This invention relates to a method and a device for volatilizing a physiologically active compound and administering the volatilized compound in the form of an aerosol to a patient.
An aerosol is defined as an assembly of liquid or solid particles suspended in a gaseous medium. (See Aerosol Measurement, Willeke and Baron, Wiley-Interscience 1993.) It is known that aerosols of appropriate particle size, can be used to deliver drugs to organs and tissues such as the lung and mucosa. (See Gonda, I., “Particle Deposition in the Human Respiratory Tract,” The Lung: Scientific Foundations, 2nd ed., Crystal, West, et al. editors, Lippincott-Raven Publishers, 1997).
A problem in generating an aerosol is maintaining the purity of a compound being administered into the lung, as an aerosol. This is a critical issue that must be addressed before inhalation delivery of a compound to humans will be acceptable to regulatory agencies, physicians and patients. Any compound administered to humans must meet strict purity requirements regulated by government agencies and industry. For example, the United States Food and Drug Administration mandates purity requirements for pharmaceutical materials sold in the United States to protect the health of consumers of those products. Purity requirements are often material specific. Maximum impurity or degradant levels are specified at the time of manufacture of compounds as well as at the time of their consumption or administration. Any aerosolization device or process that will be utilized for pharmaceutical applications, therefore, must deliver materials meeting purity requirements. Mechanisms of chemical degradation that might occur during vaporization and aerosolization, the processes relevant to this invention, are discussed below.
Currently approved products for inhalation administration of physiologically acting compounds can be divided into several categories: dry powder inhalers, nebulizers, and pressurized metered dose inhalers. The desired particle size of these methods and devices usually are in the fine aerosol region (1-3 micron) and not in the ultra fine region (10-100 nm). A large percentage of these devices fall short of the type of particle size control desirable for reproducible and efficient delivery of compounds to the lung. Additionally current devices focus on the fine aerosol region because to date a practical device that can reproducibly generate an ultra fine aerosol has not been commercially available for drug delivery to the lung.
There are many types of dry powder inhalers (DPI's) on the market with some common problems. The first problem is the manufacturing of the dry powder. For a dry powder inhalation system it is necessary to mill the drug until it falls into the desirable particle range. Some mills used for micronization are known to produce heat, which can cause degradation of the drug, and tend to shed metallic particles as contaminants. Following milling it is often necessary to mix the drug with a carrier to impart flowability. The micronized drug and the drug-excipient mix must be maintained in a dry atmosphere lest moisture cause agglomeration of the drug into larger particles. Additionally it is well known that many dry powders grow as they are delivered to the patient's airways due to the high levels of moisture present in the lung. Thus, this approach requires scrupulous attention during milling, blending, powder flow, filling and even administration to assure that the patient receives the proper particle size distribution.
Nebulizers generate an aerosol from a liquid, some by breakup of a liquid jet and some by ultrasonic vibration of the liquid with or without a nozzle. All liquid aerosol devices must overcome the problems associated with formulation of the compound into a stable liquid state. Liquid formulations must be prepared and stored under aseptic or sterile conditions since they can harbor microorganisms. This necessitates the use of preservatives or unit dose packaging. Additionally solvents, detergents and other agents are used to stabilize the drug formulation. The FDA is increasingly concerned about airway hypersensitivity from these agents.
Pressurized metered dose inhalers, or pMDI's, are an additional class of aerosol dispensing devices. PMDI's package the compound in a canister under pressure with a solvent and propellant mixture, usually chlorofluorocarbons (CFC's, which are being phased out due to environmental concerns), or hydroflouroalkanes (HFA's). Upon being dispensed a jet of the mixture is ejected through a valve and nozzle and the propellant “flashes off” leaving an aerosol of the compound. With pMDI's particle size is hard to control and has poor reproducibility leading to uneven and unpredictable bioavailability. pMDIs are inefficient because a portion of the dose is lost on the walls of the actuator, and due to the high speed ejection of the aerosol from the nozzle, much of the drug impacts ballistically on the tongue, mouth and throat and never gets to the lung.
Another method suggested in the prior art to generate aerosols is to volatilize the drug and administer the vapor to a patient. (See Rosen, PCT Publication No. 94/09842, published May 11, 1994.) However, the teaching of Rosen is not a viable solution to the problem because it yields (1) a large quantity of degradation products, and (2) too much variability in particle size distribution (PSD) to insure reproducible and predictable bioavailability.
Predicting the reactions that result in a compound's degradation, and anticipating the energies necessary to activate those reactions are typically very difficult. Reactions may involve only the parent compound or may involve other chemicals such as oxygen in air and materials in the surfaces to which the compound may be exposed. Reactions may be single step or multiple steps, leading to the potential of many degradation products. Activation energies of these reactions depend on molecular structures, energy transfer mechanisms, transitory configurations of the reacting molecular complexes, and the effects of neighboring molecules. Frequently, on the practical macroscopic scale, a drug dose may suffer from many degradation reactions in progress at the same time. Because of this complex potential for degradation, drug substances are often stored at or below room temperature. International health authorities recommend that the stability of a drug be evaluated under exaggerated (stress) conditions to determine the mechanism of degradation and the degradant structures. (See Guidance for Industry: Stability testing of drug substances and products; FDA CDER May 27, 1998). For these tests, 50° C. is recognized as a stress temperature.
The present invention overcomes the foregoing disadvantages and problems, making it possible to produce pure aerosols of degradable compounds wherein the particle size is stable and selectable.
Embodiments of the present invention are directed to a method and a device for generating and delivering an aerosol formed through vaporization of a compound with real or potential physiological activity.
A physiologically active compound with real or potential physiological activity is defined here as a chemical compound or mixture of compounds that alters affects, treats, cures, prevents or diagnoses a disease after it is administered to the mammalian body. The compound with real or potential physiological activity will be referred to hereafter as the compound or as the drug. Examples would include medicinal drugs, or “pro-drugs” (substances converted into drugs within the body), that would be administered for the treatment, cure, or diagnosis of diseases.
The method of the present invention for generating an aerosol comprises the steps:
A desired particle size is typically from molecular to about 10 microns in diameter. Aerosols having “ultra fine” (0.01 to 0.1 micron) and “fine” (1 to 3 micron) particle sizes are known to provide efficient and effective systemic delivery through the lung. Current literature suggests that the middle size range of particles, between ultra fine and fine, i.e., between 0.1 and 1 micron in size, are too small to settle onto the lung wall and too massive to diffuse to the wall in a timely manner. Thus, a significant number of such particles are removed from the lung by exhalation, and thus are not involved in treating disease (see Gonda).
The above method creates a mixture of vapor and gas in a ratio and under conditions suitable to generate an aerosol of particles of a desired size range for effective and efficient administration to a patient. For the purposes of controlling particle size the terms “air”, “mixing gas”, “dilution gas” and “carrier gas” are interchangeable.
Various alternatives to generate the desired aerosol in accordance with the method of the present invention are summarized here:
Further features and advantages will become apparent from the following description of various embodiments of the invention, as illustrated in the accompanying drawings in which:
In the method and device of the present invention, compounds with real or potential physiological activity can be volatilized without medicinally significant degradation and the resulting vapors controlled to form aerosols with particle sizes useful for the administration of the compound to a patient.
In the preferred embodiments of the present invention, compounds are volatilized into vapors avoiding medicinally-significant degradation and thus maintaining acceptable compound purity by the steps of (1) heating the physiologically active compound to a temperature for a limited time and (2) under the conditions of step (1), simultaneously passing a gas across the surface of the compound.
As described previously in the BACKGROUND OF THE INVENTION section, it is often difficult to predict the susceptibility to, and the mechanisms and conditions of chemical degradation for a compound of pharmaceutical potential. As a rule, therefore, such compounds are typically protected from temperatures above room temperature. However, vaporization is slow at low temperatures as evidenced by the rapid decline in the equilibrium vapor pressure as a compound's temperature decreases below its boiling point. The plot in
In view of the foregoing, vaporization has not previously been viewed as a reasonable mechanism for the delivery of most pharmaceutical compounds. In fact, it is common practice to create a form of a medicinal compound that is chemically and physically stable at room temperature to-deter vaporization. This can be accomplished by creating a salt, which has a higher melting point and boiling point than the parent molecule.
The present invention, however, makes vaporization a practical delivery method in part, by utilizing a flow of gas across the surface of the compound, to create a dynamic situation in which a compound's vapor molecules are swept away from its surface, driving the chemical equilibrium process towards further vaporization. For many compounds, this method creates a practical rate of vaporization with only moderate heating. Thus, 1 mg of nicotine, (boiling point of 247° C./745 mm), for example, was observed to vaporize around 130° C. in less than 2 seconds with a laboratory device of the present invention described in detail in the EXAMPLES below. Similarly, fentanyl, which decomposes rapidly at 300° C. before reaching its boiling point, was vaporized in quantities up to 2 mg at temperatures around 190° C. Vaporization can therefore be accomplished with the embodiments of this invention at practical rates, i.e., in the range of about 0.5 to about 2 mg/second, and at temperatures much below the compounds' boiling points. The ability to vaporize at these reduced temperatures provides a means to lower rates of degradation reactions in many compounds.
However, even these lower temperatures noted above could lead to significant decomposition for some compounds, so the ability of the present invention to also limit the time during which the compound is exposed to an elevated temperature is also critical. Limiting the exposure time of a compound to temperature is accomplished by rapid heating of a thin film of a deposited compound followed by immediate cooling of the compound vapors as they enter a carrier gas stream. In the preferred embodiments, the compound is moved quickly through a heating/mixing zone to facilitate a rapid temperature rise on the order of 2,000° C./second. Compounds thus reach vaporization temperatures in ten's of milliseconds. Under these conditions, compound molecules quickly escape as vapors from thin layers of deposited compound, and move into a cool carrier gas stream that flows across the surface of the compound. The vapor molecules, thus quickly created, lose their thermal energy when they collide with molecules of the cooler carrier gas.
The method of the present invention, which uses rapid heating to reach vaporization temperatures of compounds, and after vaporization, rapid cooling of the vapor, has been shown to be significant in reducing decomposition, one of the obstacles to generating the desired aerosol. Lipophilic substance #87, for example, decomposed by more than 90% when heated at 425° C. for 5 minutes, but only 20% when the temperature was lowered to 350° C. Decomposition was lowered further to about 12% when the time was decreased to 30 seconds, and to less than 2% when the time was decreased to 10-50 milliseconds. Similarly, 100% of a fentanyl sample decomposed when heated to 200° C. for 30 seconds, but decreased to 15-30% decomposition when fentanyl was heated to 280° C. for 10 milliseconds. When fentanyl was vaporized using the laboratory device, which minimized the vaporization temperature and limited the exposure time to that temperature, no medicinally significant decomposition (<0.1%) was observed.
