The present invention relates to systems and methods for forming a texture on a surface and, more specifically, to texturing systems and methods adapted to apply texture material to cover a repaired portion of a surface having a pre-existing texture formed thereon.
Wall and other surfaces are often textured. Textures can be an integral part of the surface, such as with a concrete or wood wall, or can be a separate layer or coating applied to an underlying structural member for aesthetic purposes. The texture can be patterned, as in the case of wood grain, or can be random or variegated, such as with a conventional sprayed on texture coating.
A problem arises when the surface on which a texture pattern has been formed is damaged. The damage may arise from any one of a number of causes such as a dent or hole from an impact, discoloration or the like from water damage, and seams left after the removal and replacement of a portion of structural wall member to allow access through the wall. After the damage has been repaired, the texture on the repaired portion of the wall often does not match the pre-existing texture pattern on the wall around the repaired portion.
One class of surface texture is formed by applying a coating material to the wall surface. Typically, this type of texture material is initially applied to a structural drywall member using a spray applicator that combines the texture material in wet form with a stream of pressurized air. This type of texture material will be referred to herein as drywall texture material. Drywall texture material is typically white and is not usually appropriate as a finish surface, so at least one coat of paint is typically applied over the texture material to form the finish surface.
Aerosol systems for dispensing drywall texture material typically include a system for varying the size of an outlet opening defined by the system to allow the texture pattern formed thereby to be altered to match the pre-existing texture pattern. The present invention is of particular importance when embodied as a system or method for applying drywall texture material during the process of repairing a structural drywall member, and that application of the present invention will be described herein in detail. The present invention may, however, have application to other types of texture materials and application systems. The scope of the present invention should thus be determined by the claims appended hereto and not the present background discussion and following detailed description of the invention.
One problem with repair systems for dispensing drywall texture material is that the coating formed thereby does not set in the desired pattern until the texture material dries. If paint is brushed or rolled onto the texture material before it has dried, the mechanical action of applying the paint over the undried texture material can unacceptably alter the texture pattern. On the other hand, it is desirable to complete the repair job as soon as possible, which requires that paint be applied to the texture material covering the patched region as soon as possible after the texture material has dried.
Additionally, most texture material is white, and white or off-white is a common interior paint color. When a number of small holes in a room are repaired, it can be difficult to determine where the repairs have been made when because the white texture material on the repaired area does not stand out against the background of white paint.
The need thus exists for systems and methods for applying drywall texture material to wall surfaces that: (a) allow paint to be applied over the texture material as soon as possible without altering the texture pattern; and/or (b) help identify where repairs have been made in the wall.
The present invention may be embodied as a texturing system for applying a desired texture pattern on a patched portion of a surface. The texturing system comprises texture material, a dispensing system for dispensing the texture material, and a selecting system. The texture material comprises a carrier, a binder, a filler, and a change material. The texture material changes from a wet form to a solidified form when exposed to air. The change material changes appearance when the texture material changes from the wet form to the solidified form. The selecting system defines an outlet opening. The selecting system is supported by the dispensing system such that texture material dispensed from the dispensing system is dispensed through the outlet opening in any one of a plurality of spray patterns. The selecting system is configured such the spray pattern corresponds to the desired texture pattern. The dispensing system is arranged such that operating the dispensing system to dispense the texture material causes the texture material to be deposited onto the patched portion of the surface in the desired texture pattern.
Referring initially to
The structural member 26 has been repaired to define a patched portion 30 that is surrounded by an un-patched portion 32. The patched portion 30 is textured with the texture material 20 as shown in
The texture material 20 takes several forms in the process depicted in
Importantly, the texture material 20 is formulated such that the appearance of the texture material 20 is different in the wet form 20b than when in the solidified form 20c. As will be described in further detail below, the change in appearance between the wet and solidified forms allows the user to know when the texture material 20 may be painted.
With foregoing general understanding of the present invention in mind, the details of construction and operation of the use of the texture material 20 will now be described in further detail.
The dispensing system 22, structural member 26, pre-existing surface coating 28, and paint layer all are or may be conventional and will be described herein only to the extent necessary for a complete understanding of the present invention.
The exemplary dispensing system 22 is an aerosol dispensing system comprising a container assembly 40, an actuator member 42, and an outlet tube 44 defining an outlet opening 46. The texture material 20 in the liquid form 20a is stored within the container assembly 40 under pressure and in a substantially air-tight manner. The outlet tube 44 is supported by the actuator member 42. Depressing the actuator member 42 causes a valve assembly (not shown) within the container assembly 40 to open, thereby allowing the pressurized liquid texture material 20a to flow out of the container assembly 40 through the outlet opening 46 defined by the outlet tube 44.
Dispensing systems other than the aerosol dispensing system 22 may be used to dispense the texture material 20. As examples, the texture material 20 may be dispensed by using an aerosol system as described in U.S. Pat. Nos. 5,645,198 and 6,152,335, a hand pump dispenser as described in U.S. Pat. No. 4,411,387, or a hopper gun as described in U.S. Pat. No. 5,727,736.
The outlet tube 44 forms a part of a selecting system 48 for selecting the texture pattern created when the liquid texture material 20a is deposited onto the surface 24 of the structural member 26. In particular, a plurality of outlet tubes 44 each defining an outlet opening 46 having a different cross-sectional area may be provided. Each cross-sectional area is associated with a different texture pattern, and the appropriate outlet tube 44 is selected to substantially match the texture pattern of the pre-existing surface coating 28. Selecting systems using straws like the selecting system 48 are described in U.S. Pat. No. 6,116,473. The selecting system may be formed by other selecting systems, such as those disclosed in U.S. Pat. No. 6,446,842. The disclosures of the '473 and '842 patents are incorporated herein by reference.
The structural member 26 is typically a sheet of material referred to as drywall material. Drywall material is relatively inexpensive and has desirable structural and fire-resistant properties, but the surface 24 thereof is not finished. At a minimum, the surface 24 is typically painted or covered with wallpaper. In
More specifically, the exemplary pre-existing surface coating 28 comprises a texture layer 50 with a pre-existing texture pattern and a paint layer 52 with a pre-existing color and finish. Accordingly, when the patched portion 30 of the structural member 26 is formed, the surface 24 of the structural member 26 at the patched portion 30 looks and feels different than the pre-existing surface coating 28 on the surface 24 of the structural member 26 surrounding the patched portion 30.
The process of applying the texture material 20 to the surface 24 of the structural member 26 using the exemplary dispensing system 22 will now be described in detail. Initially, as generally described above and shown in
The selecting system 48 is initially configured to cause the texture material 20 to be dispensed from the dispensing system 22 in a spray pattern that will result in a desired texture pattern that substantially matches the texture pattern of the pre-existing surface coating 28. The dispensing system 22 is then arranged such that the outlet opening 46 is adjacent to, and the outlet tube 44 is aimed towards, the patched portion 30. The actuator member 42 is then depressed to cause the liquid texture material 20a to be deposited onto the patched portion 30 of the surface 24 of the structural member 26.
When initially deposited onto the surface 24, the texture material is in the form of the wet texture material 20b. The wet texture material 20b contains substantially the same moisture content as the liquid texture material 20a, but the physical structure of the wet texture material 20b corresponds to the desired texture pattern. The wet texture material 20b is malleable, however, and the physical structure thereof can be altered by physical contact.
When deposited onto the surface 24, the material 20 is exposed to ambient air and begins to dry. After a period of time, the wet texture material 20b dries sufficiently to change into the solidified texture material 20c. The solidified texture material 20c is no longer malleable and may be coated with paint using conventional painting techniques without altering the physical structure thereof. Accordingly, as shown in
As generally described above, the texture material 20 is formulated such that the visual appearance of the texture material 20 in the wet form 20b differs from that of the texture material 20 in the solidified form 20c. The change in visual appearance between the wet and solidified forms 20b and 20c may take the form of any one or more of a number of characteristics such as glossiness, color, or the like. The person making the repair is thus able to visually discern when the paint layer 34 may be applied over the patched portion 30.
In general, the liquid form of the texture material 20a comprises a base or carrier, a binder, a filler, and a change material or pigment. If the dispensing system used is an aerosol system, the liquid texture material 20a will further comprise a propellant material. Optionally, the texture material 20 may comprise an aggregate material.
The primary difference between the liquid and wet forms 20a and 20b of the texture material 20 and the solidified form 20c thereof is the moisture content. The moisture content of the texture material 20 is determined by the carrier and optional propellant. The carrier and propellant are liquids that allow the texture material 20 to flow when in the liquid form 20a. The carrier (or base) is typically water which will evaporate over a time period determined by conditions such as heat, humidity, and the like. If used, the propellant typically immediately gasifies as the liquid form 20a of the material 20 is sprayed from the dispensing system 22. Once the liquid ingredients have dissipated, the binder adheres to the surface being coated and holds the filler, pigment, and any other ingredients in the physical structure corresponding to the desired texture pattern.
One characteristic of the texture material 20 is thus that the appearance thereof changes with changing moisture content. The change material or pigment can be any one of a number of materials the appearance of which changes with moisture content. The characteristics of the change material or pigment that change may include sheen and color. As examples, the sheen of the change material or pigment can change from flat to glossy, or vice versa, or the color of the change pigment can change from dark blue to light blue, or vice versa. In any case, this change should be noticeable with the unaided eye.
Desirably, the characteristic of the change material pigment that changes when the texture material 20 is in the solidified form is noticeably distinguishable from the similar characteristic of the pre-existing surface coating 28. For example, if the sheen of the pre-existing surface coating 28 is flat, the texture material 20 could dry to a high gloss finish when in the solidified form. If the color of the pre-existing surface coating 28 is white or off-white, the texture material 20 could dry to a color such as blue or red that can easily be distinguished from that of the surface coating 28.
Suitable change materials or pigments include bromothymol blue (which changes from blue to grey or white), phenolphthalein (which changes from pink to colorless), and thymolphthalein (which changes from blue to colorless or white).
Set forth below is a table containing several examples of formulations of the texture material 20 of the present invention. While the examples of formulations described below are preferred, the present invention may be embodied using other formulations and other change materials or pigments.
In this example, the texture material 20 is adapted to be dispensed from an aerosol dispensing system such as the exemplary dispensing system 22 described above. The texture material 20 of this example when in the liquid and wet forms 20a and 20b is a light blue and fades to a grey or dark green as the moisture content drops sufficiently such that the material 20 is in the solidified form 20c. The user thus knows when the texture material 20 is sufficiently dry to apply a paint coat on top of the solidified texture material 20c. In addition, the user can easily recognize the area (or areas) that needs to be painted because the grey or dark green of the solidified texture material 20c contrasts with typical colors of the pre-existing surface coating 28.
