Adjustable on-chip sub-capacitor design

Information

  • Patent Application
  • 20070267673
  • Publication Number
    20070267673
  • Date Filed
    May 18, 2006
    18 years ago
  • Date Published
    November 22, 2007
    17 years ago
Abstract
One or more on-chip VNCAP or MIMCAP capacitors utilize a variable MOS capacitor to improve the uniform capacitance value of the capacitors. This permits the production of silicon semiconductor chips on which are mounted capacitors having capacitive values that are precisely adjusted to be within a range of between about 1% and 5% of their design value. This optimization can be achieved by the use of a back-to-back connection between a pair of the variable MOS capacitors for DC decoupling. It involves the parallelization of on-chip BEOL capacitance of VNCAP and/or MIMCAP capacitors by the insertion in the FEOL of pairs of back-to-back variable MOS capacitors.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The various drawings are intended to assist in a complete understanding of the features of the invention, and are not presented as a limitation on the scope thereof.



FIG. 1 represents measured variations of on-chip capacitors, such as VNCAP and MIMCAP capacitors.



FIG. 2 is a comparative view of a prior art VNCAP structure and a VNCAP structure of the present invention.



FIG. 3 shows a structural as well as a schematic representation of the present invention.



FIG. 4 shows the capacitor geometry according to the present invention.



FIG. 5 is the circuit schematic for the geometry presented in FIG. 4.



FIG. 6 represents a comparison of capacitance of present on-chip capacitors with those of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows the current state of the art on-chip capacitors VNCAP (120) and MIMCAP (128) and a measured capacitance color map. The VNCAP (120) has two vertical capacitor ports, PORT 1 (122) and PORT 2 (124) and consists of alternating parallel conductive plates and insulators to generate capacitance. The MIMCAP (128) also has two ports which are top plate (112) and bottom plate (114) and has an insulator (or dielectric) between two plates. These on-chip capacitors can be more simply shown by the capacitor symbol (126). The on-chip capacitors can present huge variations (>±10%) from target values when measured as shown in FIG. 1 (E).


The capacitance map shows how much the capacitance value of on-chip capacitors can vary. This example shows a 300 mm wafer (130) that includes 77 sites with different patterns to represent variations from a targeted capacitance. The sites (132) with no cross hatching represent the highest capacitance value. The sites (134) with a single cross hatching have a middle capacitance value. The sites (136) with a double cross hatching have the lowest capacitance. In most cases, on-chip capacitors can vary by as much as ±10% of the designed values, giving a total differential of 20% or more. This capacitance variation is not only due to manufacturing variations, but also to temperature fluctuations.


To overcome the problems in chip to chip capacitance variations, a variable MOS capacitor is joined in parallel with a VNCAP and/or a MIMCAP in order to adjust for the target capacitance. Adding such an MOS capacitor to a VNCAP structure is shown in FIG. 2 wherein 2(a) represents the prior art and 2(b) shows the new structure according to the present invention.


In FIG. 2 (a), the overall chip assembly (200) comprises a solid substrate (202), a layer of silicon (204) on the substrate, and a layer of polysilicon (206) on top of the silicon. The layer of CA (208) provides a contact interface between the polysilicon (206) and the first metal layers (210) shown as M1 through M4. The substrate, silicon, polysilicon, and CA layers comprise the FEOL of the assembly. The second metal layers (212) are mounted on the first layers (210), and third metal layers (214) are mounted atop the second layers (212). These metal layers all comprise the BEOL of the chip assembly.



FIG. 2(
b) shows an assembly (250) according to the present invention. The FEOL comprises a substrate (252), a layer (254) of silicon mounted on the substrate, and a layer (256) of polysilicon. These polysilicon layers are bonded to the VNCAP through layers (258) of CA. As in FIG. 2(a), the VNCAP comprises first metal layers (260), second metal layers (262) and third metal layers (264). According to the invention, an MOS capacitor is designed into the FEOL and is typically connected to the VNCAP (or the MIMCAP) with CA and polysilicon.