After a compound has been vaporized, the method of this invention also overcomes the second obstacle to generating the desired aerosol by controlling the generated compound vapors so that an aerosol is formed that (1) is comprised of particles within a desired size range and (2) these particles are sufficiently stable so they will retain their sizes within that range during the time necessary to administer the aerosol to a patient. Particle size is usually expressed as the equivalent diameter of a spherical particle with the same physical behavior. The range of particle sizes in an aerosol is most often described by its mass median diameter (MMD) or mass median aerodynamic diameter (MMAD), and its geometric standard deviation (GSD). As the size of the particles is changed, the site of deposition within the lung can be changed. This can allow targeting of the site of deposition of the compound in the lung and airways.
The method of the present invention forms an aerosol with particles of a desired size range and stability by applying the principle that particle growth can be predicted from the number concentration of the particles in a given volume. In high concentrations, particles frequently collide and adhere to each other. Such a collision and adhesion event (aggregation) creates one particle from two smaller ones. In a population of particles in an aerosol, these events lead to an increase in mean particle size and a decrease in number concentration. The frequency of collisions among particles then decreases, since there are fewer particles available and because the remaining larger particles move more slowly. As a consequence, the rate of particle size growth slows. (See “Aerosol Technology” W. C. Hinds, second edition 1999, Wiley, N.Y.) The term “stable particle size” can be applied in a practical sense when particle size growth has slowed sufficiently to ensure the purpose of the application. For the purposes of drug delivery by inhalation, a stable particle would be one that exists in the ultra fine or fine size range for the 1 to 3 seconds required for a typical inhalation.
In accordance with the present invention, a particle of the ultra fine or fine size range is produced that is stable for several seconds. Also in accordance with the present invention, a predetermined amount of compound in its vapor-state can be mixed into a predetermined volume of a carrier gas in a ratio to give particles of a desired size as the number concentration of the aerosol itself becomes stable. As detailed below, a stable number concentration is approximately 109 particles/cc.
The method of the present invention forms the aerosol with particles of a desired size range and stability by controlling the rate of vaporization, the rate of introduction of a carrier gas, and the mixing of the vapors and the carrier gas, thereby manipulating the parameters that govern the physical processes of a compound's condensation and particle aggregation.
Controlling the ratio of the vaporized compound to the volume of mixing air can be done by a number of methods including: (a) measuring the quantity and regulating the flow rate of the mixing air; and/or (b) regulating the vaporization rate of the compound, e.g. changing the energy transferred to the compound during the heating process or changing the amount of compound introduced into a heating region. As the size of the particles is changed, the site of deposition within the lung can be changed. This can allow targeting of the site of deposition of the compound in the lung and airways.
A desired particle size is achieved by mixing a compound in its vapor-state into a volume of a carrier gas, in a ratio such that when the number concentration of the mixture reaches approximately 109 particles/ml, a “stable” particle size is present. The amount of compound and the volume of gas are each predetermined to achieve this ratio.
In creating an aerosol of a particular particle size, the ratio of mass of vaporized compound to the volume of the mixing gas is the controlling condition. By changing this ratio, the particle size can be manipulated (see
In order to simplify the approach used to predict the resulting particle size, the following assumptions were made:
Consequently, the following variables are taken into consideration in predicting the resulting particle size:
Predicting the particle size would be a simple matter for a given number concentration and amount of the compound, if the GSD is 1. With a GSD of 1, all of the particle sizes are the same size and therefore the calculation of particle size becomes a matter of dividing a compound's mass into the number of particles given by the number concentration and from there calculating the particle size diameter using the density of the compound.
The problem becomes different though if the GSD is other than 1. As an aerosol changes from a GSD of 1 to a GSD of 1.35, the mass median diameter (MMD) will increase. MMD is the point of equilibrium where an equal mass of material exists in smaller diameter particles as exists in larger diameter particles. Since total mass is not changing as the GSD changes, and since there are large and small particles, the MMD must become larger as the GSD increases because the mass of a particle goes up as the cube of its diameter. Therefore larger particles, in effect, carry more weight so the MMD becomes larger to “balance” out the masses.
To determine the effect of a changing GSD, one can start with the formula for the mass per unit volume of an aerosol given a known MMD, GSD, density, and number concentration. The formula is from Finlay's “The Mechanics of Inhaled Pharmaceutical Aerosols” (2001, Academic press). Formula 2.39 states that the mass per unit volume of an aerosol is:
M=(ρNπ/6)(MMD)3exp[−9/2(ln σg)2]
Where:
If the change in the MMD is considered as an aerosol changes from one GSD to another, while the density, number concentration, and the mass remain unchanged the following equality can be set up:
ρNπ/6(MMD1)3exp[−9/2(ln σg1)2]=ρNπ/6(MMD2)3exp[−9/2(ln σg2)2]
simplifying:
(MMD1)3exp[−9/2(ln σg1)2]=(MMD2)3exp[−9/2(ln σg2)2]
Or
(MMD1)3/(MMD2)3=exp[−9/2(ln σg2)2]/exp[−9/2(ln σg1)2]
If one sets the GSD of case 1 to 1.0 then:
exp[−9/2(ln σg1)2=1
And therefore:
(MMD1/MMD2)3=exp[−9/2(ln σg2)2]
Or:
MMD1/MMD2=exp[−3/2(ln σg2)2]
It is advantageous to calculate the change in the MMD as the GSD changes. Solving for MMD2 as a function of MMD1 and the new GSD2 yields:
MMD2=MMD1/exp[−3/2(ln σg2)2] for a σg1=1
To calculate MMD1, divide the compound's mass into the number of particles and then, calculate its diameter using the density of the compound.
MMD1=(6C/ρNV)1/3 for an aerosol with a GSD of 1
Insertion of MMD1 into the above equation leads to:
MMD2=(6C/ρNVπ)1/3/[exp[−3/2(ln σg2)2], measured in centimeters.
A resultant MMD can be calculated from the number concentration, the mass of the compound, the compound density, the volume of the mixing gas, and the GSD of the aerosol.
In all of the embodiments of the present invention, an aerosol of the desired particle size range is created by controlling the volume of air (or other gas) within which the compound is allowed to aggregate. For creating ultra fine particles, a large ratio of mixing gas to compound vapor is used. In producing fine particles, it is necessary to reduce the volume of the initial mixing gas, which leads to an increase in the concentration of the compound, which in turn results in a greater particle size growth before a desired number concentration is reached and aggregation slows. When a stable particle size is reached in a smaller total volume, the mixture is then injected into the balance of the air. As referred to in some of the embodiments, this initial mixing stage can be, if needed, accomplished in the presence of an inert gas to reduce decomposition resulting from oxidation.
It is important to recognize that an aerosol with a particle size of 100 nm will occupy a volume 8,000 times as large as an aerosol with a particle size of 2 microns with the same number concentration and with the same total dose. Because the present method will require vastly different volumes of mixing air depending on the particle size desired for different compounds and amounts to be delivered, the various embodiments of the present invention are of different physical sizes and geometries.
The required vaporization rate is different depending on the particle size one wishes to create. If the particle size is in the ultra fine region, then the compound, once vaporized, must be mixed, in most cases, into the largest possible volume of air. This volume of air is determined from lung physiology and can be assumed to have a reasonable upper limit of 2 liters. If the volume of air is limited to below 2 liters (e.g. 500 cc, unless the dose is exceedingly small, i.e., less that 50 μg, too large a particle will result and optimum lung deposition will not be possible.
In the ultra fine range, doses of 1-2 mg are possible. If this dose is mixed into 2 liters of air, which will be inhaled in 1-2 seconds, the required, desired vaporization rate is in the range of about 0.5 to about 2 mg/second. A reasonable vaporization rate for ultra fine aerosols is about 1 mg/second for the embodiments of this invention.
In the fine particle size region, there is no need for as large a volume of air as possible. Until the establishment of the correct number concentration that makes a stable aerosol, a large volume of air is undesirable. Rapid mixing of the vaporized compound into air needs to happen at the time of vaporization to minimize decomposition. As a result, the volume of mixing air and not the entire volume of air used to deliver the drug to the lung is of chief concern
The first embodiment of the present invention is shown in
In the second embodiment of the present invention shown in
In the third embodiment of the present invention shown in
The fourth embodiment shown in
In the sixth embodiment shown in
The eighth embodiment shown in
The ninth embodiment shown in
The embodiments above can create aerosols without significant drug decomposition. This is accomplished while maintaining a required vaporization rate for particle size control by employing a short duration heating cycle. An airflow over the surface of the compound is established such that when the compound is heated and reaches the temperature where vaporization is first possible, the resulting compound vapors will immediately cool in the air. In the preferred embodiments, this is accomplished by extending the increased velocity and mixing region over an area that is larger than the heating zone region. As a result, precise control of temperature is not necessary since the compound vaporizes the instant its vaporization temperature is reached. Additionally because mixing is also present at the point of vaporization, cooling is accomplished quickly upon vaporization.
Application of the present invention to human inhalation drug delivery must accommodate constraints of the human body and breathing physiology. Many studies of particle deposition in the lung have been conducted in the fields of public health, environmental toxicology and radiation safety. Most of the models and the in vivo data collected from those studies, relate to the exposure of people to aerosols homogeneously distributed in the air that they breathe, where the subject does nothing actively to minimize or maximize particle deposition in the lung. The International Commission On Radiological Protection (ICRP) models are examples of this. (See James A C, Stahlhofen W, Rudolph G, Egan M J, Nixon W, Gehr P, Briant J K, The respiratory tract deposition model proposed by the ICRP Task Group, Radiation Protection Dosimetry, 1991; vol. 38: pgs. 157-168).
However, in the field of aerosol drug delivery, a patient is directed to breathe in a way that maximizes deposition of the drug in the lung. This kind of breathing usually involves a full exhalation, followed by a deep inhalation sometimes at a prescribed inhalation flow rate range, e.g., about 10 to about 150 liters/minute, followed by a breath hold of several seconds. In addition, ideally, the aerosol is not uniformly distributed in the air being inhaled, but is loaded into the early part of the breath as a bolus of aerosol, followed by a volume of clean air so that the aerosol is drawn into the alveoli and flushed out of the conductive airways, bronchi and trachea by the volume of clean air that follows. A typical deep adult human breath has a volume of about 2 to 5 liters. In order to ensure consistent delivery in the whole population of adult patients, delivery of the drug bolus should be completed in the first 1-1½ liters or so of inhaled air.
As a result of the constraints placed on the various embodiments of the present invention due to their application in human inhalation drug delivery, a compound must be vaporized in a minimum amount of time, preferably no greater than 1 to 2 seconds. As discussed earlier, it is also advantageous, to keep the temperature of vaporization at a minimum. In order for a compound to be vaporized in 2 seconds or less and for the temperature to be kept at a minimum, rapid air movement, in the range of about 10 to about 120 liters/minute, needs to flow across the surface of the compound.
The following parameters are imposed in carrying out the best mode of the present invention, due to human lung physiology, the physics of particle growth, and the physical chemistry of the desirable compounds:
The parameters of the design for one of the preferred embodiments shown in
In the embodiment noted directly above, the compound is laid down on a thin metallic foil. In one of the examples set forth below, stainless steel (alloy of 302, 304, or 316) was used in which the surface was treated to produce a rough texture. Other foil materials can be used, but it is important that the surface and texture of the material is such that it is “wetted” by the compound when the compound is in its liquid phase, otherwise it is possible for the liquid compound to “ball” up which would defeat the design of the device and significantly change the volatilizing parameters. If the liquid compound “balls” up, the compound can be blown into and picked up by the airflow without ever vaporizing. This leads to delivery of a particle size that is uncontrolled and undesirable.
Stainless steel has advantages over materials like aluminum because it has a lower thermal conductivity value, without an appreciable increase in thermal mass. Low thermal conductivity is helpful because heat generated by the process needs to remain in the immediate area of interest.
Exemplary compounds that can be vaporized in accordance with the present invention include cannabinoid extracts from cannabis, THC, ketorolac, fentanyl, morphine, testosterone, ibuprofen, codeine, nicotine, Vitamin A, Vitamin E acetate, Vitamin E, nitroglycerin, pilocarpine, mescaline, testosterone enanthate, menthol, phencaramide, methsuximide, eptastigmine, promethazine, procaine, retinol, lidocaine, trimeprazine, isosorbide dinitrate, timolol, methyprylon, etamiphyllin, propoxyphene, salmetrol, vitamin E succinate, methadone, oxprenolol, isoproterenol bitartrate, etaqualone, Vitamin D3, ethambutol, ritodrine, omoconazole, cocaine, lomustine, ketamine, ketoprofen, cilazaprol, propranolol, sufentanil, metaproterenol, pentoxapylline, captopril, loxapine, cyproheptidine, carvediol, trihexylphenadine, alprostadil, melatonin, testosterone proprionate, valproic acid, acebutolol, terbutaline, diazepam, topiramate, pentobarbital, alfentanil HCl, papaverine, nicergoline, fluconazole, zafirlukast, testosterone acetate, droperidol, atenolol, metoclopramide, enalapril, albuterol, ketotifen, isoproterenol, amiodarone HCl, zileuton, midazolam, oxycodone, cilostazol, propofol, nabilone, gabapentin, famotidine, lorezepam, naltrexone, acetaminophen, sumatriptan, bitolterol, nifedipine, phenobarbital, phentolamine, 13-cis retinoic acid, droprenilamine HCl, amlodipine, caffeine, zopiclone, tramadol HCl, pirbuterol, naloxone, meperidine HCl, trimethobenzamide, nalmefene, scopolamine, sildenafil, carbamazepine, procaterol HCl, methysergide, glutathione, olanzapine, zolpidem, levorphanol, buspirone and mixtures thereof.
The present invention has unique advantages as a means of delivering drugs by inhalation to the human body. The FDA has expressed concern about airway hypersensitivity due to inhalation products (See G. Poochikian and C. M. Bertha, “Inhalation drug product excipients controls: significance and pitfalls” presented at RDD VII, 2000). The method and device of the present invention are capable of delivering pure drug vapor to the lung without the simultaneous delivery of formulation ingredients, which oftentimes comprise a significant portion of the mass delivered to the patient when other drug delivery methods and devices are utilized. Formulation ingredients often include propellants such as chlorofluorohydrocarbons, solvents such as ethanol, detergents such as Polysorbate 80, preservatives such as benzalkonium chloride or carrier particles such as lactose. The present invention has the advantage of not introducing such excipient molecules into the delicate tissues of the lungs. The ability to deliver pure drug is especially advantageous for drugs that must be administered chronically. This invention allows for the administration of water insoluble drugs to a mammal without the need for excipients or injection. This can be advantageous in treating diseases of the eye, mucosa, skin and broken-skin.
Another advantage comes from the ability of the present invention to produce an ultra fine aerosol. Approximately 50,000 times as many particles exist within a volume of ultra fine aerosol as exists in the same mass of a fine aerosol. Since each particle deposits on the membrane of the lung, a correspondingly greater number of deposition sites are created in the lungs and at each site less material has to be dissolved and transported into the blood stream. This may be important for improving the rate of absorption and thus the bioavailabilty of compounds, e.g., lipophilic compounds, and large molecules such as proteins, peptides and DNA. It is suspected that a portion of some drugs that have a slow absorption rate from the peripheral airways are assimilated by macrophages before they can be absorbed, leading to a low bioavailability despite efficient deposition. Increasing absorption rate through deposition of ultra fine particles would thus be advantageous.
The following examples further illustrate the method and various embodiments of the present invention. These examples are for illustrative purposes and are not meant to limit the scope of the claims in any way.
In this example, the laboratory embodiment of the device of this invention, referred to as Absorption/Distribution/Metabolism/Excretion (ADME) device 1, was designed to deliver an experimental dose of fentanyl between 20 μg and 500 μg, in a range of ultra fine particle sizes, in about 800 cc of air to a 10 kg dog. The lung volume of each dog under experimentation was approximately 600-700 cc and the device was designed to deliver the compound to the lung in the first half of the inhalation. Because of the value of these parameters, ADME device 1 can be considered a ¼ scale device for administering a dose to a human. It is believed that scaling the device to work for human subjects involves mainly increasing the airflow through the device.
In this embodiment, representing one of the preferred embodiments of the present invention, the two main obstacles, decomposition and particle size control, as noted above, were addressed by moving a substrate that had the compound deposited on it into a heating/vaporization/mixing zone. The substrate material, which had been chosen in part for its electrical and thermal properties, was moved into an alternating magnetic field, which also coincided with a region of restricted cross-sectional area and mixing geometry. The alternating magnetic field induced an electrical current in the substrate and because of the substrate's electrical resistance resulted in a rapid temperature rise, which in turn vaporized the compound. The temperature rise occurred in a region where, because of the restriction of the cross-sectional area of the air channel, there was an increase in the air speed across the surface of the compound. The increased airflow acted to “sweep” away any compound vapors above the film of compound, which in turn lowered the partial pressure of the compound and increased the rate of vaporization.
Additionally, the temperature rise was also in a region where the geometry of the passage had been designed to promote rapid mixing of the vaporized compound into the air. This rapid mixing helped overcome the two noted obstacles in two ways. First, because of the rapid mixing there was a more uniform distribution of the compound into the air. This gave rise to a small distribution of particle sizes, which in turn insured a consistent and small particle size. Second, because rapid mixing occurred, the vaporized compound was rapidly cooled by exchange of its kinetic energy with kinetic energy of the cooler carrier air; which reduced decomposition.
The time frame of the introduction of the compound into the heating/vaporization/mixing zone was designed to vaporize the compound into a volume of air that was suitable for both the volume required by lung anatomy (600-700 cc) for the dog and the volume needed to control the ratio of the compound to the air, and thereby to control particle size. In other words, some of the functional limits for this device were defined by lung capacity as well as the requirements for dilution of the aerosol. Lung capacity limits the total amount of drug that can be suspended in the inhaled air at a given concentration.
The ADME device 1 as shown in
Now referring to
Stainless steel (alloy of 302 or 304) foil 64 having a thickness of 0.004 inches was used for foil 64. Other foil materials can be used but stainless steel has an advantage over other materials like aluminum in that it has a much lower thermal conductivity value, while not appreciably increasing the thermal mass. A low thermal conductivity is helpful because
Foil 64 was held in frame 68, made so that the trailing edge of foil 64 had no lip on movable slide 78 and so compound 60, once mixed with the air, was free to travel downstream as seen in
Sub-assembly 80 shown in
Stainless steel foil 64 functions as both a substrate for the drug to be delivered to the subject and the heating element for the vaporization of the drug. Heating element 64 was heated primarily by eddy currents induced by an alternating magnetic field. The alternating magnetic field was produced in ferrite toroid 90 with slit 94, which was wrapped with coil 98 of copper magnet wire. For this preferred embodiment, a ferrite toroid from the Fair-Rite Company was used. The slit was 0.10 inch wide. When an alternating current was passed through coil 98, an alternating magnetic field was produced in ferrite 90. A magnetic field filled the gap formed by slit 94 and magnetic field fringe lines 100 extended out from the toroid. The magnetic field line fringes intersected stainless steel heating element 64. When using a ferrite core, the alternating frequency of the field was limited to below 1 MHz. In this laboratory device, a frequency between 100 and 300 kHz was used. As alternating magnetic field lines 100 pass through foil 64, an alternating electric field was induced following Faraday's Law of Induction. The electric field caused eddy currents in the foil according to Ohm's law. The current moving through the intrinsic resistance of the foil generated the heat.
It is important to consider skin depth when inductively heating thin foils. If skin depth is much greater that the thickness of the foil, the magnetic field will pass through the foil and induce little heating. For a given frequency and material, the skin depth of a magnetic field can be determined using Formula #3 below:
(Ref. The Feynman Lectures on Physics, vol. 2, pg. 32-11 Addison Wesley 1964)
The thicker the stainless steel foil used, the better the coupling of the magnetic field into the foil. However, more energy is needed to achieve a given temperature rise. Therefore, for a practical implementation of the device described above, a number of factors must be considered. First, the very thin foils that require less energy to raise them to a given temperature are less able to absorb the magnetic field due to the skin effect. Second, the ferrite is limited in its ability to conduct magnetic flux. The ferrite has both a saturation limit and internal power loses due to magnetic hysteresis. Foil thickness, ferrite material properties and geometry and operating frequency must be traded off to optimize the transfer of energy from the magnetic components to the foil.
The location and geometry of the eddy currents are also important since they determine where foil 64 will be heated. Since magnetic field fringe lines 100 pass through foil 64 twice, once leaving ferrite toroid 90 and once returning, two rings of current were produced, and in opposite directions. One of the rings was formed around magnetic field lines 100 that leave toroid 90 and the other ring formed around magnetic field lines 100 that return to the toroid. The rings of current overlapped directly over the center of slit 94. Since they were in opposite directions, they sum together. The greatest heating effect was produced over the center of slit 94.
Slide 84 and its contents, were housed in airway 102 made up of upper airway section 104 and lower airway 108 shown in
Additionally, a pyrometer at the end of TC2 line 130 was located within airway 102 and was used to measure the temperature of foil 64. Because of the specific geometry of ADME device 1, the temperature reading of foil 64 was taken after heating zone 70. Calibration of the thermal decay between heating zone 70 and the measurement area was required. Temperature data was collected and used for quality control and verification and not to control any heating parameters. A second temperature sensor was located at the end of TC1 line 132 in outlet 124 and was used to monitor the temperature of the air delivered to the dog.
In a preferred embodiment of the experimental device, removable airway section 140 contained a restricted cross-sectional area along with specific mixing geometry mounted in upper airway section 104. In this preferred embodiment, airway 140 lowered the roof of upper airway section 104 to within 0.04 inch of foil 64. Additionally, airway section 140 contained 31 steel rods (not shown) 0.05 inches in diameter. These rods were oriented perpendicular to the foil and extended from the “roof”, i.e., the top of upper airway section 104, to within 0.004 inches of the foil. The rods that were placed in a staggered pattern had sharp squared off ends, which caused turbulence as the air was draw around them. Rapid, highly turbulent movement of mixing air resulted, which assured complete mixing of the vapor with the air passing through the device.
Airway section 140 was located directly over heating zone 70 and created a heating/vaporization/mixing zone. Prior to commencing aerosol generation, slide 78 was in the downstream position. Slide 78, with its contents, was then drawn upstream into this heating/vaporization/mixing zone 70 as energy was applied to foil 64 through the inductive heater system described in detail below.
The device of the present invention can be equipped with an annunciating device. One of the many functions for the annunciating device is to alert the operator of the device that the compound is not being vaporized or is being improperly vaporized. The annunciating device can also be used to alert the operator that the gas flow rate is outside a desired range. Annunciating device 170 with on-off switch 174 is schematically represented in
The induction drive circuit 190 shown in
The following was the sequence of events that took place during each operation:
In Vivo Results of the ADME Device 1 Embodiment
Three weight-matched female beagle dogs received fentanyl at a 100 μg intravenous bolus dose. The same dogs received fentanyl UF for Inhalation (100 μg aerosolized and administered as two successive activations of an ADME device 1, containing approximately 50 μg fentanyl base) at a particle size of 80 nm (MMAD). The aerosol was administered to anesthetized dogs via the system schematically represented in
Plasma pharmacokinetics from this example was compared to intravenous (IV) fentanyl (100 μg) in the same dogs. Inhalation of fentanyl resulted in rapid absorption (Cmax, maximum concentration in plasma, 11.6 ng/ml and Tmax, maximum time, 2 min.) and high bioavailability (84%). The time course of inhaled fentanyl was nearly identical to that of IV fentanyl. Thus, fentanyl UF for inhalation had an exposure profile that was similar to that of an IV injection.
The use of fentanyl to demonstrate the utility of the preferred embodiment is significant for several reasons. First, the liver extensively metabolizes fentanyl. Thus, an oral dosage form of fentanyl would tend to be less effective because the drug must be absorbed from the gastrointestinal tract and then delivered to the liver. Either an IV dose or an inhalation dose of fentanyl travels directly from its site of entry, a vein in the case of an IV or to the lung in the case of the present invention, to the brain, its primary site of action, before it passes through the liver. The administration of fentanyl to patients is currently provided in several dosage forms: intravenous, transdermal and transmucosal. The latter consists of a matrix of fentanyl citrate on a stick (Actiq® oral transmucosal fentanyl citrate). The product literature provided for Actiq indicate that 25% of the dose is absorbed from the buccal mucosa while the remaining 75% is swallowed with the saliva and is then slowly absorbed from the gastrointestinal tract. About ⅓ of this amount (25% of the total dose) escapes hepatic and intestinal first-pass elimination and becomes systemically available. Thus, a significant advantage of the delivery system of the present invention is that it provides a means for rapid absorption of drugs such as fentanyl into the blood system for delivery directly to the brain, without the use of needles or excipients and without being exposed to a first pass metabolism in the gastrointestinal tract or liver.
Standard non-compartmental pharmacokinetic methods were used to calculate pharmacokinetic parameters for each animal. The maximum concentration in plasma (Cmax) and the maximum time it occurred (Tmax) were determined by examination of the data. The area under the plasma concentration vs. time curve (AUC) was determined. The bioavailability (F) of inhaled fentanyl was determined as:
F=(DIV/DINHAL)*(AUCINHAL/AUCIV)
Where D was the dose and AUC was the AUC determined to the last measurable time point.
The fentanyl aerosol was rapidly absorbed, with the same Tmax (2 min, the earliest time point) observed for both routes of administration. The maximum plasma concentration of fentanyl aerosol (11.6±1.9 ng/ml) was nearly two-thirds that of IV fentanyl (17.6±3.6 ng/ml). Plasma concentrations fell below the assay limit of quantitation by 6-8 hr after IV administration and by 3-4 hr after aerosol inhalation. Bioavailability calculations were based on the AUC's observed to the last measurable time point for the inhalation administration. Bioavailability for the inhalation study was 84% based on the nominal (uncorrected) fentanyl dose.
The mean plasma elimination half-life was similar after IV (75.4 min) and inhalation dose. Distribution phase half-lives (3-4 min) were also similar after both routes of administration. The inter-animal variability of pharmacokinetic parameters after the inhalation dose was low, with relative standard deviations (RSD<25%) lower than those observed for IV administration.
In Vitro Results: ADME Device 1 Embodiment
Table 2 below summarizes the data collected from use of ADME device 1 for in vitro testing of fentanyl. Particle size was measured with a Moudi cascade impactor.
The curves of
In this example, ADME device 1 was slightly modified and the flow rate changed, as discussed below, to make a fine aerosol in the 1 to 3 micron particle size range.
Airway section 140 was removed and the air channel heating/vaporization zone 70 was changed. An airway insert (not shown) had a “roof” that was 0.25 inches above the foil. There were no mixing rods as rapid mixing was not desirable in this example. Because of these two device changes, there was much less mixing with the air, thus the vapor/aerosol cloud was mixed with less air and produced a larger particle size aerosol.
The airflow rate was reduced from 15 liters/minute in Example 1 to 1 liter/minute in this example. Again, this allowed the vapor to be mixed with much less air, resulting in the larger particle size aerosol.
Some operational problems with high compound loading on foil 64 in ADME device 1 were encountered. The compound tested, dioctyl phthalate (DOP), was an oil and during the aerosolization process, a substantial quantity was blown downwind and not aerosolized. Three additional design alternatives were made to address this issue, involving changes to the substrate surface that the compound was deposited on. In the three alternatives, the substrate was made to “hold” the compound through the use of texture. They were:
The results from this example are set forth below in Table 3 below:
As shown above, a fine particle size can be made with ADME device 1 merely by changing the ratio of the compound to the mixing air.
In this example, device 300, the third embodiment of the present invention, is described in which a gas stream is passed into thin walled tube 302 having a coating 310 of compound 60 on the inside of the tube as shown in
In this example, device 400, the fourth embodiment of the present invention, is described. For this example, compound 60 is placed within expandable container 410, possibly a foil pouch, and is heated by resistance heater 420 upon being activated by actuator 430 as shown in
In this example, device 500, the fifth embodiment of the present invention is described in which the problem of the presence of oxygen during the heat-up period is also solved. Compound 60 is placed in an inert atmosphere or under a vacuum in container 502 within housing 10 and is heated by resistance heater 504 upon being activated by actuator 508 as shown in
In this example, device 600, the sixth embodiment of the present invention is described in which compound 60 is deposited onto a substrate in the form of discrete particles 602, e.g., aluminum oxide (alumina), silica, coated silica, carbon, graphite, diatomaceous earth, and other packing materials commonly used in gas chromatography. The coated particles are placed within first tube 604 sandwiched between filters 604 and 608 and are heated by resistance heater 610 upon being activated by actuator 620 as shown in
If the decomposition of the compound is primarily caused by the presence of oxygen and not heat, and if the partial pressure of the compound is sufficient to produce the vaporization necessary at a temperature that does not produce decomposition, then an additional method of vaporization is possible. In device 700, the seventh embodiment of the present invention, compound 60 is deposited into chamber 710 and is heated by resistance heater 715 upon being activated by actuator 720 as shown in
In Vitro Test Results for Example 7
A tank is partially filled with DOP and placed inside an oven (not shown) having an inlet and an outlet. DOP was used as the test compound. The tank was purged with helium prior to heating the tank and its contents to a temperature of 350° C. Helium was pumped through the tank and used to carry the DOP vapor out of the outlet. The gaseous mixture of helium and vaporized compound 60 was introduced into different size mixing tubes through a nozzle. Each of the tubes had air moving through them at 14 liters/minute. The nozzle was perpendicular to the flow direction. After this gaseous mixture was mixed with the air, the resulting aerosol was introduced into a parallel flow diffusion battery for particle size analysis. Results are set forth in Table 4 below.
As can be seen above, as the tube diameter became larger so did the particle size. Additionally, as the diameter became larger, the GSD also became larger. As the tube becomes larger, it is believed that the vaporized gas is introduced into a smaller segment of the mixing gas because the gas is being introduced as a point source leading to uneven mixing, which results in a large GSD, as discussed under the DETAILED DESCRIPTION heading above.
In this example, progressive heating is used during which multiple sections of a substrate are heated sequentially. The compound is deposited uniformly on the substrate. In order to subject the compound to rapid heat up, while at the same time not vaporizing the compound all at once, a movable heating zone is used. Compared to the entire surface area that the compound is laid down on, a relatively small heating area is generated in this example and moved, or “swept out” over the compound deposition area. A number of specific means for accomplishing this are described below.
1. Moving Heater Relative to Substrate
A variety of heating methods can be used to heat the substrate upon which a compound has been deposited. A small zone in the substrate can be heated or only a segment of the substrate or portion of the compound can be directly heated. In the preferred embodiment described in Example 1 above, an inductive heater heating method was utilized, which heated a zone in the foil substrate. Regardless of the heating method, as long as only a small zone of the compound and/or the substrate is heated, it is possible to move the heater relative to the substrate/compound. In the preferred embodiment, an inductive heating zone was induced in a conductive substrate that was in direct contact with the compound. The substrate was moved relative to this magnetic field, causing the compound to be locally vaporized.
2. Thermal Gradient
An alternative device for producing a moving heating zone was accomplished by device 800, the eighth embodiment of the present invention as shown in
The source of the thermal energy can originate from a variety of other heating methods. A simple resistive heater 810 is shown. This resistive heater was embedded in substrate 802 at one end. However, it could be embedded into both ends, or in a variety of positions along the substrate and still allow the temperature gradient to move along the carrier and/or substrate shown in
To demonstrate effectiveness of a thermal gradient device, a 4-inch long piece of aluminum was fitted with a 150-watt cartridge heater at one end. The heater was powered with a variac AC power transformer. The thickness of the aluminum was designed to ensure that heat would transverse from one end of the aluminum to the other in approximately 30 seconds.
On the topside of the aluminum, an indentation was machined to hold the compound and to hold one of two top covers. The indentation for the compound was approximately 3.5 inches long and 0.4 inches wide. The indentation was 0.025 inches deep, and was filled with 1 mg of DOP.
The first top consisted of a sheet of flat glass placed 0.04 inches above the heated surface, creating an airway. At the exit end an outlet was fitted allowing the air to be drawn into an analytical measurement device. Air was made to flow through the airway at a rate of 15 liters/minute.
In the second configuration, the top was replaced with a half cylinder made of glass. This increased the cross sectional area of the airway by an order of magnitude.
Particle size was measured with both configurations and shown to be affected by the cross sectional area of the airway.
Results from the thermal gradient test are set forth in Table 5 below:
As shown above, the results confirm that as the cross section becomes larger, so does the particle size.
3. Discrete Heating Zones
A third method established a set of heated zones, energized sequentially. The zones could be produced from any of the heating devices including a resistive heater as disclosed in Rosen, PCT Publication No. 94/09842, published May 11, 1994, the relevant portions of which are incorporated herein by reference. For example, a substrate could have three (3) sections A, B, C where section A is first heated until the compound have been vaporized followed by the section B, and then C.
4. Inductive Heater, Vary Field to Heat Different Zones
A fourth method involved heating a zone in a substrate with an inductive heater, and then by manipulating the magnetic field, causing the induced current in the substrate to move along the substrate. This was accomplished by a number of methods. One method was to use a ferrite with a saturation value such that, by increasing the electrical field internal to the ferrite, the resultant magnetic field leaves the confines of the ferrite and enters a different area of the substrate.
Another method involved constructing a ferrite with a shape that can be changed, such as opening up an air gap, and thereby changing the shape of the magnetic field.
5. The Use of Radiative Heating
An additional method involved incrementally heating a substrate through the focusing and/or de-focusing of all forms of photon energy, especially in the visible and IR spectrum.
The ninth embodiment of the present invention is shown in
The two sides of the screen were electrically connected to charged capacitor 920 through silicon-controlled rectifier (SCR) 922 to make a circuit. The charge of the capacitor was calculated and set at a value such that, when actuator 930 closed SCR 922, the energy from capacitor 920 was converted to a desired temperature rise in screen 902. Because the internal resistance of the screen was low, i.e., between 0.01 and 0.2 ohms, the discharge rate (the RC time constant) of the capacitor was rapid, and on the order of a few milliseconds, i.e. less than 20 milliseconds, preferably in the range of about 2 to about 10 milliseconds. Upon discharge of capacitor 902 and the subsequent heating of screen 902, the deposited compound was rapidly vaporized. Because air moved through screen 902, the vaporized compound rapidly mixed with air and cooled.
The compound was deposited onto the fine stainless steel screen, e.g., 200 mesh, made from 316 stainless steel, having measurements of 2.54 cm.×2.54 cm. The current from the capacitor was passed between one edge and another. It was not necessary to heat the screen to temperatures comparable to the thin foil in Example 1, because the compound vaporized at a lower temperature due to the rapid air movement. Rapid air movement allowed the compound to vaporize at a lower vapor pressure, since airflow constantly removed compound vapors from the surface as soon as they were formed. Thus, the compound vaporized at a lower temperature without decomposition.
Deposition of the compound onto the screen was accomplished by mixing the compound with an organic solvent until the compound dissolved. The resulting solution was then applied to the fine stainless steel screen 902 and the solvent was allowed to evaporate. The screen was then inserted into holder 940 that electrically connected two sides of screen 902 to the power circuit described above.
A 10,000 mF capacitor was discharged while the gas was passing through screen 902. The rapid heat up of the screen resulted in a rapid vaporization of the compound into the gas. Thus the resulting vaporized compound was mixed into a small volume of the gas. Because the ratio of the mass of the compound to the volume of the mixing gas was large, a fine (1-3 micron diameter) particle aerosol was made.
One of ordinary skill in the art can combine the foregoing embodiments or make various other embodiments and aspects of the method and device of the present invention to adapt them to specific usages and conditions. As such, these changes and modifications are properly, equitably, and intended to be, within the full range of equivalents of the following claims.
This application claims the benefit of prior U.S. provisional application Ser. No. 60/296,225 filed Jun. 5, 2001.
Number | Name | Date | Kind |
---|---|---|---|
1239634 | Stuart | Sep 1917 | A |
1535486 | Lundy | Apr 1925 | A |
1803334 | Lehmann | May 1931 | A |
1864980 | Curran | Jun 1932 | A |
2084299 | Borden | Jun 1937 | A |
2086140 | Ernst | Jul 1937 | A |
2230753 | Klavehn et al. | Feb 1941 | A |
2230754 | Klavehn et al. | Feb 1941 | A |
2243669 | Clyne | May 1941 | A |
2309846 | Holm | Feb 1943 | A |
2469656 | Lienert | May 1949 | A |
2714649 | Critzer | Aug 1955 | A |
2741812 | Andre | Apr 1956 | A |
2761055 | Ike | Aug 1956 | A |
2887106 | Robinson | May 1959 | A |
2898649 | Murray | Aug 1959 | A |
2902484 | Horclois | Sep 1959 | A |
3043977 | Morowitz | Jul 1962 | A |
3080624 | Webber, III | Mar 1963 | A |
3164600 | Janssen et al. | Jan 1965 | A |
