. Nov 2017 A1
20170334023 Mohr Nov 2017 A1
20170334024 Buller et al. Nov 2017 A1
20170334133 Swartz et al. Nov 2017 A9
20170334136 Mark et al. Nov 2017 A1
20170334725 Noyes et al. Nov 2017 A1
20170335436 Schloffer et al. Nov 2017 A1
20170338392 Marutani Nov 2017 A1
20170338472 Zhamu et al. Nov 2017 A1
20170341141 Ackelid Nov 2017 A1
20170341142 Ackelid Nov 2017 A1
20170341175 Ladewig et al. Nov 2017 A1
20170341182 Casper et al. Nov 2017 A1
20170341183 Buller et al. Nov 2017 A1
20170341451 Minamidate et al. Nov 2017 A1
20170342303 Stevenson et al. Nov 2017 A1
20170342535 She et al. Nov 2017 A1
20170348201 Gruner et al. Dec 2017 A1
20170348202 Gruner et al. Dec 2017 A1
20170348458 Kesti et al. Dec 2017 A1
20170348792 Fager Dec 2017 A1
20170348906 Nowak et al. Dec 2017 A1
20170348909 Clark et al. Dec 2017 A1
20170349756 Gruner et al. Dec 2017 A1
20170350259 Dutta et al. Dec 2017 A1
20170354805 Stanley et al. Dec 2017 A1
20170354806 Stanley et al. Dec 2017 A1
20170355135 Tombs Dec 2017 A1
20170355138 Mark Dec 2017 A1
20170355146 Buller et al. Dec 2017 A1
20170355147 Buller et al. Dec 2017 A1
20170355855 Gruner et al. Dec 2017 A1
20170356068 Engeli et al. Dec 2017 A1
20170358685 Sasagawa et al. Dec 2017 A1
20170358795 Kung et al. Dec 2017 A1
20170360534 Sun et al. Dec 2017 A1
20170361405 Renz et al. Dec 2017 A1
20170362119 Dejneka et al. Dec 2017 A1
20170362687 Rios et al. Dec 2017 A1
20170365473 Davis Dec 2017 A1
20170365843 Kawase et al. Dec 2017 A1
20170365853 Visco et al. Dec 2017 A1
20170368603 Beals et al. Dec 2017 A1
20170368640 Herzog et al. Dec 2017 A1
20170368644 Handwerker et al. Dec 2017 A1
20170368647 Bunker Dec 2017 A1
20170368740 Rolland Dec 2017 A1
20170368816 Batchelder et al. Dec 2017 A1
20180000501 Baym et al. Jan 2018 A1
20180000502 Baym et al. Jan 2018 A1
20180000503 Baym et al. Jan 2018 A1
20180000571 Watanabe Jan 2018 A1
20180001423 Stevenson et al. Jan 2018 A1
20180001424 Brunhuber et al. Jan 2018 A1
20180001547 Cuypers et al. Jan 2018 A1
20180001553 Buller et al. Jan 2018 A1
20180001556 Buller et al. Jan 2018 A1
20180001557 Buller et al. Jan 2018 A1
20180001567 Juan et al. Jan 2018 A1
20180006293 Demaray et al. Jan 2018 A1
20180009007 Craft et al. Jan 2018 A1
20180009054 Forseth et al. Jan 2018 A1
20180009064 Miyashita Jan 2018 A1
20180009134 Berben et al. Jan 2018 A1
20180010001 Hersam et al. Jan 2018 A1
20180010221 Aswathanarayanaswamy et al. Jan 2018 A1
20180010237 Forseth et al. Jan 2018 A1
20180014844 Conlon Jan 2018 A1
20180015564 Honda Jan 2018 A1
20180015565 Goto Jan 2018 A1
20180015566 Etter et al. Jan 2018 A1
20180019458 Kagami et al. Jan 2018 A1
20180021473 Yliperttula et al. Jan 2018 A1
20180021877 Rios et al. Jan 2018 A1
20180021878 Karlen et al. Jan 2018 A1
20180022022 Tyler Jan 2018 A1
20180022065 Swartz et al. Jan 2018 A1
20180022640 Dejneka et al. Jan 2018 A1
20180026171 Kurosaki et al. Jan 2018 A1
20180027615 Rios et al. Jan 2018 A1
20180027616 Rios et al. Jan 2018 A1
20180029124 Okamoto et al. Feb 2018 A1
20180029125 Okamoto et al. Feb 2018 A1
20180029241 Kim et al. Feb 2018 A1
20180029294 Herzog et al. Feb 2018 A1
20180029295 Herzog et al. Feb 2018 A1
20180029306 Gold et al. Feb 2018 A1
20180031028 Himmelmann Feb 2018 A1
20180036939 Sundaresan Feb 2018 A1
20180036945 Lereboullet et al. Feb 2018 A1
20180036953 Gottschalk-Gaudig Feb 2018 A1
20180037546 Sugino et al. Feb 2018 A1
20180038167 Xu et al. Feb 2018 A1
20180038995 Fujii Feb 2018 A1
20180040916 Tsuda et al. Feb 2018 A1
20180042718 Remenschneider et al. Feb 2018 A1
20180043455 Vigdal et al. Feb 2018 A1
20180043467 Huysmans Feb 2018 A1
20180044523 Rodgers et al. Feb 2018 A1
20180047696 Yamada et al. Feb 2018 A1
20180050390 Gibson et al. Feb 2018 A1
20180050423 Hoferer Feb 2018 A1
20180050490 Swartz et al. Feb 2018 A1
20180050493 Sanz Ananos et al. Feb 2018 A1
20180050495 Stolyarov et al. Feb 2018 A1
20180052087 Swanner, Jr. et al. Feb 2018 A1
20180052254 Takai et al. Feb 2018 A1
20180055641 Jones et al. Mar 2018 A1
20180056389 Grant et al. Mar 2018 A1
20180056390 O'Neill Mar 2018 A1
20180056391 Buller et al. Mar 2018 A1
20180056392 Ichijo Mar 2018 A1
20180056396 Menon et al. Mar 2018 A1
20180056446 Mezawa Mar 2018 A1
20180057142 Wilkerson Mar 2018 A1
20180061279 Niimi et al. Mar 2018 A1
20180065144 Tyler Mar 2018 A1
20180065178 Rowland et al. Mar 2018 A1
20180065181 Mori et al. Mar 2018 A1
20180065182 Money et al. Mar 2018 A1
20180065186 Cullinan et al. Mar 2018 A1
20180065208 Mori et al. Mar 2018 A1
20180065209 Foret Mar 2018 A1
20180065295 Alves Mar 2018 A1
20180065298 Tyler Mar 2018 A1
20180065300 Tyler et al. Mar 2018 A1
20180065304 Stockett et al. Mar 2018 A1
20180065305 Tyler Mar 2018 A1
20180065306 Tyler et al. Mar 2018 A1
20180065307 Stockett et al. Mar 2018 A1
20180065308 Stockett et al. Mar 2018 A1
20180065309 Tyler et al. Mar 2018 A1
20180065316 Tyler et al. Mar 2018 A1
20180065317 Tyler Mar 2018 A1
20180065318 Tyler Mar 2018 A1
20180065320 Tyler Mar 2018 A1
20180065322 Tyler et al. Mar 2018 A1
20180066358 Newman et al. Mar 2018 A1
20180066603 Evers et al. Mar 2018 A1
20180067464 Budge et al. Mar 2018 A1
20180070458 Ahn et al. Mar 2018 A1
20180071175 Stelzig et al. Mar 2018 A1
20180071819 Connor et al. Mar 2018 A1
20180071821 Crear et al. Mar 2018 A1
20180071825 Schmitt et al. Mar 2018 A1
20180071949 Giles Mar 2018 A1
20180071986 Buller et al. Mar 2018 A1
20180071988 Emamjomeh et al. Mar 2018 A1
20180071989 Zenou et al. Mar 2018 A1
20180072040 Mark et al. Mar 2018 A1
20180072613 Minorikawa et al. Mar 2018 A1
20180072630 Beaman et al. Mar 2018 A1
20180073532 Whalen et al. Mar 2018 A1
20180078936 Owens et al. Mar 2018 A1
20180079003 Lin et al. Mar 2018 A1
20180079029 Scott et al. Mar 2018 A1
20180079033 Krueger et al. Mar 2018 A1
20180079034 Shuck Mar 2018 A1
20180079125 Perez et al. Mar 2018 A1
20180083266 Zhamu et al. Mar 2018 A1
20180083281 Cheng et al. Mar 2018 A1
20180083282 Baba et al. Mar 2018 A1
20180083289 Zhamu et al. Mar 2018 A1
20180085605 Maharbiz et al. Mar 2018 A1
20180085826 Luo et al. Mar 2018 A1
20180085856 Bour et al. Mar 2018 A1
20180086004 Van Espen Mar 2018 A1
20180086025 Yoshigahara et al. Mar 2018 A1
20180087157 Harrison et al. Mar 2018 A1
20180088399 Fukushi et al. Mar 2018 A1
20180088462 Vyatskikh et al. Mar 2018 A1
20180089824 Bevan Mar 2018 A1
20180093325 Mori et al. Apr 2018 A1
20180093347 Obara et al. Apr 2018 A1
20180093418 Lappas et al. Apr 2018 A1
20180093419 Lappas et al. Apr 2018 A1
20180094953 Colson et al. Apr 2018 A1
20180095450 Lappas et al. Apr 2018 A1
20180096175 Schmeling et al. Apr 2018 A1
20180098919 Pallari et al. Apr 2018 A1
20180099307 Takeda et al. Apr 2018 A1
20180099331 Hoebel et al. Apr 2018 A1
20180102543 Su et al. Apr 2018 A1
20180104770 Liebl et al. Apr 2018 A1
20180105903 Steinwandel et al. Apr 2018 A9
20180111191 Mironets et al. Apr 2018 A1
20180111193 Romano et al. Apr 2018 A1
20180111194 Buller et al. Apr 2018 A1
20180111195 Romano et al. Apr 2018 A1
20180111196 Brezoczky et al. Apr 2018 A1
20180111197 Romano et al. Apr 2018 A1
20180111198 Vitanov et al. Apr 2018 A1
20180111219 Ackelid Apr 2018 A1
20180111317 Herzog et al. Apr 2018 A1
20180111318 Herzog et al. Apr 2018 A1
20180111319 Brezoczky et al. Apr 2018 A1
20180111334 Gold et al. Apr 2018 A1
20180113445 Pressacco et al. Apr 2018 A1
20180115072 Pance et al. Apr 2018 A1
20180116762 Kopelman May 2018 A1
20180117674 Cavaliere et al. May 2018 A1
20180117675 Foret et al. May 2018 A1
20180117713 Foret et al. May 2018 A1
20180117845 Buller et al. May 2018 A1
20180122541 Chou et al. May 2018 A1
20180122629 Yamazaki May 2018 A1
20180124341 Harding et al. May 2018 A1
20180125365 Hunter et al. May 2018 A1
20180126460 Murphree et al. May 2018 A1
20180126461 Buller et al. May 2018 A1
20180126462 Murphree et al. May 2018 A1
20180126487 Chen et al. May 2018 A1
20180126637 Tyler et al. May 2018 A1
20180126638 Tyler et al. May 2018 A1
20180126639 Tyler May 2018 A1
20180126640 Tyler et al. May 2018 A1
20180126641 Tyler et al. May 2018 A1
20180126642 Tyler et al. May 2018 A1
20180126648 Tyler May 2018 A1
20180126649 Romano et al. May 2018 A1
20180126650 Murphree et al. May 2018 A1
20180126655 Tyler et al. May 2018 A1
20180126666 Swartz et al. May 2018 A9
20180126720 Tyler et al. May 2018 A1
20180127317 Mayr et al. May 2018 A1
20180128803 Foret May 2018 A1
20180131040 Visco et al. May 2018 A1
20180133583 Tran et al. May 2018 A1
20180133801 Buller et al. May 2018 A1
20180133804 van Hassel et al. May 2018 A1
20180133839 Shigeta May 2018 A1
20180133840 Noriyama et al. May 2018 A1
20180133956 Buller et al. May 2018 A1
20180133958 Niitani et al. May 2018 A1
20180134027 O'Neill et al. May 2018 A1
20180136367 Fujii May 2018 A1
20180136458 Plucinski et al. May 2018 A1
20180141119 Shu et al. May 2018 A1
20180141123 Revanur et al. May 2018 A1
20180141126 Buller et al. May 2018 A1
20180141127 Richard May 2018 A1
20180141159 Niitani et al. May 2018 A1
20180141160 Karp et al. May 2018 A1
20180141162 Etter et al. May 2018 A1
20180141174 Mori et al. May 2018 A1
20180141235 Guenster et al. May 2018 A1
20180141274 Fink et al. May 2018 A1
20180141305 Swartz et al. May 2018 A9
20180143147 Milner et al. May 2018 A1
20180144934 Dolzhnikov et al. May 2018 A1
20180147627 Nakamura et al. May 2018 A1
20180147628 Saxena et al. May 2018 A1
20180147653 Kitamura et al. May 2018 A1
20180147654 Kitamura et al. May 2018 A1
20180147655 Ackelid May 2018 A1
20180147669 Narayanan et al. May 2018 A1
20180147779 Yamada et al. May 2018 A1
20180148378 Mayr et al. May 2018 A1
20180148379 Schaedler et al. May 2018 A1
20180148380 Eckel et al. May 2018 A1
20180148585 Eckel et al. May 2018 A1
20180149039 Loeffel et al. May 2018 A1
20180149196 Gorges et al. May 2018 A1
20180151048 Winkler May 2018 A1
20180153205 Wu Jun 2018 A1
20180154437 Mark Jun 2018 A1
20180154438 Mark Jun 2018 A1
20180154439 Mark Jun 2018 A1
20180154440 Gibson et al. Jun 2018 A1
20180154441 Miller et al. Jun 2018 A1
20180154442 Milshtein et al. Jun 2018 A1
20180154443 Milshtein et al. Jun 2018 A1
20180154444 Jonasson Jun 2018 A1
20180154484 Hall Jun 2018 A1
20180154574 Mark Jun 2018 A1
20180154580 Mark Jun 2018 A1
20180154591 Hauber et al. Jun 2018 A1
20180154657 Iio et al. Jun 2018 A1
20180159016 Cauchon et al. Jun 2018 A1
20180161873 Brown et al. Jun 2018 A1
20180161874 Nuechterlein Jun 2018 A1
20180161875 Buller et al. Jun 2018 A1
20180161931 Li et al. Jun 2018 A1
20180161932 Ohno et al. Jun 2018 A1
20180161934 Boswell Jun 2018 A1
20180161935 Brown et al. Jun 2018 A1
20180161954 Bajaj et al. Jun 2018 A1
20180162013 Fulop et al. Jun 2018 A1
20180162044 Gibson et al. Jun 2018 A1
20180162047 Gibson et al. Jun 2018 A1
20180162048 Gibson et al. Jun 2018 A1
20180162053 Fujita et al. Jun 2018 A1
20180162771 Fujii Jun 2018 A1
20180163311 Engel et al. Jun 2018 A1
20180166251 Yuan et al. Jun 2018 A1
20180166665 Audebert et al. Jun 2018 A1
20180168254 Pandolfino Jun 2018 A1
20180168294 Pandolfino Jun 2018 A1
20180169351 Hyde et al. Jun 2018 A1
20180169756 Palys Jun 2018 A1
20180169784 Ekberg Jun 2018 A1
20180169950 Meisner et al. Jun 2018 A1
20180169951 Niitani Jun 2018 A1
20180169952 Engel et al. Jun 2018 A1
20180169960 Seefried et al. Jun 2018 A1
20180169970 Harding et al. Jun 2018 A1
20180170107 Costlow et al. Jun 2018 A1
20180170914 Miyata et al. Jun 2018 A1
20180172369 Rhoden et al. Jun 2018 A1
20180175333 Sodeyama et al. Jun 2018 A1
20180178284 Martin et al. Jun 2018 A1
20180178285 Martin et al. Jun 2018 A1
20180178286 Martin et al. Jun 2018 A1
20180178287 Mamrak et al. Jun 2018 A1
20180178288 Lacy et al. Jun 2018 A1
20180178325 Wahl et al. Jun 2018 A1
20180178326 Wahl et al. Jun 2018 A1
20180178413 Kalyanaraman et al. Jun 2018 A1
20180178491 Lacy et al. Jun 2018 A1
20180179332 Priedeman, Jr. Jun 2018 A1
20180179956 Wertz Jun 2018 A1
20180180803 Victor et al. Jun 2018 A1
20180180812 Schowengerdt et al. Jun 2018 A1
20180180813 Gross et al. Jun 2018 A1
20180180874 Schowengerdt et al. Jun 2018 A1
20180180896 Karlsen et al. Jun 2018 A1
20180183062 Zhamu et al. Jun 2018 A1
20180185098 Buck Jul 2018 A1
20180185875 Murakami et al. Jul 2018 A1
20180185893 Vincent Jul 2018 A1
20180185921 Tong Jul 2018 A1
20180185961 Meidani et al. Jul 2018 A1
20180185965 Victor et al. Jul 2018 A1
20180186067 Buller et al. Jul 2018 A1
20180186078 Herzog et al. Jul 2018 A1
20180186080 Miishtein et al. Jul 2018 A1
20180186081 Miishtein et al. Jul 2018 A1
20180186082 Randhawa Jul 2018 A1
20180186120 Dua et al. Jul 2018 A1
20180187569 Ucok et al. Jul 2018 A1
20180193916 Lou et al. Jul 2018 A1
20180193923 Koch et al. Jul 2018 A1
20180193953 Boswell Jul 2018 A1
20180193954 Yuan et al. Jul 2018 A1
20180193955 Karp et al. Jul 2018 A1
20180194080 El-Siblani et al. Jul 2018 A1
20180195186 Zhang et al. Jul 2018 A1
20180195684 Vissenberg et al. Jul 2018 A1
20180200790 Hart et al. Jul 2018 A1
20180200791 Redding et al. Jul 2018 A1
20180200792 Redding et al. Jul 2018 A1
20180200793 Redding et al. Jul 2018 A1
20180200794 Spears Jul 2018 A1
20180200796 Backlund et al. Jul 2018 A1
20180200797 Backlund et al. Jul 2018 A1
20180200798 Sharon et al. Jul 2018 A1
20180200800 Hart et al. Jul 2018 A1
20180200836 Garcia et al. Jul 2018 A1
20180200960 DeFelice et al. Jul 2018 A1
20180202076 Van Der Schaaf et al. Jul 2018 A1
20180202234 Saini et al. Jul 2018 A1
20180202293 Joshi et al. Jul 2018 A1
20180207725 Chen et al. Jul 2018 A1
20180207749 Wasynczuk Jul 2018 A1
20180207750 Carter Jul 2018 A1
20180207850 Stockett et al. Jul 2018 A1
20180207862 Tyler et al. Jul 2018 A1
20180207863 Porter et al. Jul 2018 A1
20180207865 Tyler et al. Jul 2018 A1
20180207866 Tyler et al. Jul 2018 A1
20180207868 Tyler et al. Jul 2018 A1
20180208762 Pomestchenko et al. Jul 2018 A1
20180208785 Chopra et al. Jul 2018 A1
20180209057 Tripathy et al. Jul 2018 A1
20180209381 Jones Jul 2018 A1
20180209498 Zandbergen et al. Jul 2018 A1
20180212184 Kondo et al. Jul 2018 A1
20180212250 Zhamu et al. Jul 2018 A1
20180214351 Fik et al. Aug 2018 A1
20180214874 Koksal et al. Aug 2018 A1
20180214946 Spears Aug 2018 A1
20180214947 Haro Gonzalez et al. Aug 2018 A1
20180214950 Karlsen et al. Aug 2018 A1
20180214951 Koponen et al. Aug 2018 A1
20180214955 Kottilingam et al. Aug 2018 A1
20180214984 Haro Gonzalez Aug 2018 A1
20180214985 Victor et al. Aug 2018 A1
20180215094 Birnbaum et al. Aug 2018 A1
20180215103 Herzog et al. Aug 2018 A1
20180215644 Doering et al. Aug 2018 A1
20180216501 Brown et al. Aug 2018 A1
20180219254 Tamura et al. Aug 2018 A1
20180221950 Mark Aug 2018 A1
20180221985 Amira et al. Aug 2018 A1
20180226917 Jacques Aug 2018 A1
20180228570 Jones et al. Aug 2018 A1
20180228612 Jones et al. Aug 2018 A1
20180228613 Jones et al. Aug 2018 A1
20180228701 Klee et al. Aug 2018 A1
20180228737 Giridhar et al. Aug 2018 A1
20180229300 Myerberg et al. Aug 2018 A1
20180229434 Tyler Aug 2018 A1
20180229436 Gu et al. Aug 2018 A1
20180236546 Mark Aug 2018 A1
20180236551 Michiels et al. Aug 2018 A1
20180236714 Thelakkadan Aug 2018 A1
20180237325 Li et al. Aug 2018 A1
20180237329 Drewnowski et al. Aug 2018 A1
20180237567 Klee et al. Aug 2018 A1
20180240691 Flitsch Aug 2018 A1
20180243094 Jones et al. Aug 2018 A1
20180243097 Jones et al. Aug 2018 A1
20180243977 Meinders et al. Aug 2018 A1
20180243991 Troukens et al. Aug 2018 A1
20180244862 Price Aug 2018 A1
20180244863 Leenders Aug 2018 A1
20180250737 Moosman Sep 2018 A1
20180250739 Saurwalt et al. Sep 2018 A1
20180250744 Symeonidis et al. Sep 2018 A1
20180250745 Spink et al. Sep 2018 A1
20180250746 Symeonidis et al. Sep 2018 A1
20180250771 Brown et al. Sep 2018 A1
20180250772 Symeonidis et al. Sep 2018 A1
20180250773 Symeonidis et al. Sep 2018 A1
20180250774 Symeonidis et al. Sep 2018 A1
20180250775 Spink et al. Sep 2018 A1
20180250890 Claussen et al. Sep 2018 A1
20180251645 Magdassi et al. Sep 2018 A1
20180252398 Golle et al. Sep 2018 A1
20180257138 Mark Sep 2018 A1
20180257297 Matheu Sep 2018 A1
20180264679 van Rooyen et al. Sep 2018 A1
20180264719 Rolland et al. Sep 2018 A1
20180264778 Ishikawa et al. Sep 2018 A1
20180265417 Champion et al. Sep 2018 A1
20180265738 Rolland et al. Sep 2018 A1
20180267373 Yoshida Sep 2018 A1
20180272464 Bruck Sep 2018 A1
20180272610 El-Siblani et al. Sep 2018 A1
20180272652 Lyons et al. Sep 2018 A1
20180273422 Hori et al. Sep 2018 A1
20180273425 Mishiro et al. Sep 2018 A1
20180273707 Price Sep 2018 A1
20180281236 Elgar et al. Oct 2018 A1
20180281237 Frechman et al. Oct 2018 A1
20180281282 Elgar et al. Oct 2018 A1
20180281283 Frechman et al. Oct 2018 A1
20180281284 Elgar et al. Oct 2018 A1
20180281294 Gottschalk-Gaudig et al. Oct 2018 A1
20180282604 Schulz et al. Oct 2018 A1
20180289493 Mansmann Oct 2018 A1
20180290212 Jaworowski et al. Oct 2018 A1
20180290373 El-Siblani et al. Oct 2018 A1
20180291195 Schulz et al. Oct 2018 A1
20180296343 Wei Oct 2018 A1
20180297113 Preston et al. Oct 2018 A1
20180297114 Preston et al. Oct 2018 A1
20180297117 Kanko et al. Oct 2018 A1
20180297272 Preston et al. Oct 2018 A1
20180297296 Schwerdtfeger et al. Oct 2018 A1
20180303491 Marien et al. Oct 2018 A1
20180303616 Bhattacharyya et al. Oct 2018 A1
20180304353 LaPlante Oct 2018 A1
20180304359 Gibson et al. Oct 2018 A1
20180304360 Fontana et al. Oct 2018 A1
20180304361 Gibson et al. Oct 2018 A1
20180304363 Myerberg et al. Oct 2018 A1
20180304364 Myerberg et al. Oct 2018 A1
20180304365 Brzezinski et al. Oct 2018 A1
20180304369 Myerberg et al. Oct 2018 A1
20180304370 Myerberg et al. Oct 2018 A1
20180304537 Rubinsky et al. Oct 2018 A1
20180304540 Tobia et al. Oct 2018 A1
20180305266 Gibson et al. Oct 2018 A1
20180307209 Chin et al. Oct 2018 A1
20180309202 Pance et al. Oct 2018 A1
20180311731 Spicer et al. Nov 2018 A1
20180311735 Mitsui et al. Nov 2018 A1
20180311738 Myerberg et al. Nov 2018 A1
20180312660 Schulz et al. Nov 2018 A1
20180318657 Madson et al. Nov 2018 A1
20180318922 Valls Angles Nov 2018 A1
20180318925 Myerberg et al. Nov 2018 A1
20180318928 Christiansen et al. Nov 2018 A1
20180318932 Myerberg et al. Nov 2018 A1
20180318933 Myerberg et al. Nov 2018 A1
20180319108 Sherrer et al. Nov 2018 A1
20180319132 Mori et al. Nov 2018 A1
20180319150 Buller et al. Nov 2018 A1
20180320006 Lee et al. Nov 2018 A1
20180323514 Pance et al. Nov 2018 A1
20180326488 Lappas et al. Nov 2018 A1
20180326663 DeMuth et al. Nov 2018 A1
20180326664 DeMuth et al. Nov 2018 A1
20180326665 Gatenholm et al. Nov 2018 A1
20180326668 Walker et al. Nov 2018 A1
20180333911 Lin et al. Nov 2018 A1
20180333912 Lin et al. Nov 2018 A1
20180333913 Lin et al. Nov 2018 A1
20180335659 Takeda et al. Nov 2018 A1
20180337110 Chen et al. Nov 2018 A1
20180338196 Freedman Nov 2018 A1
20180345367 Connor et al. Dec 2018 A1
20180345382 Roychowdhury et al. Dec 2018 A1
20180345405 Ostroverkhov et al. Dec 2018 A1
20180345575 Constantinou et al. Dec 2018 A1
20180345576 Constantinou et al. Dec 2018 A1
20180353391 Renn et al. Dec 2018 A1
20180354304 Hatdet et al. Dec 2018 A1
20180354860 Wang et al. Dec 2018 A1
20180355199 Stasiak Dec 2018 A1
20180360609 Steines et al. Dec 2018 A1
20180361510 Stamp et al. Dec 2018 A1
20180361660 Chen et al. Dec 2018 A1
20180361661 Nowak et al. Dec 2018 A1
20180361666 Adzima Dec 2018 A1
20180361674 Jaker et al. Dec 2018 A1
20180361727 Tilita Dec 2018 A1
20180363361 Heckman et al. Dec 2018 A1
20180369918 Gold Dec 2018 A1
20180370114 Hopkins et al. Dec 2018 A1
20180370120 Pawloski et al. Dec 2018 A1
20180370125 Rolland et al. Dec 2018 A1
20180370147 Peter et al. Dec 2018 A1
20180370846 Harrison et al. Dec 2018 A1
20180370860 Pegna et al. Dec 2018 A1
20180371244 Leenders et al. Dec 2018 A1
20180374262 Ezair et al. Dec 2018 A1
20190000166 Pandolfino Jan 2019 A1
20190001412 Gibson et al. Jan 2019 A1
20190001553 Robeson et al. Jan 2019 A1
20190001563 Stockett et al. Jan 2019 A1
20190001564 Stockett et al. Jan 2019 A1
20190001570 Branham et al. Jan 2019 A1
20190001576 Eller et al. Jan 2019 A1
20190002353 Eckel et al. Jan 2019 A1
20190009472 Mark Jan 2019 A1
20190010270 Ely et al. Jan 2019 A1
20190017185 Takshi et al. Jan 2019 A1
20190019736 Schrauben et al. Jan 2019 A1
20190020105 Pance et al. Jan 2019 A1
20190022427 Maharbiz et al. Jan 2019 A1
20190022428 Maharbiz et al. Jan 2019 A1
20190022725 Bauer et al. Jan 2019 A1
20190022926 Frauens Jan 2019 A1
20190022979 Luzzato et al. Jan 2019 A1
20190026499 Flitsch Jan 2019 A1
20190030498 Kariya et al. Jan 2019 A1
20190030601 Mark Jan 2019 A1
20190030602 Sachs et al. Jan 2019 A1
20190030605 TenHouten et al. Jan 2019 A1
20190030809 Gasso et al. Jan 2019 A1
20190030810 Gasso et al. Jan 2019 A1
20190030811 Gasso et al. Jan 2019 A1
20190031844 Kato et al. Jan 2019 A1
20190031908 Louis et al. Jan 2019 A1
20190031911 Rolland et al. Jan 2019 A1
20190033719 Cole Jan 2019 A1
20190033737 Iguchi et al. Jan 2019 A1
20190039182 Rockstroh et al. Feb 2019 A1
20190039294 Stasiak Feb 2019 A1
20190039367 Roman et al. Feb 2019 A1
20190047047 Mark Feb 2019 A1
20190047212 Bartos Feb 2019 A1
20190047214 Franke et al. Feb 2019 A1
20190047277 El-Siblani Feb 2019 A1
Foreign Referenced Citations (3)
Number Date Country
1749315 Dec 2009 EP
2010184852 Aug 2010 JP
WG2016175469 Nov 2016 WO
Related Publications (1)
Number Date Country
20200047288 A1 Feb 2020 US
Provisional Applications (2)
Number Date Country
62806901 Feb 2019 US
62717444 Aug 2018 US