FIG. 3 shows a different representation of the chip assembly (300) as described in FIG. 2(b), including the connection of the ports of the VNCAP to the variable MOS capacitor. As in FIG. 2(a), the FEOL includes a substrate (302), as well as successive layers of silicon and polysilicon (not shown). The BEOL includes a VNCAP comprising first metal layers (310) and second metal layers (312). According to the invention, an MOS capacitor represented by the dotted lines (340) is designed into the FEOL section of the chip assembly (300) and is typically connected to the VNCAP (or the MIMCAP) with CA and polysilicon (not shown). VNCAP ports 1 (322) and 2 (324) are connected into the MOS capacitor's source (342) and drain (344) with CA and polysilicon. The capacitance of the MOS capacitor is adjusted at gate (346) by regulating the VTUNE port (348). A simplified schematic of this structure is shown on the right hand side of FIG. 3. The total capacitance is the sum of the capacitances of the VNCAP (320) and MOS (340) capacitors. This schematic shows the source and the drain connected to one another.



FIG. 4 shows how the wiring is done for the adjustable on-chip capacitor. Two VNCAPs (420a, 420b) are connected in parallel, and this parallel configuration does not decrease total capacitance Ctotal. Ports 1 (422) and 2 (424) are connected to the terminals of two variable MOS capacitors (440a, 440b), and the adjustable port (448) is used for VADJ of these two MOS capacitors. To decouple the DC adjust voltage (402) at the ports (422, 424), the two MOS capacitors (440a and 440b) are connected back-to-back. Port 1 (422) connects the “−” signed vertical parallel plates of the MOS capacitor (440a). Port 2 (424) connects the “+” signed vertical parallel plates of MOS capacitor (440b). The gates of the two MOS capacitors are tied to each other to adjust the total capacitance.


The simplified circuit schematic of the chip assemblies of FIG. 4 is shown in FIG. 5 where CMAIN is the total capacitance of the two VNCAPs (520a and 520b) joined in parallel and the two MOS sub capacitors (540a and 540b) joined in series. The series connection of the two MOS capacitors represents one half of the total capacitance if the capacitance values of the two capacitors are the same.


The total capacitance Ctotal is calculated according to the following equations:







C
TOTAL

=


C
MAIN

+




C

SUB





1




(

V
ADJ

)


+


C

SUB





2




(

V
ADJ

)






C

SUB





1




(

V
ADJ

)


·


C

SUB





2




(

V
ADJ

)












When
->


C

SUB





1




(

V
ADJ

)



=



C

SUB





2




(

V
ADJ

)


=


C
SUB



(

V
ADJ

)










C
TOTAL

=


C
MAIN

+



C
SUB



(

V
ADJ

)


2






Consequently, the CMAIN capacitance value can be adjusted by two CSUB capacitors.



FIG. 6 shows two simplified circuit diagrams comparing the present invention (shown on the right) with the prior art (shown on the left). In accordance with established practices, the capacitors in the BEOL of the chip assembly are connected with the design capacitance and the negative parasitic capacitances connected in series with one another and in parallel with the positive parasitic capacitance. However, the present invention adds the variable capacitor in parallel with the other capacitors between ports 1 and 2. By the use of this invention, if the actual main capacitance is within 90% of the target value, the total capacitance can be increased with the variable capacitor to compensate for the shortfall. In like manner, if the actual main capacitance is 110% of the target value, the total capacitance may be adjusted downward by the use of the variable capacitor in parallel with the main capacitors.


Among the advantages of the present invention are:

    • The production of precision on-chip capacitors to improve integrated circuits;
    • Improved RF matching circuit and analog circuits, such as DAC, ADC and switch capacitor filter with precisely adjustable capacitance;
    • A new design for a VNCAP to which is added an MOS capacitor to adjust for the target capacitance;
    • A new design by using two CSUB MOS capacitors to adjust for the target on-chip capacitance;
    • An optimization method for BEOL capacitor and FEOL variable capacitors;
    • A back-to-back connection method between FEOL capacitors to DC-decouple for ports; and
    • A parallelization method for on-chip BEOL capacitance compensation by adjusting FEOL variable capacitors.