3169095 | Thiel et al. | Feb 1965 | A |
3200819 | Gilbert | Aug 1965 | A |
3219533 | Mullins | Nov 1965 | A |
3282729 | Richardson et al. | Nov 1966 | A |
3296249 | Bell | Jan 1967 | A |
3299185 | Oda et al. | Jan 1967 | A |
3371085 | Reeder et al. | Feb 1968 | A |
3393197 | Pachter | Jul 1968 | A |
3433791 | Bentley et al. | Mar 1969 | A |
3560607 | Hartley et al. | Feb 1971 | A |
3701782 | Hester | Oct 1972 | A |
3749547 | Gregory et al. | Jul 1973 | A |
3763347 | Whitaker et al. | Oct 1973 | A |
3773995 | Pachter et al. | Nov 1973 | A |
3831606 | Damani | Aug 1974 | A |
3847650 | Gregory et al. | Nov 1974 | A |
3864326 | Babington | Feb 1975 | A |
3894040 | Buzby, Jr. | Jul 1975 | A |
3909463 | Hartman | Sep 1975 | A |
3930796 | Haensel | Jan 1976 | A |
3943941 | Boyd et al. | Mar 1976 | A |
3949743 | Shanbrom | Apr 1976 | A |
3971377 | Damani | Jul 1976 | A |
3982095 | Robinson | Sep 1976 | A |
3987052 | Hester, Jr. | Oct 1976 | A |
4008723 | Borthwick et al. | Feb 1977 | A |
4020379 | Manning | Apr 1977 | A |
4045156 | Chu et al. | Aug 1977 | A |
4079742 | Rainer et al. | Mar 1978 | A |
4104210 | Coran et al. | Aug 1978 | A |
4121583 | Chen | Oct 1978 | A |
4141369 | Burruss | Feb 1979 | A |
4160765 | Weinstock | Jul 1979 | A |
4166087 | Cline et al. | Aug 1979 | A |
4183912 | Rosenthale | Jan 1980 | A |
4184099 | Lindauer et al. | Jan 1980 | A |
4190654 | Gherardi et al. | Feb 1980 | A |
4198200 | Fonda et al. | Apr 1980 | A |
RE30285 | Babington | May 1980 | E |
4219031 | Rainer et al. | Aug 1980 | A |
4229447 | Porter | Oct 1980 | A |
4229931 | Schlueter et al. | Oct 1980 | A |
4232002 | Nogrady | Nov 1980 | A |
4236544 | Osaka | Dec 1980 | A |
4251525 | Weinstock | Feb 1981 | A |
4276243 | Partus | Jun 1981 | A |
4280629 | Slaughter | Jul 1981 | A |
4284089 | Ray | Aug 1981 | A |
4286604 | Ehretsmann et al. | Sep 1981 | A |
4303083 | Burruss, Jr. | Dec 1981 | A |
4340072 | Bolt et al. | Jul 1982 | A |
4346059 | Spector | Aug 1982 | A |
4347855 | Lanzillotti et al. | Sep 1982 | A |
4376767 | Sloan | Mar 1983 | A |
4391285 | Burnett et al. | Jul 1983 | A |
4423071 | Chignac et al. | Dec 1983 | A |
4474191 | Steiner | Oct 1984 | A |
4484576 | Albarda | Nov 1984 | A |
4508726 | Coleman | Apr 1985 | A |
4523589 | Krauser | Jun 1985 | A |
4556539 | Spector | Dec 1985 | A |
4566451 | Badewien | Jan 1986 | A |
4588425 | Usry et al. | May 1986 | A |
4588721 | Mahan | May 1986 | A |
4591615 | Aldred et al. | May 1986 | A |
4605552 | Fritschi | Aug 1986 | A |
4627963 | Olson | Dec 1986 | A |
4647428 | Gyulay | Mar 1987 | A |
4647433 | Spector | Mar 1987 | A |
4654370 | Marriott, III et al. | Mar 1987 | A |
4683231 | Glassman | Jul 1987 | A |
4693868 | Katsuda et al. | Sep 1987 | A |
4708151 | Shelar | Nov 1987 | A |
4714082 | Banerjee et al. | Dec 1987 | A |
4722334 | Blackmer et al. | Feb 1988 | A |
4734560 | Bowen | Mar 1988 | A |
4735217 | Gerth et al. | Apr 1988 | A |
4735358 | Morita et al. | Apr 1988 | A |
4753758 | Miller | Jun 1988 | A |
4755508 | Bock et al. | Jul 1988 | A |
4756318 | Clearman et al. | Jul 1988 | A |
4765347 | Sensabaugh, Jr. et al. | Aug 1988 | A |
4771795 | White et al. | Sep 1988 | A |
4774971 | Vieten | Oct 1988 | A |
4793365 | Sensabaugh, Jr. et al. | Dec 1988 | A |
4793366 | Hill | Dec 1988 | A |
4800903 | Ray et al. | Jan 1989 | A |
4801411 | Wellinghoff et al. | Jan 1989 | A |
4814161 | Jinks et al. | Mar 1989 | A |
4819665 | Roberts et al. | Apr 1989 | A |
4848374 | Chard et al. | Jul 1989 | A |
4852561 | Sperry | Aug 1989 | A |
4853517 | Bowen et al. | Aug 1989 | A |
4854331 | Banerjee et al. | Aug 1989 | A |
4858630 | Banerjee et al. | Aug 1989 | A |
4863720 | Burghart et al. | Sep 1989 | A |
4881541 | Eger et al. | Nov 1989 | A |
4881556 | Clearman et al. | Nov 1989 | A |
4889850 | Thornfeldt et al. | Dec 1989 | A |
4892109 | Strubel | Jan 1990 | A |
4895719 | Radhakrishnan et al. | Jan 1990 | A |
4906417 | Gentry | Mar 1990 | A |
4911157 | Miller | Mar 1990 | A |
4917119 | Potter et al. | Apr 1990 | A |
4917120 | Hill | Apr 1990 | A |
4917830 | Ortiz et al. | Apr 1990 | A |
4922901 | Brooks et al. | May 1990 | A |
4924883 | Perfetti et al. | May 1990 | A |
4928714 | Shannon | May 1990 | A |
4935624 | Henion et al. | Jun 1990 | A |
4941483 | Ridings et al. | Jul 1990 | A |
4947874 | Brooks et al. | Aug 1990 | A |
4947875 | Brooks et al. | Aug 1990 | A |
4950664 | Goldberg | Aug 1990 | A |
4955945 | Weick | Sep 1990 | A |
4959380 | Wilson | Sep 1990 | A |
4963289 | Ortiz et al. | Oct 1990 | A |
4968885 | Willoughby | Nov 1990 | A |
4984158 | Hillsman | Jan 1991 | A |
4989619 | Clearman et al. | Feb 1991 | A |
5016425 | Weick | May 1991 | A |
5017575 | Golwyn | May 1991 | A |
5019122 | Clearman et al. | May 1991 | A |
5020548 | Farrier et al. | Jun 1991 | A |
5027836 | Shannon et al. | Jul 1991 | A |
5033483 | Clearman et al. | Jul 1991 | A |
5038769 | Krauser | Aug 1991 | A |
5042509 | Banerjee et al. | Aug 1991 | A |
5049389 | Radhakrishnun | Sep 1991 | A |
5060666 | Clearman et al. | Oct 1991 | A |
5060667 | Strubel | Oct 1991 | A |
5060671 | Counts et al. | Oct 1991 | A |
5067499 | Banerjee et al. | Nov 1991 | A |
5072726 | Mazloomdoost et al. | Dec 1991 | A |
5076292 | Sensabaugh, Jr. et al. | Dec 1991 | A |
5093894 | Deevi et al. | Mar 1992 | A |
5095921 | Loose et al. | Mar 1992 | A |
5099861 | Clearman et al. | Mar 1992 | A |
5105831 | Banerjee et al. | Apr 1992 | A |
5109180 | Boultinghouse et al. | Apr 1992 | A |
5112598 | Biesalski | May 1992 | A |
5118494 | Schultz et al. | Jun 1992 | A |
5119834 | Shannon et al. | Jun 1992 | A |
5126123 | Johnson | Jun 1992 | A |
5133368 | Neumann et al. | Jul 1992 | A |
5135009 | Muller et al. | Aug 1992 | A |
5137034 | Perfetti et al. | Aug 1992 | A |
5144962 | Counts et al. | Sep 1992 | A |
5146915 | Montgomery | Sep 1992 | A |
5149538 | Granger et al. | Sep 1992 | A |
5156170 | Clearman et al. | Oct 1992 | A |
5160664 | Liu | Nov 1992 | A |
5164740 | Ivri | Nov 1992 | A |
5166202 | Schweizer | Nov 1992 | A |
5167242 | Turner et al. | Dec 1992 | A |
5168866 | Montgomery | Dec 1992 | A |
5177071 | Freidinger et al. | Jan 1993 | A |
5179966 | Losee et al. | Jan 1993 | A |
5186164 | Raghuprasad | Feb 1993 | A |
5192548 | Velasquez et al. | Mar 1993 | A |
5224498 | Deevi et al. | Jul 1993 | A |
5226411 | Levine | Jul 1993 | A |
5229120 | DeVincent | Jul 1993 | A |
5229382 | Chakrabarti et al. | Jul 1993 | A |
5240922 | O'Neill | Aug 1993 | A |
5249586 | Morgan et al. | Oct 1993 | A |
5255674 | Oftedal et al. | Oct 1993 | A |
5261424 | Sprinkel, Jr. | Nov 1993 | A |
5264433 | Sato et al. | Nov 1993 | A |
5269327 | Counts et al. | Dec 1993 | A |
5284133 | Burns et al. | Feb 1994 | A |
5285798 | Banerjee et al. | Feb 1994 | A |
5292499 | Evans et al. | Mar 1994 | A |
5322075 | Deevi et al. | Jun 1994 | A |
5333106 | Lanpher et al. | Jul 1994 | A |
5345951 | Serrano et al. | Sep 1994 | A |
5357984 | Farrier et al. | Oct 1994 | A |
5363842 | Mishelevich et al. | Nov 1994 | A |
5364838 | Rubsamen | Nov 1994 | A |
5366770 | Wang | Nov 1994 | A |
5372148 | McCafferty et al. | Dec 1994 | A |
5376386 | Ganderton et al. | Dec 1994 | A |
5388574 | Ingebrethsen | Feb 1995 | A |
5391081 | Lampotang et al. | Feb 1995 | A |
5399574 | Robertson et al. | Mar 1995 | A |
5400808 | Turner et al. | Mar 1995 | A |
5400969 | Keene | Mar 1995 | A |
5402517 | Gillett et al. | Mar 1995 | A |
5408574 | Deevi et al. | Apr 1995 | A |
5436230 | Soudant et al. | Jul 1995 | A |
5451408 | Mezei et al. | Sep 1995 | A |
5455043 | Fischel-Ghodsian | Oct 1995 | A |
5456247 | Shilling et al. | Oct 1995 | A |
5456677 | Spector | Oct 1995 | A |
5457100 | Daniel | Oct 1995 | A |
5457101 | Greenwood et al. | Oct 1995 | A |
5459137 | Andrasi et al. | Oct 1995 | A |
5462740 | Evenstad et al. | Oct 1995 | A |
5468936 | Deevi et al. | Nov 1995 | A |
5479948 | Counts et al. | Jan 1996 | A |
5501236 | Hill et al. | Mar 1996 | A |
5505214 | Collins et al. | Apr 1996 | A |
5507277 | Rubsamen et al. | Apr 1996 | A |
5511726 | Greenspan et al. | Apr 1996 | A |
5519019 | Andrasi et al. | May 1996 | A |
5525329 | Snyder et al. | Jun 1996 | A |
5537507 | Mariner et al. | Jul 1996 | A |
5538020 | Farrier et al. | Jul 1996 | A |
5540959 | Wang | Jul 1996 | A |
5543434 | Weg | Aug 1996 | A |
5544646 | Lloyd et al. | Aug 1996 | A |
5564442 | MacDonald et al. | Oct 1996 | A |
5565148 | Pendergrass | Oct 1996 | A |
5577156 | Costello | Nov 1996 | A |
5584701 | Lampotang et al. | Dec 1996 | A |
5586550 | Ivri et al. | Dec 1996 | A |
5591409 | Watkins | Jan 1997 | A |
5592934 | Thwaites | Jan 1997 | A |
5593792 | Farrier et al. | Jan 1997 | A |
5605146 | Sarela | Feb 1997 | A |
5605897 | Beasley, Jr. et al. | Feb 1997 | A |
5607691 | Hale et al. | Mar 1997 | A |
5613504 | Collins et al. | Mar 1997 | A |
5613505 | Campbell et al. | Mar 1997 | A |
5619984 | Hodson et al. | Apr 1997 | A |
5622944 | Hale et al. | Apr 1997 | A |
5627178 | Chakrabarti et al. | May 1997 | A |
5649554 | Sprinkel | Jul 1997 | A |
5655523 | Hodson et al. | Aug 1997 | A |
5656255 | Jones | Aug 1997 | A |
5660166 | Lloyd et al. | Aug 1997 | A |
5666977 | Higgins et al. | Sep 1997 | A |
5690809 | Subramaniam et al. | Nov 1997 | A |
5694919 | Rubsamen et al. | Dec 1997 | A |
5718222 | Lloyd et al. | Feb 1998 | A |
5724957 | Rubsamen et al. | Mar 1998 | A |
5725756 | Subramaniam et al. | Mar 1998 | A |
5733572 | Unger et al. | Mar 1998 | A |
5735263 | Rubsamen et al. | Apr 1998 | A |
5738865 | Baichwal et al. | Apr 1998 | A |
5743250 | Gonda et al. | Apr 1998 | A |
5743251 | Howell et al. | Apr 1998 | A |
5744469 | Tran | Apr 1998 | A |
5747001 | Wiedmann et al. | May 1998 | A |
5756449 | Andersen et al. | May 1998 | A |
5758637 | Ivri et al. | Jun 1998 | A |
5767117 | Moskowitz et al. | Jun 1998 | A |
5769621 | Early et al. | Jun 1998 | A |
5770222 | Unger et al. | Jun 1998 | A |
5771882 | Psaros et al. | Jun 1998 | A |
5776928 | Beasley, Jr. | Jul 1998 | A |
5804212 | Illum | Sep 1998 | A |
5809997 | Wolf | Sep 1998 | A |
5817656 | Beasley, Jr. et al. | Oct 1998 | A |
5819756 | Mielordt | Oct 1998 | A |
5823178 | Lloyd et al. | Oct 1998 | A |
5829436 | Rubsamen et al. | Nov 1998 | A |
5833891 | Subramaniam et al. | Nov 1998 | A |
5840246 | Hammons et al. | Nov 1998 | A |
5855564 | Ruskewicz | Jan 1999 | A |
5855913 | Hanes et al. | Jan 1999 | A |
5865185 | Collins et al. | Feb 1999 | A |
5874064 | Edwards et al. | Feb 1999 | A |
5874481 | Weers et al. | Feb 1999 | A |
5875776 | Vaghefi | Mar 1999 | A |
5878752 | Adams et al. | Mar 1999 | A |
5884620 | Gonda et al. | Mar 1999 | A |
5890908 | Lampotang et al. | Apr 1999 | A |
5894841 | Voges | Apr 1999 | A |
5904900 | Bleuse et al. | May 1999 | A |
5906811 | Hersh | May 1999 | A |
5907075 | Subramaniam et al. | May 1999 | A |
5910301 | Farr et al. | Jun 1999 | A |
5915378 | Lloyd et al. | Jun 1999 | A |
5918595 | Olsson | Jul 1999 | A |
5928520 | Haumesser | Jul 1999 | A |
5929093 | Pang et al. | Jul 1999 | A |
5934272 | Lloyd et al. | Aug 1999 | A |
5934289 | Watkins et al. | Aug 1999 | A |
5935604 | Illum | Aug 1999 | A |
5938117 | Ivri | Aug 1999 | A |
5939100 | Albrechtsen et al. | Aug 1999 | A |
5941240 | Gonda et al. | Aug 1999 | A |
5944012 | Pera | Aug 1999 | A |
5957124 | Lloyd et al. | Sep 1999 | A |
5960792 | Lloyd et al. | Oct 1999 | A |
5970973 | Gonda et al. | Oct 1999 | A |
5971951 | Ruskewicz | Oct 1999 | A |
5985309 | Edwards et al. | Nov 1999 | A |
5993805 | Sutton et al. | Nov 1999 | A |
6004516 | Rasouli et al. | Dec 1999 | A |
6004970 | O'Malley et al. | Dec 1999 | A |
6008214 | Kwon et al. | Dec 1999 | A |
6008216 | Chakrabarti et al. | Dec 1999 | A |
6013050 | Bellhouse et al. | Jan 2000 | A |
6014969 | Lloyd et al. | Jan 2000 | A |
6014970 | Ivri et al. | Jan 2000 | A |
6041777 | Faithfull et al. | Mar 2000 | A |
6044777 | Walsh | Apr 2000 | A |
6048550 | Chan et al. | Apr 2000 | A |
6048857 | Ellinwood, Jr. et al. | Apr 2000 | A |
6050260 | Daniell et al. | Apr 2000 | A |
6051257 | Kodas et al. | Apr 2000 | A |
6051566 | Bianco | Apr 2000 | A |
6053176 | Adams et al. | Apr 2000 | A |
RE36744 | Goldberg | Jun 2000 | E |
6085026 | Hammons et al. | Jul 2000 | A |
6089857 | Matsuura et al. | Jul 2000 | A |
6090212 | Mahawili | Jul 2000 | A |
6090403 | Block et al. | Jul 2000 | A |
6095134 | Sievers et al. | Aug 2000 | A |
6095153 | Kessler et al. | Aug 2000 | A |
6098620 | Lloyd et al. | Aug 2000 | A |
6102036 | Slutsky et al. | Aug 2000 | A |
6113795 | Subramaniam et al. | Sep 2000 | A |
6117866 | Bondinell et al. | Sep 2000 | A |
6125853 | Susa et al. | Oct 2000 | A |
6126919 | Stefely et al. | Oct 2000 | A |
6131566 | Ashurst et al. | Oct 2000 | A |
6131570 | Schuster et al. | Oct 2000 | A |
6133327 | Kimura et al. | Oct 2000 | A |
6135369 | Prendergast et al. | Oct 2000 | A |
6136295 | Edwards et al. | Oct 2000 | A |
6138683 | Hersh et al. | Oct 2000 | A |
6140323 | Ellinwood, Jr. et al. | Oct 2000 | A |
6143277 | Ashurst et al. | Nov 2000 | A |
6143746 | Daugan et al. | Nov 2000 | A |
6149892 | Britto | Nov 2000 | A |
6155268 | Takeuchi | Dec 2000 | A |
6158431 | Poole | Dec 2000 | A |
6167880 | Gonda et al. | Jan 2001 | B1 |
6178969 | St. Charles | Jan 2001 | B1 |
6234167 | Cox et al. | May 2001 | B1 |
6241969 | Saidi et al. | Jun 2001 | B1 |
6250301 | Pate | Jun 2001 | B1 |
6255334 | Sands | Jul 2001 | B1 |
6263872 | Schuster et al. | Jul 2001 | B1 |
6264922 | Wood et al. | Jul 2001 | B1 |
6284287 | Sarlikiotis et al. | Sep 2001 | B1 |
6299900 | Reed et al. | Oct 2001 | B1 |
6300710 | Nakamori | Oct 2001 | B1 |
6306431 | Zhang et al. | Oct 2001 | B1 |
6309668 | Bastin et al. | Oct 2001 | B1 |
6309986 | Flashinski et al. | Oct 2001 | B1 |
6313176 | Ellinwood, Jr. et al. | Nov 2001 | B1 |
6325475 | Hayes et al. | Dec 2001 | B1 |
6376550 | Raber et al. | Apr 2002 | B1 |
6390453 | Frederickson et al. | May 2002 | B1 |
6408854 | Gonda et al. | Jun 2002 | B1 |
6413930 | Ratti et al. | Jul 2002 | B1 |
6420351 | Tsai et al. | Jul 2002 | B1 |
6431166 | Gonda et al. | Aug 2002 | B2 |
6443152 | Lockhart et al. | Sep 2002 | B1 |
6461591 | Keller et al. | Oct 2002 | B1 |
6491233 | Nichols | Dec 2002 | B2 |
6501052 | Cox et al. | Dec 2002 | B2 |
6506762 | Horvath et al. | Jan 2003 | B1 |
6514482 | Bartus et al. | Feb 2003 | B1 |
6516796 | Cox et al. | Feb 2003 | B1 |
6557552 | Cox et al. | May 2003 | B1 |
6561186 | Casper et al. | May 2003 | B2 |
6568390 | Nichols et al. | May 2003 | B2 |
6591839 | Meyer et al. | Jul 2003 | B2 |
6632047 | Vinegar et al. | Oct 2003 | B2 |
6648950 | Lee et al. | Nov 2003 | B2 |
6671945 | Gerber et al. | Jan 2004 | B2 |
6680668 | Gerber et al. | Jan 2004 | B2 |
6681769 | Sprinkel et al. | Jan 2004 | B2 |
6681998 | Sharpe et al. | Jan 2004 | B2 |
6682716 | Hodges et al. | Jan 2004 | B2 |
6688313 | Wrenn et al. | Feb 2004 | B2 |
6694975 | Schuster et al. | Feb 2004 | B2 |
6701921 | Sprinkel et al. | Mar 2004 | B2 |
6701922 | Hindle et al. | Mar 2004 | B2 |
6715487 | Nichols et al. | Apr 2004 | B2 |
6716415 | Rabinowitz et al. | Apr 2004 | B2 |
6716416 | Rabinowitz et al. | Apr 2004 | B2 |
6716417 | Rabinowitz et al. | Apr 2004 | B2 |
6728478 | Cox et al. | Apr 2004 | B2 |
6737042 | Rabinowitz et al. | May 2004 | B2 |
6737043 | Rabinowitz et al. | May 2004 | B2 |
6740307 | Rabinowitz et al. | May 2004 | B2 |
6740308 | Rabinowitz et al. | May 2004 | B2 |
6740309 | Rabinowitz et al. | May 2004 | B2 |
6743415 | Rabinowitz et al. | Jun 2004 | B2 |
6759029 | Hale et al. | Jul 2004 | B2 |
6772756 | Shayan | Aug 2004 | B2 |
6772757 | Sprinkel, Jr. et al. | Aug 2004 | B2 |
6776978 | Rabinowitz et al. | Aug 2004 | B2 |
6779520 | Genova et al. | Aug 2004 | B2 |
6780399 | Rabinowitz et al. | Aug 2004 | B2 |
6780400 | Rabinowitz et al. | Aug 2004 | B2 |
6783753 | Rabinowitz et al. | Aug 2004 | B2 |
6797259 | Rabinowitz et al. | Sep 2004 | B2 |
6803031 | Rabinowitz et al. | Oct 2004 | B2 |
6805853 | Rabinowitz et al. | Oct 2004 | B2 |
6805854 | Hale et al. | Oct 2004 | B2 |
6814954 | Rabinowitz et al. | Nov 2004 | B2 |
6814955 | Rabinowitz et al. | Nov 2004 | B2 |
6855310 | Rabinowitz et al. | Feb 2005 | B2 |
6884408 | Rabinowitz et al. | Apr 2005 | B2 |
6994843 | Rabinowitz et al. | Feb 2006 | B2 |
7005121 | Rabinowitz et al. | Feb 2006 | B2 |
7005122 | Hale et al. | Feb 2006 | B2 |
7008615 | Rabinowitz et al. | Mar 2006 | B2 |
7008616 | Rabinowitz et al. | Mar 2006 | B2 |
7011819 | Hale et al. | Mar 2006 | B2 |
7011820 | Rabinowitz et al. | Mar 2006 | B2 |
7014840 | Hale et al. | Mar 2006 | B2 |
7014841 | Rabinowitz et al. | Mar 2006 | B2 |
7018619 | Rabinowitz et al. | Mar 2006 | B2 |
7018620 | Rabinowitz et al. | Mar 2006 | B2 |
7018621 | Hale et al. | Mar 2006 | B2 |
7022312 | Rabinowitz et al. | Apr 2006 | B2 |
7029658 | Rabinowitz et al. | Apr 2006 | B2 |
7033575 | Rabinowitz et al. | Apr 2006 | B2 |
7045118 | Rabinowitz et al. | May 2006 | B2 |
7045119 | Rabinowitz et al. | May 2006 | B2 |
7048909 | Rabinowitz et al. | May 2006 | B2 |
7052679 | Rabinowitz et al. | May 2006 | B2 |
7052680 | Rabinowitz et al. | May 2006 | B2 |
7060254 | Rabinowitz et al. | Jun 2006 | B2 |
7060255 | Rabinowitz et al. | Jun 2006 | B2 |
7063830 | Rabinowitz et al. | Jun 2006 | B2 |
7063831 | Rabinowitz et al. | Jun 2006 | B2 |
7063832 | Rabinowitz et al. | Jun 2006 | B2 |
7067114 | Rabinowitz et al. | Jun 2006 | B2 |
7070761 | Rabinowitz et al. | Jul 2006 | B2 |
7070762 | Rabinowitz et al. | Jul 2006 | B2 |
7070763 | Rabinowitz et al. | Jul 2006 | B2 |
7070764 | Rabinowitz et al. | Jul 2006 | B2 |
7070765 | Rabinowitz et al. | Jul 2006 | B2 |
7070766 | Rabinowitz et al. | Jul 2006 | B2 |
7078016 | Rabinowitz | Jul 2006 | B2 |
7078017 | Rabinowitz et al. | Jul 2006 | B2 |
7078018 | Rabinowitz et al. | Jul 2006 | B2 |
7078019 | Rabinowitz et al. | Jul 2006 | B2 |
7078020 | Rabinowitz et al. | Jul 2006 | B2 |
7087216 | Rabinowitz et al. | Aug 2006 | B2 |
7087217 | Rabinowitz et al. | Aug 2006 | B2 |
7087218 | Rabinowitz et al. | Aug 2006 | B2 |
7090830 | Hale et al. | Aug 2006 | B2 |
7094392 | Rabinowitz et al. | Aug 2006 | B2 |
7108847 | Rabinowitz et al. | Sep 2006 | B2 |
7115250 | Rabinowitz et al. | Oct 2006 | B2 |
7169378 | Rabinowitz et al. | Jan 2007 | B2 |
7442368 | Rabinowitz et al. | Oct 2008 | B2 |
20010020147 | Staniforth et al. | Sep 2001 | A1 |
20010042546 | Umeda et al. | Nov 2001 | A1 |
20020031480 | Peart et al. | Mar 2002 | A1 |
20020037828 | Wilson et al. | Mar 2002 | A1 |
20020058009 | Bartus et al. | May 2002 | A1 |
20020061281 | Osbakken et al. | May 2002 | A1 |
20020078955 | Nichols et al. | Jun 2002 | A1 |
20020086852 | Cantor | Jul 2002 | A1 |
20020097139 | Gerber et al. | Jul 2002 | A1 |
20020112723 | Schuster et al. | Aug 2002 | A1 |
20020117175 | Kottayil et al. | Aug 2002 | A1 |
20020176841 | Barker et al. | Nov 2002 | A1 |
20030004142 | Prior et al. | Jan 2003 | A1 |
20030015196 | Hodges et al. | Jan 2003 | A1 |
20030015197 | Hale et al. | Jan 2003 | A1 |
20030032638 | Kim et al. | Feb 2003 | A1 |
20030033055 | McRae et al. | Feb 2003 | A1 |
20030049025 | Neumann et al. | Mar 2003 | A1 |
20030051728 | Lloyd et al. | Mar 2003 | A1 |
20030106551 | Sprinkel et al. | Jun 2003 | A1 |
20030118512 | Shen | Jun 2003 | A1 |
20030121906 | Abbott et al. | Jul 2003 | A1 |
20030132219 | Cox et al. | Jul 2003 | A1 |
20030156829 | Cox et al. | Aug 2003 | A1 |
20030209240 | Hale et al. | Nov 2003 | A1 |
20040016427 | Byron et al. | Jan 2004 | A1 |
20040035409 | Harwig et al. | Feb 2004 | A1 |
20040055504 | Lee et al. | Mar 2004 | A1 |
20040081624 | Nguyen et al. | Apr 2004 | A1 |
20060120962 | Rabinowitz et al. | Jun 2006 | A1 |
20060193788 | Hale et al. | Aug 2006 | A1 |
20060286043 | Rabinowitz et al. | Dec 2006 | A1 |
20070014737 | Rabinowitz et al. | Jan 2007 | A1 |
20070140982 | Every et al. | Jun 2007 | A1 |
20070178052 | Rabinowitz et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
2152684 | Jan 1996 | CA |
1082365 | Feb 1994 | CN |
1176075 | Mar 1998 | CN |
198 54 007 | May 2000 | DE |
0 039 369 | Nov 1981 | EP |
0 274 431 | Jul 1988 | EP |
0 277 519 | Aug 1988 | EP |
0 358 114 | Mar 1990 | EP |
0 430 559 | Jun 1991 | EP |
0 492 485 | Jul 1992 | EP |
0 606 486 | Jul 1994 | EP |
0 734 719 | Oct 1996 | EP |
0 967 214 | Dec 1999 | EP |
1 080 720 | Mar 2001 | EP |
1 177 793 | Feb 2002 | EP |
0 808 635 | Jul 2003 | EP |
921 852 | May 1947 | FR |
2 428 068 | Jan 1980 | FR |
502 761 | Jan 1938 | GB |
903 866 | Aug 1962 | GB |
1 366 041 | Sep 1974 | GB |
2 108 390 | May 1983 | GB |
2 122 903 | Jan 1984 | GB |
200105 | Apr 1990 | HU |
219329 | Mar 2001 | HU |
WO 8500520 | Feb 1985 | WO |
WO 8808304 | Nov 1988 | WO |
WO 9002737 | Mar 1990 | WO |
WO 9007333 | Jul 1990 | WO |
WO 9107947 | Jun 1991 | WO |
WO 9118525 | Dec 1991 | WO |
WO 9205781 | Apr 1992 | WO |
WO 9215353 | Sep 1992 | WO |
WO 9219303 | Nov 1992 | WO |
WO 9312823 | Jul 1993 | WO |
WO 9409842 | May 1994 | WO |
WO 9416717 | Aug 1994 | WO |
WO 9416757 | Aug 1994 | WO |
WO 9416759 | Aug 1994 | WO |
WO 9417369 | Aug 1994 | WO |
WO 9417370 | Aug 1994 | WO |
WO 9427576 | Dec 1994 | WO |
WO 9427653 | Dec 1994 | WO |
WO 9531182 | Nov 1995 | WO |
WO 9600069 | Jan 1996 | WO |
WO 9600070 | Jan 1996 | WO |
WO 9600071 | Jan 1996 | WO |
WO 9609846 | Apr 1996 | WO |
WO 9610663 | Apr 1996 | WO |
WO 9613161 | May 1996 | WO |
WO 9613290 | May 1996 | WO |
WO 9613291 | May 1996 | WO |
WO 9613292 | May 1996 | WO |
WO 9630068 | Oct 1996 | WO |
WO 9631198 | Oct 1996 | WO |
WO 9637198 | Nov 1996 | WO |
WO 9716181 | May 1997 | WO |
WO 9717948 | May 1997 | WO |
WO 9723221 | Jul 1997 | WO |
WO 9727804 | Aug 1997 | WO |
WO 9731691 | Sep 1997 | WO |
WO 9735562 | Oct 1997 | WO |
WO 9736574 | Oct 1997 | WO |
WO 9740819 | Nov 1997 | WO |
WO 9749690 | Dec 1997 | WO |
WO 9802186 | Jan 1998 | WO |
WO 9816205 | Apr 1998 | WO |
WO 9822170 | May 1998 | WO |
WO 9829110 | Jul 1998 | WO |
WO 9831346 | Jul 1998 | WO |
WO 9834595 | Aug 1998 | WO |
WO 9836651 | Aug 1998 | WO |
WO 9837896 | Sep 1998 | WO |
WO 9904797 | Feb 1999 | WO |
WO 9916419 | Apr 1999 | WO |
WO 9924433 | May 1999 | WO |
WO 9937347 | Jul 1999 | WO |
WO 9937625 | Jul 1999 | WO |
WO 9944664 | Sep 1999 | WO |
WO 9955362 | Nov 1999 | WO |
WO 9959710 | Nov 1999 | WO |
WO 9964094 | Dec 1999 | WO |
WO 0000176 | Jan 2000 | WO |
WO 0000215 | Jan 2000 | WO |
WO 0000244 | Jan 2000 | WO |
WO 0019991 | Apr 2000 | WO |
WO 0027359 | May 2000 | WO |
WO 0027363 | May 2000 | WO |
WO 0028979 | May 2000 | WO |
WO 0029053 | May 2000 | WO |
WO 0029167 | May 2000 | WO |
WO 0035417 | Jun 2000 | WO |
WO 0038618 | Jul 2000 | WO |
WO 0044350 | Aug 2000 | WO |
WO 0044730 | Aug 2000 | WO |
WO 0047203 | Sep 2000 | WO |
WO 0051491 | Sep 2000 | WO |
WO 0064940 | Nov 2000 | WO |
WO 0066084 | Nov 2000 | WO |
WO 0066106 | Nov 2000 | WO |
WO 0066206 | Nov 2000 | WO |
WO 0072827 | Dec 2000 | WO |
WO 0076673 | Dec 2000 | WO |
WO 0105459 | Jan 2001 | WO |
WO 0113957 | Mar 2001 | WO |
WO 0117568 | Mar 2001 | WO |
WO 0119528 | Mar 2001 | WO |
WO 0129011 | Apr 2001 | WO |
WO 0132144 | May 2001 | WO |
WO 0141732 | Jun 2001 | WO |
WO 0143801 | Jun 2001 | WO |
WO 0195903 | Dec 2001 | WO |
WO 0200198 | Jan 2002 | WO |
WO 0224158 | Mar 2002 | WO |
WO 02051466 | Jul 2002 | WO |
WO 02056866 | Jul 2002 | WO |
WO 02094234 | Nov 2002 | WO |
WO 02098389 | Dec 2002 | WO |
WO 03037412 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030062042 A1 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
60296225 | Jun 2001 | US |