One of ordinary skill in the art will recognize that the present invention may be embodied in forms other than those specifically described above. The scope of the present invention should thus be determined by the following claims and not the foregoing detailed description of the invention.
This application, U.S. patent application Ser. No. 13/207,384 filed Aug. 10, 2011, is a continuation of U.S. patent application Ser. No. 12/277,229 filed Nov. 24, 2008, now abandoned. U.S. patent application Ser. No. 12/277,229 is a continuation of U.S. patent application Ser. No. 11/045,412 filed on Jan. 27, 2005, now abandoned. U.S. patent application Ser. No. 11/045,412 claims priority benefit of U.S. Provisional Application Ser. No. 60/539,681 filed Jan. 28, 2004. The subject matter of the foregoing related applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
208330 | Palmer | Sep 1878 | A |
351968 | Derrick | Nov 1886 | A |
D25916 | Woods | Aug 1896 | S |
568876 | Regan | Oct 1896 | A |
579418 | Bookwalter | Mar 1897 | A |
582397 | Shone | May 1897 | A |
658586 | Reiling | Sep 1900 | A |
930095 | Seagrave | Aug 1909 | A |
931757 | Harmer | Aug 1909 | A |
941671 | Campbell | Nov 1909 | A |
1093907 | Birnbaum | Apr 1914 | A |
1154974 | Custer | Sep 1915 | A |
1486156 | Needham | Mar 1924 | A |
2127188 | Schellin et al. | Aug 1938 | A |
2149930 | Plastaras | Mar 1939 | A |
D134562 | Murphy | Dec 1942 | S |
2307014 | Becker et al. | Jan 1943 | A |
2320964 | Yates | Jun 1943 | A |
2353318 | Scheller | Jul 1944 | A |
2388093 | Smith | Oct 1945 | A |
2530808 | Cerasi | Nov 1950 | A |
2565954 | Dey | Aug 1951 | A |
2612293 | Michel | Sep 1952 | A |
2686652 | Carlson et al. | Aug 1954 | A |
2723200 | Pyenson | Nov 1955 | A |
2763406 | Countryman | Sep 1956 | A |
2764454 | Edelstein | Sep 1956 | A |
2785926 | Lataste | Mar 1957 | A |
2790680 | Rosholt | Apr 1957 | A |
2831618 | Soffer et al. | Apr 1958 | A |
2839225 | Soffer et al. | Jun 1958 | A |
2908446 | Strouse | Oct 1959 | A |
2932434 | Abplanalp | Apr 1960 | A |
2965270 | Soffer et al. | Dec 1960 | A |
2968441 | Holcomb | Jan 1961 | A |
2976897 | Beckworth | Mar 1961 | A |
2997243 | Kolb | Aug 1961 | A |
3083872 | Meshberg | Apr 1963 | A |
3107059 | Frechette | Oct 1963 | A |
3167525 | Thomas | Jan 1965 | A |
3191809 | Schultz et al. | Jun 1965 | A |
3196819 | Lechner et al. | Jul 1965 | A |
3198394 | Lefer | Aug 1965 | A |
3216628 | Fergusson | Nov 1965 | A |
3246850 | Bourke | Apr 1966 | A |
3258208 | Greenebaum, II | Jun 1966 | A |
3284007 | Clapp | Nov 1966 | A |
3314571 | Greenebaum, II | Apr 1967 | A |
3317140 | Smith | May 1967 | A |
3342382 | Huling | Sep 1967 | A |
3346195 | Groth | Oct 1967 | A |
3373908 | Crowell | Mar 1968 | A |
3377028 | Bruggeman | Apr 1968 | A |
3390121 | Burford et al. | Jun 1968 | A |
3414171 | Grisham et al. | Dec 1968 | A |
3415425 | Knight et al. | Dec 1968 | A |
3425600 | Abplanalp | Feb 1969 | A |
3428224 | Eberhardt et al. | Feb 1969 | A |
3433391 | Krizka et al. | Mar 1969 | A |
3450314 | Gross | Jun 1969 | A |
3467283 | Kinnavy | Sep 1969 | A |
3472457 | McAvoy | Oct 1969 | A |
3482738 | Bartels | Dec 1969 | A |
3513886 | Easter et al. | May 1970 | A |
3514042 | Freed | May 1970 | A |
3544258 | Presant et al. | Dec 1970 | A |
3548564 | Bruce et al. | Dec 1970 | A |
3550861 | Teson | Dec 1970 | A |
3575319 | Safianoff | Apr 1971 | A |
3592359 | Marraffino | Jul 1971 | A |
3596835 | Smith et al. | Aug 1971 | A |
3608822 | Berthoud | Sep 1971 | A |
3613954 | Bayne | Oct 1971 | A |
3648932 | Ewald et al. | Mar 1972 | A |
3653558 | Shay | Apr 1972 | A |
3698645 | Coffey | Oct 1972 | A |
3700136 | Ruekberg | Oct 1972 | A |
3703994 | Nigro | Nov 1972 | A |
3704811 | Harden, Jr. | Dec 1972 | A |
3704831 | Clark | Dec 1972 | A |
3705669 | Cox et al. | Dec 1972 | A |
3711030 | Jones | Jan 1973 | A |
3764067 | Coffey et al. | Oct 1973 | A |
3770166 | Marand | Nov 1973 | A |
3773706 | Dunn, Jr. | Nov 1973 | A |
3776470 | Tsuchiya | Dec 1973 | A |
3776702 | Chant | Dec 1973 | A |
3777981 | Probst et al. | Dec 1973 | A |
3788521 | Laauwe | Jan 1974 | A |
3795366 | McGhie et al. | Mar 1974 | A |
3799398 | Morane et al. | Mar 1974 | A |
3806005 | Prussin et al. | Apr 1974 | A |
3811369 | Ruegg | May 1974 | A |
3813011 | Harrison et al. | May 1974 | A |
3814326 | Bartlett | Jun 1974 | A |
3819119 | Coffey et al. | Jun 1974 | A |
3828977 | Borchert | Aug 1974 | A |
3848778 | Meshberg | Nov 1974 | A |
3862705 | Beres et al. | Jan 1975 | A |
3871553 | Steinberg | Mar 1975 | A |
3891128 | Smrt | Jun 1975 | A |
2913842 | Singer | Oct 1975 | A |
3912132 | Stevens | Oct 1975 | A |
3913803 | Laauwe | Oct 1975 | A |
3913804 | Laauwe | Oct 1975 | A |
3932973 | Moore | Jan 1976 | A |
3936002 | Geberth, Jr. | Feb 1976 | A |
3938708 | Burger | Feb 1976 | A |
3975554 | Kummins et al. | Aug 1976 | A |
3982698 | Anderson | Sep 1976 | A |
3989165 | Shaw et al. | Nov 1976 | A |
3991916 | Del Bon | Nov 1976 | A |
3992003 | Visceglia et al. | Nov 1976 | A |
4010134 | Braunisch et al. | Mar 1977 | A |
4032064 | Giggard | Jun 1977 | A |
4036673 | Murphy et al. | Jul 1977 | A |
4045860 | Winckler | Sep 1977 | A |
4089443 | Zrinyi | May 1978 | A |
4096974 | Haber et al. | Jun 1978 | A |
4117951 | Winckler | Oct 1978 | A |
4129448 | Greenfield et al. | Dec 1978 | A |
4147284 | Mizzi | Apr 1979 | A |
4148416 | Gunn-Smith | Apr 1979 | A |
4154378 | Paoletti et al. | May 1979 | A |
4164492 | Cooper | Aug 1979 | A |
RE30093 | Burger | Sep 1979 | E |
4171757 | Diamond | Oct 1979 | A |
4173558 | Beck | Nov 1979 | A |
4185758 | Giggard | Jan 1980 | A |
4187959 | Pelton | Feb 1980 | A |
4187985 | Goth | Feb 1980 | A |
4198365 | Pelton | Apr 1980 | A |
4202470 | Fujii | May 1980 | A |
4238264 | Pelton | Dec 1980 | A |
4240940 | Vasishth et al. | Dec 1980 | A |
4258141 | Jarre et al. | Mar 1981 | A |
4275172 | Barth et al. | Jun 1981 | A |
4293353 | Pelton et al. | Oct 1981 | A |
4308973 | Irland | Jan 1982 | A |
4310108 | Motoyama et al. | Jan 1982 | A |
4322020 | Stone | Mar 1982 | A |
4346743 | Miller | Aug 1982 | A |
4354638 | Weinstein | Oct 1982 | A |
4358388 | Daniel et al. | Nov 1982 | A |
4370930 | Strasser et al. | Feb 1983 | A |
4372475 | Goforth et al. | Feb 1983 | A |
4401271 | Hansen | Aug 1983 | A |
4401272 | Merton et al. | Aug 1983 | A |
4411387 | Stern et al. | Oct 1983 | A |
4417674 | Giuffredi | Nov 1983 | A |
4438221 | Fracalossi et al. | Mar 1984 | A |
4442959 | Del Bon et al. | Apr 1984 | A |
4460719 | Danville | Jul 1984 | A |
4482662 | Rapaport et al. | Nov 1984 | A |
4496081 | Farrey | Jan 1985 | A |
4546905 | Nandagiri et al. | Oct 1985 | A |
4595127 | Stoody | Jun 1986 | A |
4609608 | Solc | Sep 1986 | A |
4641765 | Diamond | Feb 1987 | A |
4683246 | Davis et al. | Jul 1987 | A |
4702400 | Corbett | Oct 1987 | A |
4728007 | Samuelson et al. | Mar 1988 | A |
4744495 | Warby | May 1988 | A |
4761312 | Koshi et al. | Aug 1988 | A |
4792062 | Goncalves | Dec 1988 | A |
4793162 | Emmons | Dec 1988 | A |
4804144 | Denman | Feb 1989 | A |
4815414 | Duffy et al. | Mar 1989 | A |
4819838 | Hart, Jr. | Apr 1989 | A |
4830224 | Brison | May 1989 | A |
4839393 | Buchanan et al. | Jun 1989 | A |
4854482 | Bergner | Aug 1989 | A |
4870805 | Morane | Oct 1989 | A |
4878599 | Greenway | Nov 1989 | A |
4887651 | Santiago | Dec 1989 | A |
4893730 | Bolduc | Jan 1990 | A |
4896832 | Howlett | Jan 1990 | A |
D307649 | Henry | May 1990 | S |
4940171 | Gilroy | Jul 1990 | A |
4949871 | Flanner | Aug 1990 | A |
4953759 | Schmidt | Sep 1990 | A |
4954544 | Chandaria | Sep 1990 | A |
4955545 | Stern et al. | Sep 1990 | A |
4961537 | Stern | Oct 1990 | A |
4969577 | Werding | Nov 1990 | A |
4969579 | Behar | Nov 1990 | A |
4988017 | Schrader et al. | Jan 1991 | A |
4991750 | Moral | Feb 1991 | A |
5007556 | Lover | Apr 1991 | A |
5009390 | McAuliffe, Jr. et al. | Apr 1991 | A |
5037011 | Woods | Aug 1991 | A |
5038964 | Bouix | Aug 1991 | A |
5052585 | Bolduc | Oct 1991 | A |
5059187 | Sperry et al. | Oct 1991 | A |
5065900 | Scheindel | Nov 1991 | A |
5069390 | Stern et al. | Dec 1991 | A |
5083685 | Amemiya et al. | Jan 1992 | A |
5100055 | Rokitenetz et al. | Mar 1992 | A |
5115944 | Nikolich | May 1992 | A |
5126086 | Stoffel | Jun 1992 | A |
5169037 | Davies et al. | Dec 1992 | A |
5182316 | DeVoe et al. | Jan 1993 | A |
5188263 | Woods | Feb 1993 | A |
5188295 | Stern et al. | Feb 1993 | A |
5211317 | Diamond et al. | May 1993 | A |
5219609 | Owens | Jun 1993 | A |
5250599 | Swartz | Oct 1993 | A |
5277336 | Youel | Jan 1994 | A |
5297704 | Stollmeyer | Mar 1994 | A |
5307964 | Toth | May 1994 | A |
5310095 | Stern et al. | May 1994 | A |
5312888 | Nafziger et al. | May 1994 | A |
5314097 | Smrt et al. | May 1994 | A |
5323963 | Ballu | Jun 1994 | A |
5341970 | Woods | Aug 1994 | A |
5342597 | Tunison, III | Aug 1994 | A |
5368207 | Cruysberghs | Nov 1994 | A |
5374434 | Clapp et al. | Dec 1994 | A |
5405051 | Miskell | Apr 1995 | A |
5409148 | Stern et al. | Apr 1995 | A |
5417357 | Yquel | May 1995 | A |
D358989 | Woods | Jun 1995 | S |
5421519 | Woods | Jun 1995 | A |
5425824 | Marwick | Jun 1995 | A |
5450983 | Stern et al. | Sep 1995 | A |
5467902 | Yquel | Nov 1995 | A |
5476879 | Woods et al. | Dec 1995 | A |
5489048 | Stern et al. | Feb 1996 | A |
5498282 | Miller et al. | Mar 1996 | A |
5501375 | Nilson | Mar 1996 | A |
5505344 | Woods | Apr 1996 | A |
5523798 | Hagino et al. | Jun 1996 | A |
5524798 | Stern et al. | Jun 1996 | A |
5544783 | Conigliaro | Aug 1996 | A |
5548010 | Franer | Aug 1996 | A |
5549228 | Brown | Aug 1996 | A |
5558247 | Caso | Sep 1996 | A |
5562235 | Cruysberghs | Oct 1996 | A |
5570813 | Clark, II | Nov 1996 | A |
5573137 | Pauls | Nov 1996 | A |
5583178 | Oxman et al. | Dec 1996 | A |
5597095 | Ferrara, Jr. | Jan 1997 | A |
5615804 | Brown | Apr 1997 | A |
5639026 | Woods | Jun 1997 | A |
5641095 | de Laforcade | Jun 1997 | A |
5645198 | Stern et al. | Jul 1997 | A |
5655691 | Stern et al. | Aug 1997 | A |
5715975 | Stern et al. | Feb 1998 | A |
5727736 | Tryon | Mar 1998 | A |
5752631 | Yabuno et al. | May 1998 | A |
5775432 | Burns et al. | Jul 1998 | A |
5792465 | Hagarty | Aug 1998 | A |
5799879 | Ottl et al. | Sep 1998 | A |
5865351 | De Laforcade | Feb 1999 | A |
5868286 | Mascitelli | Feb 1999 | A |
5887756 | Brown | Mar 1999 | A |
5894964 | Barnes et al. | Apr 1999 | A |
5915598 | Yazawa et al. | Jun 1999 | A |
5921446 | Stern | Jul 1999 | A |
5934518 | Stern et al. | Aug 1999 | A |
5941462 | Sandor | Aug 1999 | A |
5957333 | Losenno et al. | Sep 1999 | A |
5975356 | Yquel et al. | Nov 1999 | A |
5988575 | Lesko | Nov 1999 | A |
5997891 | Fuerst et al. | Dec 1999 | A |
6000583 | Stern et al. | Dec 1999 | A |
6027042 | Smith | Feb 2000 | A |
6032830 | Brown | Mar 2000 | A |
6039306 | Pericard et al. | Mar 2000 | A |
6062494 | Mills | May 2000 | A |
6070770 | Tada et al. | Jun 2000 | A |
6092698 | Bayer | Jul 2000 | A |
6095435 | Greer, Jr. et al. | Aug 2000 | A |
6112945 | Woods | Sep 2000 | A |
6113070 | Holzboog | Sep 2000 | A |
6116473 | Stern et al. | Sep 2000 | A |
6129247 | Thomas et al. | Oct 2000 | A |
6131777 | Warby | Oct 2000 | A |
6139821 | Fuerst et al. | Oct 2000 | A |
6152335 | Stern et al. | Nov 2000 | A |
6161735 | Uchiyama et al. | Dec 2000 | A |
6168093 | Greer, Jr. et al. | Jan 2001 | B1 |
6170717 | Di Giovanni et al. | Jan 2001 | B1 |
D438111 | Woods | Feb 2001 | S |
D438786 | Ghali | Mar 2001 | S |
6225393 | Woods | May 2001 | B1 |
6254015 | Abplanalp | Jul 2001 | B1 |
6257503 | Baudin | Jul 2001 | B1 |
6261631 | Lomasney et al. | Jul 2001 | B1 |
6265459 | Mahoney et al. | Jul 2001 | B1 |
6276570 | Stern et al. | Aug 2001 | B1 |
6283171 | Blake | Sep 2001 | B1 |
6284077 | Lucas et al. | Sep 2001 | B1 |
6290104 | Bougamont et al. | Sep 2001 | B1 |
6291536 | Taylor | Sep 2001 | B1 |
6296155 | Smith | Oct 2001 | B1 |
6296156 | Lasserre et al. | Oct 2001 | B1 |
6299679 | Montoya | Oct 2001 | B1 |
6299686 | Mills | Oct 2001 | B1 |
6315152 | Kalisz | Nov 2001 | B1 |
6325256 | Liljeqvist et al. | Dec 2001 | B1 |
6328185 | Stern et al. | Dec 2001 | B1 |
6328197 | Gapihan | Dec 2001 | B1 |
6333365 | Lucas et al. | Dec 2001 | B1 |
6352184 | Stern et al. | Mar 2002 | B1 |
6362302 | Boddie | Mar 2002 | B1 |
6375036 | Woods | Apr 2002 | B1 |
6382474 | Woods et al. | May 2002 | B1 |
6386402 | Woods | May 2002 | B1 |
6394321 | Bayer | May 2002 | B1 |
6394364 | Abplanalp | May 2002 | B1 |
6395794 | Lucas et al. | May 2002 | B2 |
6398082 | Clark et al. | Jun 2002 | B2 |
6399687 | Woods | Jun 2002 | B2 |
6414044 | Taylor | Jul 2002 | B2 |
6415964 | Woods | Jul 2002 | B2 |
6439430 | Gilroy, Sr. et al. | Aug 2002 | B1 |
6446842 | Stern et al. | Sep 2002 | B2 |
D464395 | Huang | Oct 2002 | S |
6474513 | Burt | Nov 2002 | B2 |
6478198 | Haroian | Nov 2002 | B2 |
6478561 | Braun et al. | Nov 2002 | B2 |
6482392 | Zhou et al. | Nov 2002 | B1 |
6510969 | Di Giovanni et al. | Jan 2003 | B2 |
6520377 | Yquel | Feb 2003 | B2 |
6531528 | Kurp | Mar 2003 | B1 |
6536633 | Stern et al. | Mar 2003 | B2 |
6581807 | Mekata | Jun 2003 | B1 |
6588628 | Abplanalp et al. | Jul 2003 | B2 |
6595393 | Loghman-Adham et al. | Jul 2003 | B1 |
6613186 | Johnson | Sep 2003 | B2 |
6615827 | Greenwood et al. | Sep 2003 | B2 |
6637627 | Liljeqvist et al. | Oct 2003 | B1 |
6641005 | Stern et al. | Nov 2003 | B1 |
6641864 | Woods | Nov 2003 | B2 |
6652704 | Green | Nov 2003 | B2 |
6659312 | Stern et al. | Dec 2003 | B1 |
6666352 | Woods | Dec 2003 | B1 |
6894095 | Russo et al. | May 2005 | B2 |
6929154 | Grey et al. | Aug 2005 | B2 |
7192985 | Woods | Mar 2007 | B2 |
7624932 | Greer et al. | Dec 2009 | B1 |
8038077 | Greer, Jr. et al. | Oct 2011 | B1 |
20010002676 | Woods | Jun 2001 | A1 |
20020003147 | Corba | Jan 2002 | A1 |
20020100769 | McKune | Aug 2002 | A1 |
20020119256 | Woods | Aug 2002 | A1 |
20030102328 | Abplanalp et al. | Jun 2003 | A1 |
20030134973 | Chen et al. | Jul 2003 | A1 |
20030183651 | Greer, Jr. | Oct 2003 | A1 |
20030205580 | Yahav | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
770467 | Oct 1967 | CA |
976125 | Oct 1975 | CA |
1191493 | Aug 1985 | CA |
1210371 | Aug 1986 | CA |
2145129 | Sep 1995 | CA |
2090185 | Oct 1998 | CA |
2291599 | Jun 2000 | CA |
2381994 | Feb 2001 | CA |
2327903 | Jun 2001 | CA |
2065534 | Aug 2003 | CA |
680849 | Nov 1992 | CH |
210449 | May 1909 | DE |
1926796 | Mar 1970 | DE |
3808438 | Apr 1989 | DE |
3806991 | Sep 1989 | DE |
463476 | Feb 1914 | FR |
84727 | Sep 1965 | FR |
1586067 | Feb 1970 | FR |
2659847 | Sep 1991 | FR |
867713 | May 1961 | GB |
970766 | Sep 1964 | GB |
977860 | Dec 1964 | GB |
1144385 | Mar 1969 | GB |
461392 | Jan 1971 | JP |
55142073 | Nov 1980 | JP |
8332414 | Dec 1996 | JP |
9418094 | Aug 1994 | WO |
Entry |
---|
Homax Products, Inc., “Easy Touch Spray Texture Brochure”, Mar. 1992, 1 page. |
Newman-Green, Inc., “Aerosol Valves, Sprayheads & Accessories Catalog”, Apr. 1, 1992, pp. 14, 20, and 22. |
ASTM Designation: G61-86, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-Nickel-, or Cobalt-Based Alloys, (Reapproved 1993), pp. 238-242, Philadelphia, PA. |
W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, 1994, Chapter 6, pp. 63-77, Pair O Docs Publications, Racine, WI. |
Number | Date | Country | |
---|---|---|---|
20120064249 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
60539681 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12277229 | Nov 2008 | US |
Child | 13207384 | US | |
Parent | 11045412 | Jan 2005 | US |
Child | 12277229 | US |