The present invention relates, in general, to the field of integrated circuit (“IC”) device structures and methods of forming the same. More particularly, the present invention relates to an air gap structure and formation method for reducing undesired capacitive coupling between interconnects and/or other elements in an integrated circuit device.
As integrated circuit transistor densities increase, and feature sizes shrink, capacitive coupling between adjacent interconnects, metal lines or other elements also increases. The increased capacitive coupling results in increased parasitic capacitance, which undesirably slows circuit speeds and negatively impacts overall device performance.
Current attempts to improve electrical isolation in high density integrated circuits involve the implementation of low K dielectric materials such as hydrogen silsesquioxane (HSQ), SiLK™ (a trademark of The Dow Chemical Company) resin, Black Diamond™ (a trademark of Applied Materials company) low K film, Coral™ (a trademark of Novellus System Inc.) carbonaceous oxide film and several other exotic materials. While these materials have a relatively low dielectric constant, they are not normally used in semiconductor manufacturing and therefore increase manufacturing complexity and costs. Much work remains to effectively integrate these materials into conventional semiconductor manufacturing processes.
Some disadvantages of current low K materials include incompatible thermal coefficient of expansion, low mechanical strength and poor thermal diffusivity.
Another manner of improving electrical isolation between interconnects is to use an integrated air gap structure because of the extremely low dielectric constant of air. Previous attempts at air gap structures were hard to manufacture and also did not completely isolate adjacent metal lines due to fringing fields above and below the air gap itself.
For example, U.S. Pat. No. 6,177,329 to Pang (and particularly at col. 7, ll. 46+) illustrates one conventional approach in which an additional mask is used to pattern the underlying layers to form the air gaps. This is both inefficient and imprecise for extremely small geometries. U.S. Pat. No. 5,847,439 to Reinberg illustrates another approach in which a combination of a low melting point dielectric, photoresist, a heat cycle and surface tension interact to form a void between two adjacent metal lines. This technique is clearly not suitable for precise control of air gap sizes, and is further disadvantageous because it cannot be used to form gaps which extend above a metal line. The latter may be desirable in some applications. Finally, U.S. Pat. No. 5,949,143 to Bang depicts a rather complex process in which a small opening is made in an etch stop layer and then a selective isotropic etch is used to remove dielectric between two metal lines.
Clearly, while portions of the aforementioned references are useful in forming air gap structures, and could be used in many applications, their overall approach is not optimal from a manufacturing perspective.
What is desired, therefore, is an easily manufacturable integrated air gap structure that substantially electrically isolates adjacent interconnects, metal lines or other IC elements.
In accordance with the structure and method disclosed herein, a first method for forming a device having an air gap structure includes forming a device layer, which can include first level metal, capacitors, transistors, or other integrated circuit devices, as well as previously formed air gap structures fabricated according to the method of the present invention. A dual damascene structure with a plurality dual damascene opening is formed over the device layer, including first and second patterned dielectric layers. A copper or other conductive layer is formed to fill the dual damascene opening. An adjustable-depth trench is formed between the conductive pattern at least down to the surface of the device layer. The dual damascene structure itself is used as a hard mask in the etching of the trench. Finally, a third dielectric layer is formed onto the trench to form at least one air gap, the air gap optionally extending above the top surface of the dual damascene structure. If desired, the depth of the trench can be extended below the surface of the device layer.
A second method for forming an air gap structure in an integrated circuit according to the present invention includes forming an interconnect structure on the device layer including, for example, an patterned aluminum or aluminum alloy (conductive aluminum with or without minor amounts of another element or elements) conductive layer overlaying a tungsten conductive plug layer.
An adjustable-depth trench is formed between the patterned interconnect structure at least down to the surface of the device layer. A dielectric layer is formed over the trench to form an air gap therein, the air gap optionally extending above the top surface of the interconnect structure. If desired, the depth of the trench can be etched to extend below the surface of the device layer.
A third method for forming an air gap structure for an integrated circuit according to the present invention includes forming an interconnect structure on the device layer including an aluminum alloy interconnect layer overlaying an aluminum alloy plug layer. The conductive plug layer and interconnect layer can be formed simultaneously, thus eliminating at least two processing steps as compared to the second method of the present invention. An adjustable-depth trench is formed between the patterned interconnect structure at least down to the surface of the device layer. A dielectric layer is formed on the trench to form an air gap therein, the air gap optionally extending above the top surface of the interconnect structure. If desired, the depth of the trench can be etched to extend below the surface of the device layer.
It is an advantage of the present invention that the low dielectric constant of air is used to provide maximum electrical isolation by extending the air gap both below and above the adjacent isolated interconnects, or metal lines, while still ensuring that physical dielectric support is provided beneath the interconnects themselves.
It is a further advantage of the present invention that the air gap isolation structure is readily manufacturable and compatible with existing semiconductor manufacturing techniques.
It is a still further advantage of the present invention that exotic low K dielectric materials need not be used, thus saving costs and minimizing manufacturing complexity.
It is a still further advantage of the present invention that the existence of the air gaps is to release most of the system stress generated by subsequent thermal treatments.
It is a still further advantage of the present invention that the network structure using conventional dielectric layers encompassing the interconnects provides good thermal dissipation.
The aforementioned and other features and objects of the present invention and the manner of attaining them will become more apparent and the invention itself will be best understood by reference to the following description of a preferred embodiment taken in conjunction with the accompanying drawings, wherein:
Referring generally now to
In
Similarly, as used herein, the terms “on” or “onto” or “above” when used in connection with various thin film layers are merely intended to denote a physical spatial relationship, and not necessarily a direct physical or electrical contact. It will be understood therefore by those skilled in the art that in embodiments of the invention, a first layer may be “on” or “above” a second layer, even if there are other intervening layers present.
In a first embodiment, a first etch stop layer 12 is formed on the upper surface of the device layer 10. The etch stop layer 12 is ideally formed of silicon nitride (SiNx), silicon oxynitride (SiNxOy), silicon carbide (SiCx), or the like, and is deposited to a thickness of about 100 to 1500 Angstroms using any of a number of known conventional mechanisms. The particular material for any application of course can be determined by one skilled in the art by coordinating such selection with an etch chemistry/mechanism to be employed in a later etch operation. Thus, so long as such first etch stop layer is otherwise compatible with other materials and processes described herein, the present invention is not limited to any particular material.
A first dielectric layer 14 (designated generally herein as a “via” dielectric layer because the body of a via contact is later formed therein) is formed on etch stop layer 12. The first dielectric layer 14 is ideally silicon dioxide or undoped silicate glass (USG) but can also be fluorinated silicate glass (FSG), or borophosphorus silicate glass (BPSG), phosphorus silicate glass (PSG), or the like and is deposited to a thickness of about 1000 to 10000 Angstroms using well-known processing tools. Moreover, first dielectric layer 14 can include combinations and/or composites of individual thin film layers. Again, the particular formulation for this layer will depend on desired performance characteristics and process requirements, and thus a variety of materials are expected to be suitable for such layer.
In
A second dielectric layer 18 (designated generally herein as a “line” dielectric layer because portions of a conductive line are later formed therein) is deposited onto the surface of etch stop layer 16. The line dielectric is also ideally silicon dioxide or a similar dielectric as via dielectric layer 14 and is deposited to a thickness of about 1000 to 10000 Angstroms. The selection of materials for this layer will again be a routine design choice based on lithographic and etching requirements associated with a particular manufacturing process.
A third etch stop and/or an anti-reflecting layer 20 is subsequently deposited on the line dielectric layer 18. Etch stop and/or anti-reflecting layer 20 is preferably SiNx, SiNxOy, silicon riched oxide (SRO), SiCx or the like and is deposited to a thickness of about 100 to 500 Angstroms. As with the other etch stop layers, the particular material for any application of course can be determined by one skilled in the art by coordinating such selection with an etch chemistry/mechanism to be employed in a later etch operation.
In general, the overall composition of the structure shown in
In
In
In
In
It should be noted that the upper portion of opening 24D serves as an interconnect line while the bottom portion of opening 24D functions as a conductive pillar to the device portion. The result is a conductive line 28 with a cross section in some areas that resembles a T-shape as seen in the Figures.
In
A seed layer portion of composite barrier/seed layer 26 is typically Cu or Cu alloy, again deposited using known means.
In a preferred embodiment, the copper barrier layer portion is deposited to a thickness of about 50 to 500 Angstroms, and the seed layer portion is deposited to a thickness of about 300 to 2000 Angstroms to form combined layer 26. It will be understood by those skilled in the art that these values are merely exemplary for the geometries described therein, and that the final values for any particular embodiment of the invention may deviate from such figures.
In
In
In
Other cross-sectional portions of a wafer are illustrated in
As alluded to earlier, at least some of the conductive lines 28 may be included as part of a so-called “dummy” pattern so as to make the interconnection patterns more uniform across the surface of a wafer. This also facilitates the manufacturing process because the resulting surface is more uniform.
In
In
For reasons that are explained in more detail below, an anisotropic etch (or an etch type with reduced isotropic behavior) is preferred over a “wet” isotropic etch at this point, because it is desirable to leave some small amount of dielectric on the sidewalls of interconnect 18, underneath the overhang areas as seen in
The depth of trenches 30 is preferably controlled through a timed etch, and it will be apparent to those skilled in the art that the duration of such etch will be a function of the dielectric layer composition, the etch process chemistry, the thickness of layers 14, 18, etc., etc. The etch time will thus vary from application to application, and can be determined with routine simulations and testings.
Alternatively it is possible instead to use either etch stop layer 12 to control the end of the etch, and/or to provide yet another etch stop layer (not shown) within layer 14 at any optimally determined etch depth. In such instance, of course, layer 14 would be a composite layer deposited in separate steps, and thus this option is not as attractive from a throughput perspective.
As noted above, a preferred approach uses copper conductive lines 28 as a mask, but it those skilled in the art will appreciate that an additional masking step could be employed should it be necessary to make the air gaps more narrow. Again, this is not optimal from a control and throughput perspective, so it is probably not desirable except in limited cases.
In contrast, in the present invention, it should be relatively simple and easy to control the size of such air gaps both by controlling the spacing between the conductive lines 28, as well as tailoring the size/shape of the top portion of the conductive line. This is true since the latter effectuate the hard mask used for etching dielectric layers 14, 18 to form the air gaps.
In this respect, those skilled in the art will appreciate that shapes and sizes of the interconnect structures shown in the figures are only approximate, and not intended to be to scale. Other variations are expected to be beneficially employed in accordance with the present teachings.
In
A silicon-dioxide dielectric layer, or the like 32 is then deposited to a thickness of about 2000 to 10000 Angstroms. Poor step coverage by the deposition of dielectric layer 32, such as conventional plasma enhanced chemical vapor deposition (PECVD), results in the formation of intra-metal line air gaps 34. In other words, the present invention exploits the basically conformal growth nature of this type of process to intentionally form gaps between the metal lines. By controlling the deposition parameters, and the thickness of the deposited layer, the size, shape and height of air gaps 34 can be customized for any particular line interconnect geometry.
In lieu of a PECVD process, other similar techniques that are characterized by poor step coverage could be used to form air gaps 34. For example, a series of HDPCVD depositions could be used. As those skilled in the art will appreciate, the above are merely examples of techniques for achieving poor step coverage that are known to the inventors at this time, and it is possible of course that later developed processes unforeseen and as yet undiscovered may prove to be suitable for such purposes.
As previously discussed, the inclusion of air gaps 34 provides superior electric isolation due to the low dielectric constant of air. The size and shape of air gaps 34 may also vary across the surface of a wafer, as illustrated generally in
Thus, as seen in
In addition, the height by which the air gaps 34 extend above interconnect layer 28, or below such layer, is controlled both by the trench sizing noted earlier, as well as the details of the conformal dielectric deposition noted earlier. Thus, they may also vary in vertical size as seen in
In summary, an inter-line interconnect structure as shown in
Those skilled in the art will further appreciate that the above are merely examples of what might be present in any section of the wafer, and that other air gap structures will inevitably result as part of any conventional manufacturing process employing the present teachings.
As further noted, to reduce non-uniformities for such air gaps, dummy metal lines can be added to an interconnect pattern to ensure that no large flat spaces are left between adjacent conductive lines. Thus, for example, in
In
Also shown in
Furthermore it will be apparent that this overall process could be repeated as needed to form additional interconnect layers, and the present invention is by no means limited to any particular number of such layers.
Another important observation about the present invention that can be gleaned from
As illustrated herein, the dielectric material 14 underneath the conductive lines further functions to provide some measure of structural support for the latter. This feature can be enhanced or reduced in other embodiments by structural variations so that more or less dielectric is left on the sidewalls, or under the top portions of the conductive lines. The dielectric also functions as a heat dissipator, and further reduces electromigration. Accordingly, the amount of dielectric left on the sidewalls can be tailored for any particular environment, so that it might be used extensively in some applications (thicker layers), and not used in others (thin layers, or no layers at all).
Referring generally now to
In
A contact/via dielectric layer 14 is formed on device layer 10. As before, dielectric layer 14 is ideally silicon dioxide but can also be USG, FSG, PSG, BPSG, or the like and is deposited to a thickness of about 1000 to 10000 Angstroms. It will be understood, of course, that layer 14 may be comprised of a combination of layers, and formed in more than one processing step, but for purposes of the present discussion, it will be referred to as a single layer.
In
In
In
A layer of Tungsten 58 is then preferably deposited to a thickness of about 500 to 8000 Angstroms, which completely fills openings 56. Again, for other processes, materials other than Tungsten may be more suitable.
In
In
In
In
In
In a preferred first processing option, any material in spacings 64B is removed and etched down to the surface of the device layer 50 with the resist layer 62 intact to form trenches 64C. As explained in connection with
In a second processing variation of this embodiment (shown in
In
It will be appreciated by those skilled in the art that this second embodiment can also be used to create structures that are similar to those already illustrated in
Referring generally now to
In
In
In
In
An aluminum alloy layer 90 (preferably Aluminum with some small percentage of Cu and/or Si) is then deposited to a thickness of about 500 to 8000 Angstroms, which completely fills contact/via openings 86B and provides an aluminum alloy interconnect layer coupled to aluminum alloy plugs 88.
This embodiment, therefore, is distinguished from the second embodiment noted earlier in that the plug and interconnect layer can be formed in a single step, thus improving throughput for those applications where it is acceptable to use something other than a Tungsten based plug.
In
In
In
In a preferred first processing option, any material in intra-metal spacings 74B is removed and etched down to the surface of the device layer 10 with the resist layer 92 intact to form trenches 74C. As explained in connection with
In a second processing variation shown in
In
It will be appreciated by those skilled in the art that this third embodiment can also be used to create structures that are similar to those already illustrated in
Moreover, the above steps can be sequenced again to form multi-level interconnect structures in the same manner as previously described for
In
Note that as with
A fourth embodiment is now described with reference to
Thus, in
An etch stop and/or anti-reflecting layer 20 is subsequently deposited on the line dielectric layer 15 as discussed before in connection with
In
In
In
From this point forward, processing takes place in substantially the same fashion as already illustrated above in connection with
A fifth embodiment is now described with reference to
Accordingly,
In
From this point forward, processing takes place in substantially the same fashion as already illustrated above in connection with
While there have been described above the principles of the present invention in conjunction with specific circuit implementations and applications it is to be clearly understood that the foregoing description is made only by way of example and not as a limitation to the scope of the invention. Particularly, it is recognized that the teachings of the foregoing disclosure will suggest other modifications to those persons skilled in the relevant art. Such modifications may involve other features which are already known and which may be used instead of or in addition to features already described herein. Although claims have been formulated in this application to particular combinations of features, it should be understood that the scope of the disclosure herein also includes any novel feature or any novel combination of features disclosed either explicitly or implicitly or any generalization or modification thereof which would be apparent to persons skilled in the relevant art, whether or not such relates to the same invention as presently claimed in any claim and whether or not it mitigates any or all of the same technical problems as confronted by the present invention. The applicants hereby reserve the right to formulate new claims to such features and/or combinations of such features during the prosecution of the present application or of any further application derived therefrom.
The present application claims priority to and is a divisional of parent application Ser. No. 10/295,062, filed Nov. 15, 2002, now U.S. Pat. No. 6,917,109 which is hereby incorporated by reference. The parent application is related to the following applications: Air Gap for Dual Damascene applications Ser. No. 10/295,795, filed Oct. 15, 2002, and Air Gap for Tungsten/Aluminum Plug applications Ser. No. 10,295,080 filed Oct. 15, 2002. The aforementioned are hereby incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4789648 | Chow et al. | Dec 1988 | A |
4920639 | Yee | May 1990 | A |
5324683 | Fitch et al. | Jun 1994 | A |
5354711 | Heitzmann et al. | Oct 1994 | A |
5407860 | Stoltz et al. | Apr 1995 | A |
5466639 | Ireland | Nov 1995 | A |
5510645 | Fitch et al. | Apr 1996 | A |
5599745 | Reinberg | Feb 1997 | A |
5612254 | Mu et al. | Mar 1997 | A |
5614765 | Avanzino et al. | Mar 1997 | A |
5635423 | Huang et al. | Jun 1997 | A |
5702982 | Lee et al. | Dec 1997 | A |
5705430 | Avanzino et al. | Jan 1998 | A |
5708303 | Jeng | Jan 1998 | A |
5736457 | Zhao | Apr 1998 | A |
5744376 | Chan et al. | Apr 1998 | A |
5753967 | Lin | May 1998 | A |
5783864 | Dawson et al. | Jul 1998 | A |
5801094 | Yew et al. | Sep 1998 | A |
5821169 | Nguyen et al. | Oct 1998 | A |
5847439 | Reinberg | Dec 1998 | A |
5880018 | Boeck et al. | Mar 1999 | A |
5880026 | Xing et al. | Mar 1999 | A |
5949143 | Bang | Sep 1999 | A |
5972758 | Liang | Oct 1999 | A |
5989997 | Lin et al. | Nov 1999 | A |
5990015 | Lin et al. | Nov 1999 | A |
5998293 | Dawson et al. | Dec 1999 | A |
6001414 | Huang et al. | Dec 1999 | A |
6004883 | Yu et al. | Dec 1999 | A |
6017817 | Chung et al. | Jan 2000 | A |
6025259 | Yu et al. | Feb 2000 | A |
6027994 | Huang et al. | Feb 2000 | A |
6037249 | Chiang et al. | Mar 2000 | A |
6042996 | Lin et al. | Mar 2000 | A |
6042999 | Lin et al. | Mar 2000 | A |
6054381 | Okada | Apr 2000 | A |
6057239 | Wang et al. | May 2000 | A |
6063711 | Chao et al. | May 2000 | A |
6071805 | Liu | Jun 2000 | A |
6077767 | Hwang | Jun 2000 | A |
6077769 | Huang et al. | Jun 2000 | A |
6083821 | Reinberg | Jul 2000 | A |
6130151 | Lin et al. | Oct 2000 | A |
6140249 | Sharan | Oct 2000 | A |
6143641 | Kitch | Nov 2000 | A |
6159840 | Wang | Dec 2000 | A |
6159845 | Yew et al. | Dec 2000 | A |
6162723 | Tanaka | Dec 2000 | A |
6163066 | Forbes et al. | Dec 2000 | A |
6177329 | Pang | Jan 2001 | B1 |
6184121 | Buchwalter et al. | Feb 2001 | B1 |
6200891 | Jagannathan et al. | Mar 2001 | B1 |
6200900 | Kitch | Mar 2001 | B1 |
6204165 | Ghoshal | Mar 2001 | B1 |
6204200 | Shieh et al. | Mar 2001 | B1 |
6208015 | Bandyopadhyay | Mar 2001 | B1 |
6211057 | Lin et al. | Apr 2001 | B1 |
6211561 | Zhao | Apr 2001 | B1 |
6228770 | Pradeep et al. | May 2001 | B1 |
6242336 | Ueda et al. | Jun 2001 | B1 |
6252290 | Quek et al. | Jun 2001 | B1 |
6291030 | Chao et al. | Sep 2001 | B1 |
6297125 | Nag et al. | Oct 2001 | B1 |
6376330 | Fulford, Jr. et al. | Apr 2002 | B1 |
6380106 | Lim et al. | Apr 2002 | B1 |
6403461 | Tae et al. | Jun 2002 | B1 |
6440876 | Wang et al. | Aug 2002 | B1 |
6642138 | Pan et al. | Nov 2003 | B2 |
6727159 | Chen et al. | Apr 2004 | B2 |
6762120 | Nakagawa et al. | Jul 2004 | B2 |
20020028575 | Besling et al. | Mar 2002 | A1 |
20020081787 | Kohl et al. | Jun 2002 | A1 |
20020098677 | Ahn et al. | Jul 2002 | A1 |
20020106888 | Vassalli et al. | Aug 2002 | A1 |
20020127844 | Grill et al. | Sep 2002 | A1 |
20020145201 | Armbrust et al. | Oct 2002 | A1 |
20020158337 | Babich et al. | Oct 2002 | A1 |
20020163082 | Lee et al. | Nov 2002 | A1 |
20030109127 | Tamaoka et al. | Jun 2003 | A1 |
20030176055 | Wu | Sep 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050263896 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10295062 | Nov 2002 | US |
Child | 11179840 | US |