While specific embodiments of the present invention has been described herein, it is to be understood that variations may be made without departing from the scope thereof, and such variations may be apparent to those skilled in the art represented herein as well as to those skilled in other arts. The materials identified above are by no means the only materials suitable for the manufacture of the VNCAP and MIMCAP capacitors, and substitute materials will be readily apparent to one skilled in the art.

Claims
  • 1. A capacitance circuit assembly mounted on a semiconductor chip and comprising at least one fixed value capacitor selected from the group consisting of an MIMCAP and a VNCAP and combinations thereof, and a variable MOS capacitor connected in parallel with each fixed value capacitor to adjust the total capacitance of said capacitor.
  • 2. The circuit assembly according to claim 1 wherein the capacitance value of each of the fixed value capacitors is within a range of ±10% of design value before adjustment and within a range of between 1% and 5% of design value after adjustment.
  • 3. The circuit assembly according to claim 1 wherein the MIMCAP and VNCAP capacitors are mounted in the BEOL of the chip and each variable MOS capacitor is mounted in the FEOL of the chip.
  • 4. The circuit assembly according to claim 3 wherein each VNCAP or MIMCAP is connected to a corresponding MOS capacitor with CA and polysilicon.
  • 5. The circuit assembly according to claim 1 wherein the capacitance of each of the MIMCAP and VNCAP is about one picofarad.
  • 6. The circuit assembly according to claim 5 wherein each MOS capacitor has a capacitance value of about 10% of the value of the corresponding MIMCAP or VNCAP.
  • 7. The circuit assembly according to claim 1 having a pair of VNCAPs or MIMCAPs, the capacitances of which are matched by the use of a corresponding pair of variable MOS capacitors that are connected back-to-back.
  • 8. The circuit assembly according to claim 7 wherein each pair of VNCAPs or MIMCAPs are connected to one another in parallel and has two ports, with one port being connected into the drain of one of the MOS capacitors and the other port being connected to the drain of the other MOS capacitor.
  • 9. An integrated circuit mounted on a semiconductor chip including at least one adjustable sub capacitor connected in parallel with a fixed value capacitor selected from the group consisting of a VNCAP and an MIMCAP.
  • 10. The integrated circuit according to claim 9 wherein the value of each of the fixed value capacitors is within a range of ±10% of design value before adjustment and within a range of between 1% and 5% of design value after adjustment.
  • 11. The integrated circuit according to claim 10 wherein the MIMCAP and VNCAP capacitors are mounted in the BEOL of the semiconductor chip and the variable MOS capacitors are mounted in the FEOL of the chip.
  • 12. The integrated circuit according to claim 10 wherein each of the MOS capacitors has a value of about 10% of the value of the MIMCAP and the VNCAP.
  • 13. The integrated circuit according to claim 12 wherein each VNCAP or MIMCAP is connected to a corresponding MOS capacitor with CA and polysilicon.
  • 14. The integrated circuit according to claim 9 wherein the capacitance of each of the MIMCAP and VNCAP is about one picofarad
  • 15. The integrated circuit according to claim 14 wherein each MOS capacitor has a capacitance value of about 10% of the value of the MIMCAP and the VNCAP.
  • 16. The integrated circuit according to claim 9 having a pair of VNCAPs or MIMCAPs, the capacitances of which are matched by the use of a corresponding pair of variable MOS capacitors that are connected back-to-back.
  • 17. The integrated circuit according to claim 16 wherein each pair of VNCAPs or MIMCAPs are connected to one another in parallel and has two ports, one port being connected into the drain of one of the MOS capacitors and the other port being connected to the drain of the other MOS capacitor.
  • 18. In a capacitive circuit assembly, a method for adjusting the capacitance of a pair of on-chip fixed value capacitors selected from the group of MIMCAP capacitors and VNCAP capacitors, comprising connecting the capacitors in parallel, connecting a pair of variable MOS capacitors in series with one another and in parallel with the pair of fixed value capacitors, and adjusting the value of the MOS capacitors until the total capacitance is within a target range.
  • 19. In a capacitive circuit assembly according to claim 18 wherein the method includes serially connecting the MOS capacitors in a back-to-back arrangement.
  • 20. In a capacitive circuit assembly according to claim 18, the method wherein the total capacitance is calculated according to the following equations: