ANALYSIS OF Y-CHROMOSOME STR MARKERS

Abstract
The methods and compositions provided herein relate to the discovery of 13 STR markers, found on the human Y chromosome, having surprisingly high mutation rates when compared with 173 other Y-STR markers known today. The set of RM-Y-STRs may overcome the current dilemma of Y-chromosome analysis in forensic applications due to their extraordinary mutation properties. Embodiments of the invention include methods for allelic determination of rapidly-mutating Y-STR markers, amplification primers for the analysis of rapidly-mutating Y-STR markers, allelic ladders for analysis of rapidly-mutating Y-STR markers, and kits for the analysis of rapidly-mutating Y-STR markers.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Apr. 29, 2011, is named LT00059.txt and is 748,407 bytes in size.


FIELD

Embodiments of the subject inventions are in the field of the forensic analysis of DNA.


BACKGROUND

The use of STR markers has become a standard tool in the analysis of DNA found at crime scenes. In most cases, the use of autosomal STR markers are used because, in part, of the high level of polymorphisms within most populations. For example, the 13 CODIS loci that are the standard for databasing criminal suspect in DNA in the United States are autosomal STR markers. In many cases with mixed stains from male and female contributors, particularly rape cases, forensic investigators must analyze genetic markers found on the Y chromosome to identify the male component usually belonging to the perpetrator of the crime. This is because in such cases, the autosomal STR markers are not informative due to profile overlap between e.g. female victim DNA and male perpetrator DNA. Although there are technical possibilities (i.e. differential lysis) to preferentially access male DNA, such techniques are often not successful. Because female DNA lacks a Y chromosome, the analysis of Y chromosomal markers can be used in samples that contained high levels of female DNA relative to the male DNA in the sample. Analyzing the Y chromosomal DNA hence excludes the complicating artifacts caused by the excess female source DNA.


The non-recombining nature allows the use of Y chromosome markers for male lineage identification, i.e. groups of males that are paternally related and hence share the same Y-STR haplotype i.e. based on currently-used Y-STR markers in forensics. Male lineage identification has become a valuable tool in forensic genetics to exclude males. However, in cases of non-exclusion (i.e. matching Y-STR profiles) no individual-based statement can be made based on the currently-available Y-STR markers because the same probability of having donated the crime scene sample applies to a male suspect and all his male relatives. This clearly is a limitation in forensic application where individual-based conclusions are anticipated. However, mutation events can occur at Y-STR markers. These mutations in the Y-STR marker can in principle enable the investigator to distinguish between closely related male relatives, and also between more distantly related males, provided such mutations occur in high-enough frequencies to be observable in a give pair of male relatives. Mutations in the currently available Y-STR markers are fairly infrequent events, occurring on the order of about 0.1 to 0.4% (1-4 changes per thousand generational events per each Y-STR locus). Thus even when relatively large numbers of Y-STR markers, i.e. those 17 markers applied to forensic applications today, are used the probability of distinguishing between male relatives is still remote. However, if enough Y-STRs markers that mutate more rapidly than the currently-known Y-STRs would be available, it can be expected that closely related males as well as distantly related males become differentiable based on Y-STR mutations towards male individual identification as anticipated in forensic applications.


The inventors have discovered a subset of thirteen Y-STR markers that have a significantly higher mutation rate than most Y-STR markers including those that are in general use. This finding is expected to revolutionize Y chromosomal applications in forensic biology, from previous male lineage differentiation methods. This finding also leads the way for male individual identification. Thus, by using one or more, by using two or more of such rapidly-mutating Y-STR markers (RM Y-STRs), the ability to distinguish between close and distantly related male relatives is significantly increased.


SUMMARY

Certain embodiments of the invention include methods of identifying an individual by determining the allele of at least 2 Y-STR markers selected from the group consisting of the rapidly-mutating Y-STR markers: DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. In some embodiments of the subject methods, the alleles can be identified by PCR. In some embodiments of the subject methods, the alleles can be identified by mass spectroscopy. The PCR can be multiplexed PCR so as to co-amplify the at least 2 of the rapidly-mutating Y-STR markers. Certain embodiments of the invention include set of amplification primer pairs comprising primers for the amplification of at least 2 Y-STR markers selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. The primers set can co-amplify at least 2-13 of the rapidly-mutating Y-STR markers. In certain embodiments the primer set can co-amplify autosomal STR markers in addition to rapidly-mutating Y-STR markers. In some embodiments, the autosomal STRs can be selected from the group consisting of D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, D16S539, THO1, TPDX, and CSF1PO. In some embodiments the primers can be labeled with a fluorescent dye. Other embodiments provided are allelic ladder size standard for calling one or more alleles of an STR from at least 2 of the Y-STR markers selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. Other embodiments provided are kits for identifying the allele of at least 2 Y chromosome STRS markers, wherein the markers are selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627, the kit comprising primers for the amplification of at least 2 rapidly-mutating Y-STR markers, and an allelic ladder representative of the selected markers.





BRIEF DESCRIPTION OF THE DRAWINGS AND TABLES


FIG. 1. Mutation rates of 186 Y-STR markers established from father-son pair analysis. Distribution of 186 Y-STR markers according to their Bayesian-based mutation rates (with credible intervals) estimated from analyzing up to 1966 DNA confirmed father-son pairs per each marker. The 13 rapidly-mutation (RM) Y-STR markers ascertained for further family/pedigree analysis are highlighted in red, and the commonly-used 17 Yfiler Y-STRs are in green. Multi-copy Y-STRs are noted with a black insert diamond.



FIG. 2. Correlation between the length of the longest homogeneous array, or the total number of repeats within a locus, and the allele-specific mutation rate from 267 Y-STR loci. Although the number of repeats present within a locus” longest homogenous array can be used to predict mutability, the total number of all repeats present within the locus has higher predictive value.



FIG. 3. Relationship between total number of repeats and mutation direction and rate from 267 Y-STR loci. Repeat loss mutations (contractions) displayed an exponential relationship with the total number of repeats, with increasing rates of loss rates at loci with higher numbers of repeats. Repeat gain mutations (expansions) showed a weak quadratic function, with a peak in gain rate at 20 total repeats.



FIG. 4. Male relative differentiation with newly-identified 13 RM Y-STRs and commonly-used 17 Yfiler Y-STRs. Results from differentiating between male relatives from analyzing 103 pairs from 80 male pedigrees, sorted according to the number of generations separating pedigree members, based on 13 RM Y-STRs and 17 Yfiler Y-STRs. Error bars represent 95% binomial confidence intervals. Note that these samples are independent from the father-son pairs initially used to establish the Y-STR mutation rates.





Table 1. Mutation rate estimations from the posterior distributions (medians and 95% credible intervals) of 186 Y-STR markers from analyzing up to 1966 DNA-confirmed father-son pairs. Markers with median mutation rates above 10−2 (the RM Y-STR set) are highlighted. Additionally included are marker repeat structures (SEQ ID NOS 1-187, respectively, in order of appearance), number of gains/losses, total mutations and total number of father-son transmissions observed. PCR primers (Primer 1 sequences disclosed as SEQ ID NOS 188-357 and Primer 2 sequences disclosed as SEQ ID NOS 358-527, respectively, in order of appearance), PCR annealing temperature and locus assignment to the 54 multiplexes and three RM Y-STR multiplexes used for genotyping are included.


Table 2. Details of the 924 mutations observed among 120 Y-STR markers from screening a total of 352,999 meiotic transfers at 186 Y-STR markers. The repeat structure of both the father and son's alleles at the mutated Y-STR are given where possible (SEQ ID NOS 528-2196, respectively, in order of appearance). In the case of multi-copy markers with multiple variable segments within the amplicon, total repeat numbers or amplicon size is given in the absence of sequence information. The age of the father at the time of the son's birth is given, as is an individual pair reference.


Table 3. Comparison of 13 rapidly mutating RM Y-STRs and 17 Yfiler Y-STRs to differentiate between male relatives by one or more mutations from analyzing 103 pairs from 80 male pedigrees according to the number of generations separating members of the same pedigree.


DEFINITIONS

A “mutation” in a Y-STR marker is a change in the length of the repeat region of an STR marker or a change in the length (i.e., number) of the bases that are interspersed with the repeat units. For example, the addition of one more repeat unit is mutation resulting in the appearance of a new allele. In another example, the addition of a single base within a single repeat unit is also a mutation resulting in the appearance of a new allele. Such changes can result form the addition or deletion of one or more repeat units (or fractions thereof). Such sequence changes are readily detected by methods of analysis that are capable of detecting variations in nucleic acid sequence length or nucleic acid base order.


The term “rapidly-mutating Y-STR marker” (RM Y-STRs) as used herein refers to the following 11 Y-STR markers: DYF387S1, DYF399S1, DYF404S1, DYS449, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627.


As used herein, the term “allelic ladder” refers to a standard size marker consisting of amplified alleles from a given STR locus or a size standards equivalent in size (or electrophoretic mobility) to the amplified alleles from a given STR locus. An allelic ladder can comprise a size standard for one or more alleles of a given STR marker. An allelic ladder can include alleles from different STR markers. The size standards in an allelic ladder can be labeled with a detectable label, e.g., a fluorescent dye.


The term “Y-STR marker” as used herein refers to an STR marker that is present on the non-recombining part of the human Y chromosome. Over 250 such Y-STR markers exist based on current knowledge. Y-STR markers are well-known to the person ordinary skill in the art. Database of Y-STR marker are publicly available, for example, at web sites, www.usystrdatabase.org and www.yhrd.org


The term “STR” as used herein refers to regions of genomic DNA which contain short, repetitive sequence elements. The sequence elements that are repeated are not limited to but are generally three to seven base pairs in length. Each sequence element is repeated at least once within an STR and is referred to herein as a “repeat unit.” The term STR also encompasses a region of genomic DNA wherein more than a single repeat unit is repeated in tandem or with intervening bases, provided that at least one of the sequences is repeated at least two times in tandem.


The term “Primer” as used herein refers to a single-stranded oligonucleotide or DNA fragment that hybridizes with a DNA strand of a locus in such a manner that the 3′ terminus of the primer can act as a site of polymerization and extension using a DNA polymerase enzyme. Primers can also DNA analogs in additions to or instead of naturally occurring DNA, e.g., LNAs, base analogs, and the like. “Primer pair” refers to two primers comprising a primer 1 that hybridizes to a single strand at one end of the DNA sequence to be amplified, and a primer 2 that hybridizes with the other end on the complementary strand of the DNA sequence to be amplified. “Primer site” refers to the area of the target DNA to which a primer hybridizes


As used herein, the terms “a,” “an,” and “the” and similar referents used herein are to be construed to cover both the singular and the plural unless their usage in context indicates otherwise. Accordingly, the use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims or specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which these inventions belong. All patents, patent applications, published applications, treatises and other publications referred to herein, both supra and infra, are incorporated by reference in their entirety. If a definition and/or description is set forth herein that is contrary to or otherwise inconsistent with any definition set forth in the patents, patent applications, published applications, and other publications that are herein incorporated by reference, the definition and/or description set forth herein prevails over the definition that is incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.


DESCRIPTION OF CERTAIN SPECIFIC EMBODIMENTS

Applicants have identified mutation rates for numerous Y-STRs by examining three areas: i) the lack of knowledge on Y-STR mutability based on a reasonably large number of loci as required for evolutionary and genealogical applications, ii) the limited knowledge on the molecular basis of Y-STR mutability, and iii) the lack of Y-STRs for familial differentiation in forensic, genealogical, and particular population applications.


In ˜2000 DNA-confirmed father-son pairs. Table 1 presents the mutation rates and characteristics for 186 Y-STR markers. Included are mutation rate estimates, most determined for the first time. Also evaluated were the diversity and DNA sequence data generated for all loci to investigate the underlying causes of Y-STR mutability. The suitability of the identified most mutable Y-STRs for male relative differentiation and their implication for Y-chromosome applications in forensic science have been tested and resulted in the identification of 13 rapidly mutating Y-STR (RM-Y-STR) markers.


The 13 Y-STR markers were found to have a mutational rate that is substantially higher than the 173 other Y-STRs tested. These rapidly-mutating markers are DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. The mutation rates for these 13 RM-Y-STRs are all well above 10−2, whereas all other 173 Y-STRs (94% of the loci tested) have mutation rates well below 10−2 (usually 10−3 and lower) (FIG. 1). In particular, the locus-specific mutation rates of the 13 RM Y-STRs range from 0.0116 to 0.0744. In comparison, the 17 Y-STRs included in the AmpF/STR® YFiler™ PCR Amplification kit (YFiler Kit, sold by Applied Biosystems/Life Technologies, Foster City, Calif. USA, namely DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385 alb*, DYS393, DYS391, DYS439, DYS635, DYS392, Y GATA H4, DYS437, DYS438, DYS448) have locus-specific mutation rates ranging from 0.0002 to 0.0065 as established recently based on a large number of >135,000 meiotic transfers (Goedbloed et al. 2009). Hence, Applicants have surprisingly discovered that the 13 RM-Y-STRs mutate 60-11 time more rapidly than YFiler kit Y-STRs that are most commonly used in forensic applications today. The surprisingly high mutation rate in these RM-Y-STR markers permits the increased likelihood of distinguishing between male members of the same paternal genetic lineage. The likelihood of discrimination between members of the same male lineage is even greater when multiple rapidly-mutating Y-STR markers are employed. Various embodiments of the invention provided herein include methods, reagents, and kits for determining the specific allele of one or more, of two or more, of three or more, of four or more, of five or more, and so on, of the subject rapidly-mutating Y-STR markers in a given sample for analysis.


Provided herein are various methods for determining the specific allele of one or more of the rapidly-mutating Y-STR markers. The specific alleles of the rapidly-mutating Y-STR markers can be determined using essentially the same methods and technologies that are used for the determination of alleles other types of STR markers. Such methods and technologies can readily be adapted by the person skilled in the art so as to be suitable for use in the allele determination of the rapidly-mutating Y-STR markers. Examples of such technology include DNA sequencing and sequence specific amplification techniques such as PCR, used in conjunction with detection technologies such as electrophoresis, mass spectroscopy, and the like. In some embodiments, PCR amplification products may be detected by fluorescent dyes conjugated to the PCR amplification primers, for example as described in PCT patent application WO 2009/059049. PCR amplification products can also be detected by other techniques, including, but not limited to, the staining of amplification products, e.g. silver staining and the like.


The specific allele of a given rapidly-mutating Y-STR marker can also be determined by any of a variety of DNA sequencing techniques that are widely available, e.g., Sanger sequencing, pyrosequencing, Maxim and Gilbert sequencing, and the like. Numerous automated DNA sequencing techniques are commercially available, the applied Biosystems 3130, the applied Biosystems 3100, the Illumina Genome Analyzer, the Applied Biosystems SOLiD system, the Roche Genome Sequencer FIx system and the like.


DNA for analysis using the subject methods and compositions can be obtained from a variety of sources. DNA can be obtained at crime scenes, e.g., semen recovered from a rape victim. Additionally, DNA for analysis can be obtained directly from male subjects for the purpose of generating a database of allelic information (for subsequent analysis) or can be obtained from identified suspects.


DNA for analysis can be quantified prior to allelic analysis, thereby providing for more accurate allele calling. DNA quantity in a sample may be determined by many techniques known to the person skilled in the art, e.g., real time PCR. It is of interest to quantify the Y chromosomal DNA present in a sample for analysis prior to performing allelic analysis for Y-chromosomal STR markers, including rapidly-mutating Y-chromosomal STR markers. Autosomal DNA in the sample may also be quantitated, thereby providing a method for determining the background amount of female DNA present in a mixed sample, such as those samples recovered in rape cases.


A Y chromosomal haplotype can be established by determining the specific alleles present on a plurality of Y-STR markers. In general, the more rapidly a Y-STR marker mutates, the greater the probability of being able to distinguish between male relatives based on Y-chromosomal marker analysis. In some embodiments, the rapidly-mutating Y-STR markers can be analyzed by a method employing multiplex PCR. Multiplex PCR can amplify 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or all 13 of the rapidly-mutating Y-STR markers. In some embodiments, multiplex PCR can co-amplify additional Y-STR markers that are not part of the set of the subject rapidly-mutating Y-STR markers. In some embodiments, a multiplex PCR can provide for the co-amplification of one or more autosomal STR markers, e.g. the CODIS STR markers, D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, D16S539, THO1, TPDX, and CSF1PO. Detailed descriptions for the development of multiplex PCR for STR analysis can be found, among other places in PCT patent application WO 2009/059049 A1. In some embodiments the PCR reactions are not multiplexed. The amplicons that are produced in non-multiplex PCR reactions can be combined prior to the analysis of an instrument, e.g. a fluorescent DNA fragment analyzer (such as an automated DNA sequencer) or a mass spectrometer. Mass spectroscopy of STR markers is described in, among other places, U.S. Pat. No. 6,090,558.


Other embodiments include sets of PCR primers for the co-amplification of at least two rapidly-mutating Y-STR markers. Embodiments include sets of PCR primers for the co-amplification of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or all 13 of the rapidly-mutating Y-STR markers provided herein. In some embodiments, PCR primer sets can comprise primers for the co-amplification of Y-STR markers that are not rapidly-mutating Y-STR markers. In some embodiments, the set of PCR primers can comprise PCR primers for the co-amplification of STR markers present on an autosome.


The embodiments of the invention also include allelic ladders to aid in the identification of alleles of rapidly-mutating Y-STR markers. The allelic ladders can comprise sets of size standards for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or all 13 of the rapidly-mutating Y-STR markers. For each marker present in the allelic ladder, the allelic ladder can comprise standards for one or more alleles. An allelic ladder can comprise size standards for all known alleles of a given rapidly-mutating Y-STR marker, or any subset of known alleles. In some embodiments, the size standards in the allelic ladder can be labeled with one or more fluorescent dyes. In some embodiments an allelic ladder can further comprise size standards for autosomal STR markers. In some embodiments of allelic ladder can further comprise size standards for Y-STR markers that are not rapidly-mutating Y-STR markers.


Other embodiments of the subject invention include kits for the determination of the alleles for two or more rapidly-mutating Y-STR markers. Embodiments of the kits can comprise the subject sets of amplification primers. In some embodiments the kits can comprise one or more reagents used in nucleic amplification reactions. Examples of such reagents include, but are not limited to, DNA polymerases, dNTPs, buffers, nucleic acid purification reagents and the like. In some embodiments, the kits can comprise an allelic ladder designed to act as a size standard for the one or more rapidly-mutating Y-STR marker alleles generated (or potentially generated) by amplification primers present in the kit. Thus, in some embodiments, the kits can comprise allelic ladders specifically adapted to the amplicons generated by the use of the kit primers in an amplification reaction. For example a kit comprising primers for co-amplifying rapidly-mutating Y-STR markers DYF387S1, DYF399S1, and DYF404S1, can also include an allelic ladder having size standards for various alleles of rapidly-mutating Y-STR markers DYF387S1, DYF399S1, and DYF404S1. The kit can contain primers for co-amplifying all 13 RM-Y-STRs as well as an allelic ladder having appropriate size standards as would be known to one of skill in the art. The component size standards of an allelic ladder for given STR marker can be labeled with the same or different detectable labels, e.g., a fluorescent dye, as are the primers used to generate the amplicons of the actual allele in the sample for analysis.


The invention may be better understood by reference to the following examples comprising experimental data. Such information is offered to be examples and is not intended to limit the scope of the claimed invention. Examples and data presented herein were published in K. Ballantyne, et al. “Mutability of Y-Chromosomal Microsatellites: Rates, Characteristics, Molecular Bases and Forensic Implications” Am. J. Hum. Genet. 87:341-353 (Sep. 10, 2010), and published online Sep. 2, 2010, each incorporated by reference herein.


EXAMPLES
DNA Samples

All father-son pairs used in the mutation rate study were confirmed in their paternity by molecular analyses, utilizing autosomal STRs, Y-STRs, HLA and RFLP genotyping and blood grouping, in addition to familial or governmental documentation. A threshold for paternity probability of 99.9% was set for inclusion in the study. Samples were obtained from the Berlin, Leipzig and Cologne areas of Germany, and the Warsaw and Wroclaw areas of Poland. Whole genome amplification using the GenomiPhi DNA Amplification kit (GE Healthcare, Little Chalfont, UK) was performed on the Leipzig samples due to low DNA quantities. WGA reactions were performed as recommended by the manufacturer, and products were purified using Invisorb 96 Filter Microplates (Invitek GmbH, Berlin, Germany). An additional set of independent samples from male relatives not used in the initial mutability screening from male families or pedigrees, used for verifying the value of identified rapidly mutating Y-STRs, came from the Greifswald, Kiel and Berlin areas of Germany, the Leuven area of Belgium, the Warsaw area of Poland, as well as Canada and Central Germany as described elsewhere 12. All families/pedigrees were confirmed by the same methods as the father-son pairs; pairs with complete genotypes for both the rapidly mutating (RM) Y-STRs and Yfiler Y-STRs were considered for analysis, or in the case of partial genotypes only those that showed a mutation at one or more loci were included. The use of all samples for the purpose of this study was in agreement with the institutional regulations and under informed consent.


Y-STR Markers and Genotyping Protocols

Y-STR markers were mostly selected from a previous study detailing a large number of 167 previously unknown Y-STRs 29, with the additional inclusion of Y-STRs known at the time of project commencement 42. The focus was on single-copy Y-STR markers in order to be able to fully confirm genotype differences by DNA sequence analysis when identifying mutations. However, given our aim to find RM Y-STRs, we included some additional multi-copy Y-STRs, especially those with high diversities (for which mutation confirmation was performed by independent genotyping). A complete list of loci, primer sequences and protocols can be found in the Supplemental Data S1. Seventeen of the 186 Y-STRs were genotyped with a commercially available kit, the AmpF/STR Yfiler PCR Amplification kit (Applied Biosystems), following the manufacturer's instructions. Full descriptions of protocols and markers can be found in (28). The remaining 169 Y-STRs were genotyped using 54 multiplex assays including 1 to 5 markers each. PCRs were performed using three differing protocols, and details are provided in the Supplemental Data S1. In addition, 13 Y-STRs identified during the study as rapidly mutating (RM) Y-STRs were genotyped using three multiplex assays in an independent sample set of male relatives. All PCRs were performed on GeneAmp PCR System 9700 machines (Applied Biosystems) at the Department of Forensic Molecular Biology, Erasmus MC Rotterdam. Fragment length analysis was performed using the 3130x/Genetic Analyzer (Applied Biosystems) at Applied Biosystems, Foster City, USA. Profiles generated were genotyped using GeneMapper software (ID v 3.2, Applied Biosystems). Genotype differences were identified using in-house developed Microsoft Excel 2007 macros. All mutations were confirmed by DNA sequence analysis in Rotterdam of both the father and son at the Y-STR locus, as described in M. Goedbloed, et al. (2009) Int. J. Legal. Med. 123, 471-482. Multi-copy Y-STR loci with three or more alleles were not able to be sequenced, but mutations were confirmed by at least two independent fragment length analysis amplifications.


Statistical Data Analyses

Mutation rates for individual markers were estimated using a binomial hierarchical Bayesian model 43 using the Marcov Chain Monte Carlo (MCMC) Gibbs sampling as implemented in WinBUGS, as described in Goedbloed. In brief, it was assumed that each mutation rate could be considered as a realization of the mutation rate underlying any Y-STR. In brief, we assumed that the mutation rate θi of Y-STR i was a sample from a common population distribution defined by hyperparameters φ. In that way, the estimated mutation rate of a Y-STR incorporates the information provided by the observed data on that Y-STR (number of observed mutations over all the observed father-son pair) and the information of the mutation rate of the Y-STR″ as estimated in the hyperparameter from all the Y-STRs. In practice, this implies that Y-STRs for which no mutation was observed are going to show a mutation rate (estimated from the posterior distribution) which is smaller than other Y-STRs where a large number of mutations are observed, but is always different from 0.


The mutation rate of each Y-STR was coded in a logit form, and assumed to follow a normal distribution with parameters μ and σ=1/σ to be estimated, as well as the particular mutation rates of each STR. As only very limited data was available prior to our study for the range of Y-STR mutation rates, we assumed diffuse, non-informative prior distributions for the hyperparameters. A non-informative prior normal distribution (μ=0, τ=1×10−6) was specified for the hyperparameter μ and a prior diffuse gamma distribution with parameters α=1×10−5 and β=1×10−5 for the parameter τ. Three MCMC chains using the Gibbs sampler were generated in parallel when estimating the mutation rate for each locus, with 100,000 runs performed for each chain. Mean, median and 95% credible intervals (CI) were estimated from the three chains after discarding the first 50,000 runs and performing a thinning of 15 in order to reduce the amount of autocorrelation between adjacent simulations. Locus-specific differences in mutation rates between the sampling populations (Cologne, Berlin, Leipzig, Warsaw and Wroclaw) were tested by means of a permutation analysis. The average mutation rate for each locus and each population was compared to a hypothetical permutated population, where each father-son pair had been assigned to a population at random, maintaining the original sample sizes for each locus. The number of times the permutated averaged mutation rate was larger than the observed rate was recorded, and used to obtain the one tail p value over 100,000 iterations. The lack of significant differences between populations allowed pooling of mutation rates across populations.


In order to investigate the mutation rate of the Yfiler and RM Y-STR sets rather than of each marker within the set, the total number of mutations observed between each father-son pair for each set was computed, given the number of Y-STRs analyzed. This parameter was then modeled under the Bayesian paradigm with a Poisson distribution. A prior with a Gamma distribution was used with a diffuse shape of 1 and a scale of 200, implying a mutation rate with a mean of 0.005 and a variance of 40000. The posterior distribution followed a conjugate Gamma distribution with shape of 1+(total number of mutations) and scale of 1/(1/(200+total number of markers used)). In order to estimate the probability of observing at least one mutation in each set, 100000 Monte Carlo replicates were performed with the rgamma function of the R package 45 from the estimated shape and scale of the posterior distribution of each set of Y-STRs.


For the RM Y-STR set a median mutation rate of 0.0197 (95% credible interval 0.018-0.022) was estimated that is about 7-fold higher as revealed for the YFiler set consisting of 17 markers with a median rate of 0.0028 (95% credible interval ranging from 0.0023 to 0.0035). Next, the probability of observing at least one mutation per Y-STR set in a given father-son pair, reflecting the minimal criteria for differentiating male relatives, was estimated as 1 minus the probability of observing 0 mutations, which is directly estimated from a Poisson distribution: The probability of observing at least one mutation (k) within either of the YSTR sets in any given father-son pair was directly estimated from the Poisson distribution:






P(k>0)=1−P(k=0)=1−e−Nm,


with N representing the number of markers and m representing the average mutation rate of the set of markers obtained from the sampling from the posterior distribution. Assuming that all Y-STRs per set have been genotyped successfully, and using the posterior estimates of the mutation rate for each set of markers, the probability of observing at least one mutation with the RM Y-STR set is 0.1952 (95% credible interval of 0.177 to 0.21). This value is more than four times higher than that estimated for the YFiler set with 0.047 (95% credible interval of 0.038 to 0.057), although six more markers are included in the YFiler set relative to the RM Y-STR set. The molecular factors determining mutation rates were modeled using a Poisson regression with in-house developed Matlab scripts (v7.6.0.324, The Mathworks, Inc., Natick, Mass., USA). The mutation rate was modeled as a function dependent on of the repeat length, the sequence motif, the complexity of the locus and the length of the repeat in base pairs (tri-, tetra-, penta- or hexanucleotide), as:












p


(

y
|
θ

)


=





i
=
1

n




1


y
i



?





(


x
i


θ

)



?



-


?



?











?



indicates text missing or illegible when filed





where θ is assumed to be dependent on the factors described above, in the form





θ=eαL+βS+γC+δV+εR+ζN


where L represents the length of the allele (number or repeats, either of the longest homogenous array or the total locus), S represents the sequence motif (comprised of the number of A, T, C or G nucleotides in the repeated sequence motif), C represents the complexity of the locus, either in binary or quantitative form, V is the number of variable motifs present, R is the repeat length, and N is the copy number of the locus. A stepwise regression procedure was used, with probability to enter ≦3.05, probability to remove ≧0.10. For clarity, the methods used for defining and calculating the number of repeats within a locus, and the complexity of that locus, are elucidated below.


Locus designations were modeled after Kayser et al., where at least 3 consecutive repeats of the same motif are required to define a given repeat segment as a locus, and any interruption of more than 1 base, but less than a full unit, is classed as ending the locus. Individual Y-STR loci contained between 1 and 5 repeat blocks, as in, for example, DYS612 with 5 blocks (CCT)5(CTT)1(TCT)4(CCT)1(TCT)19 (SEQ ID NO: 2197). If a locus contained more than one variable segment, and repeat numbers could not be assigned to all individuals at all repeat segments accurately, the locus was removed from the regression analysis. A segment was defined as variable if a variation in repeat number was seen in any individual sequenced, relative to the remainder of the population.


Number of repeats: The number of repeats in the longest homogenous array was directly counted, and the population average calculated for each locus. In addition, any additional repeats around the longest array were added to calculate the total number of repeats for each locus. In the above example for DYS612, the length of the longest array is 19, while the total number of repeats is 30.


Repeat Length: The length in base pairs of the repetitive motif, which ranged from 3 to 6 (included tri-, tetra-, penta-, hexa- and heptanucleotide repeats).


Complexity: Two complexity statistics were calculated per locus. First, a binary classification system was used, where loci with only one repetitive segment (e.g. (GATA)10 (SEQ ID NO: 2198)) were classified as simple, while any locus with two or more repetitive segments consisting of more than three consecutive repeats (e.g. (GATA)10(CATA)3 (SEQ ID NO: 2199)) was complex. Second, more quantitative information was provided by Kayser et al.'s complexity formula:






C
=



n
2



(

n
-
1

)

2




(

1
-




i
=
1

m




(


s
i

n

)

2



)



(

1
-




i
=
1

l




(


b
i

n

)

2



)






where n is the total number of repeats in the locus, s, is the number of repeats of the ith sequence motif, and bi is the number of repeats in the ith block. Correlation and log linear regression analyses were carried out in SPSS v15.0 (SPSS Inc.), as were all mean comparison tests (utilizing ANOVA, Mann-Whitney U and Kruskal Wallis).


Repeat Length: The length in base pairs of the repetitive motif, which ranged from 3 to 6 (included tri-, tetra-, penta-, hexa- and heptanucleotide repeats).


Mutation Rates of Y-STR Markers

In order to define the expectation for a given RM Y-STR set to differentiate between male relatives, and to compare such potential with that of the commonly-used YFiler set, an average mutation rate for each of the two Y-STR sets applying a Bayesian approach was obtained. The number of mutations observed in one father-son pair for a set of STRs was modeled by means of a Poisson distribution. A prior conjugate Gamma distribution with a diffuse shape of 1 and a scale of 1/0.005 was used. The posterior distribution followed a Gamma distribution with shape of 1+total number of mutations and scale of 1/(1/0.005+total number of markers used) was obtained and 100000 Monte Carlo replicates were performed.


Furthermore, to test in independent samples whether the new RM Y-STR set is practical and useful for differentiating male relatives, genotyping was performed on both marker sets in 107 pairs from 80 male pedigrees who were related by between 1 and 20 generations within their pedigrees and compared the findings with those from YFiler also generated. Pedigrees came from the Greifswald and Kiel (N. von Wurmb-Schwark, V. Mályusz, E. Simeoni, E. Lignitz, M. Poetsch, For. Sci. Int 159, 92-97 (2006)), as well as Berlin (new to this study) areas of Germany, the Leuven area of Belgium (new to this study), the Warsaw area of Poland (new to this study), as well as from Canada C. Moreau, H. Vezina, V. Yotova, R. Hamon, P. de Kniff et al., Am. J. Phys. Anthropol. 139, 512-522 (2009), M. Vermeulen, A. Wollstein, K. van der Gaag, O. Lao, Y. Xue et al., For. Sci. Int. Genet., 3, 205-213 (2009) and Central Germany M. Kayser, M. Vermeulen, H. Knoblauch, H. Schuster, M. Krawczak, L. Roewer, For. Sci. Int. Genet. 1, 125-128 (2007)), as described elsewhere. All pedigrees were confirmed by DNA data (including autosomal STR, HLA and RFLP typing, Y-STR and Y-SNP typing, and mtDNA sequencing amongst various pedigrees), as well as additionally by familial or governmental documentation records. Only pairs which had complete genotypes for both sets, or in the case of partial genotypes, showed a mutation at one or more loci, were included in the calculations. Results are provided in FIG. 2. The RM Y-STR set distinguished over 65% of pairs by at least 1 mutation, reflecting a 5-fold increase in the level of male relative differentiation compared to the YFiler set with only 13%, similar to our statistical expectations from the initial father-son pair analyses. Within the pedigrees, the RM Y-STR set distinguished 60% of father-son pairs, 54% of brothers, and 87% of second cousins. If relatives were separated by more than 11 meioses, 100% of individuals were separated by 1 or more mutations using the RM Y-STR set. In contrast, the Y-filer set distinguished in this dataset no father son pairs, no second cousins, and only 6% of brothers in this dataset.


186 tri-, tetra- penta- and hexanucleotide Y-STR markers were screened for mutations in up to 1966 DNA-confirmed father-son pairs per marker by multiplex fluorescence-based fragment length analysis, giving direct observation of 352,999 meiotic transfers (for technical details see Table 1). To confirm mutations, all Y-STR genotype differences observed between fathers and their sons were confirmed by DNA sequence analysis for single copy and duplicated markers, or by duplicate fragment length genotyping analysis for multi-copy Y-STRs with more than 2 copies (where sequence analysis was not informative). Overall, we identified 924 confirmed mutations at 120 (64.5%) of the 186 Y-STR markers studied (details of each mutation observed can be found in Supplemental Data S2). For 66 Y-STR markers, the up to 1966 father-son pairs analyzed did not allow us to detect mutations due to a very low underlying mutation rate. The large number of Y-STR markers employed identified the range of Bayesian-based mutation rates estimated from the median of the posterior distribution to be between 3.81×10−4 (95% CI 1.38×10−6 to 2.02×10−3) and 7.73×10−2 (6.51×10−2 to 9.09×10−2) per marker, per generation (FIG. 1, Table 1). Ninety-one Y-STR markers (48.9%) had mutation rates in the order of 10−3, a further 82 markers (44%) in the order of 10−4, and 13 (6.9%) in the order of 10−2. Across all 186 Y-STR markers, the average mutation rate was 3.35×10−3 (95% CI 1.79×10−3 to 6.38×10−3) with an average rate of 4.26×10−3 (95% CI 2.38×10−3 to 7.60×10−3) for the 122 tetranucleotide repeats as the largest repeat-length subgroup of Y-STR markers included here. Notably, the 13 Y-STR markers with mutation rates above 1×10−2 representing only 7% of the markers studied, which we termed “Rapidly mutating Y-STRs” (RM Y-STRs), covered a large number of 462 of the 924 (50%) mutations observed in the study.


Number of Repeats.


Two estimates of the average number of repeats were calculated for each Y-STR locus i) the average repeat number in the longest homogenous array; and ii) the repeat number of the longest homogeneous array plus any non-variable repeats immediately adjacent (in accordance with previously defined rules for motif structure 29). Our regression analysis showed that while the number of repeats in the longest homogenous array did influence the mutation rate significantly, with higher numbers of repeats increasing the mutation rate (Wald χ2=2.41×106, p<0.0001), including the number of non-variable repeats surrounding the array provided slightly more accurate information to the model (Wald χ2=3.03×106, p<0.0001, FIG. 2). The effect size within the model was estimated with a partial η2 of 0.798, indicating that the variance in the total number of repeats between loci accounts for ˜78% of the overall (effect+error) variation in Y-STR mutation rates observed. In addition, a statistically significant exponential relationship was observed between the total number of repeats and the allele-specific mutation rate (R2=0.707, p=6.84×10−9). In addition, there was a strong relationship between the total number of repeats and the direction of mutation (FIG. 3). Longer alleles displayed an exponential and statistically significant tendency towards repeat losses (contractions) (R2=0.585, p=8.27×10−7), while shorter alleles gained repeats (expansion) significantly more frequently (R2=0.238, p=0.011). The expansion mutation rate had a quadratic distribution, with a vertex around 19 repeats.


Male Relative Differentiation by RM Y-STRs

We identified 13 rapidly-mutating (RM) Y-STR markers (all with mutation rates >1×10−2); DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627 (FIG. 1, Table 1). Four of these 13 RM Y-STR markers are multi-copy systems (DYF387S1 with two, DYF399S1 with three, DYF403S1 with four, DYF404S1 with two and DYS526 with two copies), whereas nine were single-copy Y-STR markers (although six of these markers contained multiple Y-STR loci within the single amplicon, and only two, DYS570 and DYS576, were simple repeats with only one Y-STR locus respectively). The 13 RM Y-STRs were combined into a set under the hypothesis that closely related males (even father-son or brother pairs) may be differentiable by Y-STR mutations if RM Y-STRs are combined. In principle, one mutation at one of the 13 RM Y-STRs would be enough for individual differentiation.


In order to define a statistical expectation for the RM Y-STR set to differentiate between male relatives, and to compare their potential with that of the commonly used Yfiler set, we first computed the mutation rate observed for each of the two Y-STR sets by means of a Bayesian approach. The number of mutations observed in each father-son pair for each set of Y-STRs was modeled by means of a Poisson distribution. For the RM Y-STRs a median mutation rate of 1.97×10−2 (95% CI 1.8×10−2-2.2×10−2) of the posterior distribution was estimated, which was 6.5-fold higher than that estimated for Yfiler Y-STRs with a median rate of 3.0×10−3 (95% CI ranging from 2.39×10−3 to 3.72×10−3). Next, the probability of observing at least one mutation in each of the two Y-STR sets for a given father-son pair was estimated, reflecting the minimal criteria for differentiating male relatives. Assuming that all Y-STRs per set were genotyped successfully, and using the posterior estimates of the mutation rate for each set of Y-STR markers, the probability of observing at least one mutation with the RM Y-STR set was 0.1952 (95% CI of 0.177 to 0.21). This value was surprisingly more than four times higher than that estimated for the Yfiler set with 0.047 (95% CI of 0.038 to 0.057). The probability of observing at least one mutation with the RM Y-STR set was statistically significantly higher than for the Yfiler set (p<5.0×10−07). Finally, samples were empirically tested independent of those samples used for mutation rate establishment whether the new RM Y-STR set is practically useful for differentiating male relatives. For this, 103 male relative pairs from 80 male pedigrees who were related by between 1 and 20 generations within their pedigrees were genotyped and compared with the findings with those obtained from Yfiler kit in the same samples. Overall, the RM Y-STR set distinguished 70.9% pairs of male relatives by at least 1 mutation, reflecting a 5-fold increase in the level of male relative differentiation compared to the Yfiler kit set with only 13%; notably, the significant difference (t=6.389, p<0.0001) is similar to statistical expectations from the initial father-son pair analyses (FIG. 4 and Table 3). Within the pedigrees, the RM Y-STR set distinguished 70% of father-son pairs, 56% of brothers, and 67% of cousins (FIG. 4 and Table 3). In contrast, the Yfiler set was not able to differentiate any of the father-son pairs nor cousins, and only 6% of the brothers in this dataset (FIG. 4 and Table 3). Furthermore, all relatives separated by more than 11 generations were differentiable by 1 or more mutations using the RM Y-STR set, but only 33% with the Yfiler set.


All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention may have been described in terms of specific examples or preferred embodiments, these examples and embodiments are in no way intended to limit the scope of the claims, and it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.









TABLE 1







Bayesian median mutation rates, mutation summaries and repeat structures of 186 Y-STRs from analysing


DNA-confirmed father-son pairs. Loci with median mutation rates above 10−2 (the RM Y-STR set)


are highlighted in red. Additionally included are PCR primers, PCR annealing temperature and locus


assignment to the 54 multiplexes used for genotyping.




















Bayesian
Bayesian












median
95%



Primer 1
Primer 2



Repeat Structure (as defined in Methods
mutation
credible
Gains/
Total
Total
Sequence
Sequence
Ta in
Multi-


GBD ID
and Materials)
rate
interval
Losses
Mutations
Meioses
5′-3′
5′-3′
° C.
plex
Ref





















DYF380S1

(AAT)
8-11

3.84 × 10−4
1.42 × 10−5-2.06 ×
0/0
0
1790
AGCCATGTGGAT
GACAAACCCATCC
TD
28
[29]





10−3



TCACCACT
TGTCTCC
70-50





DYF381S1

(TTG)
7-8

3.95 × 10−4
1.43 × 10−5-2.07 ×
0/0
0
1774
TCCATCCATCAA
CAACCCAAACACT
TD
45
[29]





10−3



TCCATCAA
TGCAGAA
60-50





DYF381S2

(AAC)
7-8

3.91 × 10−4
1.44 × 10−5-2.11 ×
0/0
0
1756
CAACCCAAACA
TCCATCCATCAAT
TD
20
[29]





10−3



CTTGCAGAA
CCATCAA
60-50





DYF382S1

(GGAT)
9-16(AGAT)1(GGAT)3N8(GGAC)3

1.05 × 10−3
1.52 × 10−4-3.47 ×
1/0
1
1609
TTGTAAAATGGG
CCCAAAGTGCTAC
TD
54
[29]





10−3



CATGTGGA
CCACCTA
70-50





DYF386S1

(AAT)
7-16

6.02 × 10−3
3.10 × 10−3-1.04 ×
3/7
10
1772
GACTGCTCAACT
CCAATGTTACTCA
TD
29
[29]





10−2



GCACTCCA
CTATGCTGCTT
70-50





DYF387S1
(AAAG)3(GTAG)1(GAAG)4N16(GAAG)9
1.59 × 10−2
1.08 × 10−2-2.24 ×
15/13
28
1804
GCCTGGGTGAC
GCCACAGTGTGAG
TD
49
[29]




(AAAG)
13


10−2



AGAGCTAGA
AAGTGTGA
70-50





DYF388S1
(CTTC)6(CTTT)5-19N18(CTTC)3(TTTC)1
6.85 × 10−3
3.64 × 10−3-1.15 ×
5/6
11
1702
TTCTAGGAAGAT
CCCAGACAACAG
TD
52
[29]



(CTTC)3N8(CTTC)3N32(CTTC)3

10−2



TAGCCACAACA
AGCAAAAC
65-50





DYF390S1

(TTTA)
9-14

9.95 × 10−4
1.42 × 10−4-3.34 ×
0/1
1
1680
AGCATTCCCTTT
TGACGAGTTAGTG
TD
12
[29]





10−3



CTCATTGC
GGTGCAG
70-50





DYF393S1
(AAG)4(AA)1(AAG)16-30(CAG)1-2
8.57 × 10−3
4.91 × 10−3-1.37 ×
9/5
14
1712
GCAACCAAAAG
GTGGAGCCTGCTT
TD
31
[29]





10−2



GTTTGGAGA
AAAGGAA
70-50





DYF394S1
(ATT)3(GTT)1(ATT)6-9
3.91 × 10−4
1.40 × 10−5-2.09 ×
0/0
0
1768
GCCCTGAACAA
GCAGTGAGCTGAG
TD
24
[29]





10−3



AATCTGGAG
ATGGTGA
70-50





DYF396S1

(TCT)
6-9

3.86 × 10−4
1.37 × 10−5-2.06 ×
0/0
0
1785
TGCACGTCTTCA
TTGAATGCCAAGT
TD
36
[29]





10−3



TACATAGAGC
TATGTAGCA
70-50





DYF399S1
(GAAA)3N7-8(GAAA)10-23
7.73 × 10−2
6.51 × 10−2-9.09 ×
55/84
139
1794
GGGTTTTCACCA
CCATGTTTTGGGA
TD
49
[29]





10−2



GTTTGCAT
CATTCCT
70-50





DYF401S1
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3
6.50 × 10−3
3.08 × 10−3-1.18 ×
3/5
8
1333
TCGCAAACATA
TTCTAGGAAGATT
TD
48
[29]



N8(AAGG)3(AAAG)1(AAGG)3N13

10−2



GCACTTCAG
AGCCACAACA
70-50




(AAAG)
8-23G(AAGG)6






DYF403S1a

(TTCT)
10-17
N
2-3
(TTCT)
3-17

3.10 × 10−2
2.30 × 10−2-4.07 ×
29/17
46
1504
CAAAATTCATGT
ACAGAGCAGGATT
TD
54
[29]





10−2



GGATAATGAG
CCATCTA
70-50





DYF403S1b
(TTCT)12N2(TTCT)8(TTCC)9(TTCT)14
1.19 × 10−2
7.05 × 10−3-1.86 ×
 5/11
16
1402
CAAAATTCATGT
ACAGAGCAGGATT
TD
54
[29]



N2(TTCT)3

10−2



GGATAATGAG
CCATCTA
70-50





DYF404S1

(TTTC)
10-20N42(TTTC)3

1.25 × 10−2
7.92 × 10−3-1.84 ×
14/7 
21
1739
GGCTTAAGAAA
CCATGATGGAACA
TD
38
[29]





10−2



TTTCAACGCATA
ATTGCAG
70-50





DYF405S1

(GGAA)
4-14N115(GGAA)3

1.52 × 10−3
3.54 × 10−4-4.13 ×
1/1
2
1756
CCGTGGTGTCTG
CACATCAAGTTGC
TD
26
[29]



(GAAA)1(GGAA)3

10−3



AAGCATAG
CTGTTTCA
70-50





DYF406S1

(TATC)
8-14

3.82 × 10−3
1.61 × 10−3-7.48 ×
3/3
6
1744
CCTGGGTGACA
TCCACCAAAATTC
TD
28
[29]





10−3



CAGTGAGACT
CATGACA
70-50





DYF410S1

(AAAT)
7-13

2.04 × 10−3
4.82 × 10−4-5.52 ×
2/0
2
1309
TGACGAGTTAGT
GCGGCTAGGGTAG
TD
48
[29]





10−3



GGGTGCAG
AATCCAT
70-50





DYS19/
(TAGA)3(TAGG)1(TAGA)6-16
4.37 × 10−3
1.98 × 10−3-8.23 ×
4/3
7
1756
Yfiler
Yfiler
Yfiler
Yfiler
[29]


DYS394


10−3





DYS385a
(AAGG)4N14(AAAG)3N12(AAAG)3N29
2.08 × 10−3
6.24 × 10−4-5.06 ×
2/1
3
1762
Yfiler
Yfiler
Yfiler
Yfiler
[29]




(AAGG)
6-7(GAAA)7-23


10−3





DYS385b
(AAGG)4N14(AAAG)3N12(AAAG)3N29
4.14 × 10−3
1.75 × 10−3-8.09 ×
6/0
6
1615
Yfiler
Yfiler
Yfiler
Yfiler
[29]




(AAGG)
6-7
(GAAA)
7-23


10−3





DYS388

(ATT)
9-18

4.25 × 10−4
1.51 × 10−5-2.26 ×
0/0
0
1635
GTGAGTTAGCCG
CAGATCGCAACCA
TD
50
[29]





10−3



TTTAGCGA
CTGCG
60-50





DYS389I
(TCTG)3(TCTA)6-14
5.51 × 10−3
2.72 × 10−3-9.74 ×
4/5
9
1751
Yfiler
Yfiler
Yfiler
Yfiler
[29]





10−3





DYS389II

(TCTG)
4-5
(TCTA)
10-14N28(TCTG)3

3.83 × 10−3
1.61 × 10−3-7.49 ×
2/4
6
1743
Yfiler
Yfiler
Yfiler
Yfiler
[29]




(TCTA)
6-14


10−3





DYS390
(TCTG)8(TCTA)9-14(TCTG)1(TCTG)4
1.52 × 10−3
3.52 × 10−4-4.09 ×
0/2
2
1758
Yfiler
Yfiler
Yfiler
Yfiler
[29]





10−3





DYS391
(TCTG)3(TCTA)6-15
3.23 × 10−3
1.26 × 10−3-6.65 ×
3/2
5
1759
Yfiler
Yfiler
Yfiler
Yfiler
[29]





10−3





DYS392

(TAT)
4-20

9.70 × 10−4
1.43 × 10−4-3.23 ×
1/0
1
1728
Yfiler
Yfiler
Yfiler
Yfiler
[29]





10−3





DYS393/

(AGAT)
7-18

2.11 × 10−3
6.21 × 10−4-5.00 ×
2/1
3
1750
Yfiler
Yfiler
Yfiler
Yfiler
[29]


DYS395


10−3





DYS425/

(TGT)
8-14

1.51 × 10−3
3.48 × 10−4-4.08 ×
1/1
2
1778
TGGAGAGAAGA
AGTAATTCTGGAG
TD
20
[29]


DYF371


10−3



AGAGAGAAAT
GTAAAATGG
60-50





DYS426

(GTT)
9-12

3.98 × 10−4
1.49 × 10−5-2.11 ×
0/0
0
1735
CTCAAAGTATGA
GGTGACAAGACG
TD
38
[29]





10−3



AAGCATGACCA
AGACTTTGTG
70-50





DYS434

(ATCT)
9-12

4.04 × 10−4
1.47 × 10−5-2.14 ×
0/0
0
1715
CACTCCCTGAGT
GGAGATGAATGA
TD
40
[29]





10−3



GCTGGATT
ATGGATGGA
60-50





DYS435

(TGGA)
10-12

1.00 × 10−3
1.47 × 10−4-3.33 ×
0/1
1
1676
AGCATCTCCACA
TTCTCTCTCCCCCT
TD
41
[29]





10−3



CAGCACAC
CCTCTC
60-50





DYS436

(GTT)
11-13

3.84 × 10−4
1.38 × 10−5-2.05 ×
0/0
0
1798
CCAGGAGAGCA
GCAATCCAACTTC
TD
18
[29]





10−3



CACACAAAA
AGCCAAT
60-50





DYS437

(TCTA)
4-12(TCTG)2(TCTA)4

1.53 × 10−3
3.54 × 10−4-4.10 ×
2/0
2
1760
Yfiler
Yfiler
Yfiler
Yfiler
[29]





10−3





DYS438

(TTTTC)
7-16

9.56 × 10−4
1.37 × 10−4-3.18 ×
0/1
1
1751
Yfiler
Yfiler
Yfiler
Yfiler
[29]





10−3





DYS439
(GATA)3N32(GATA)5-19
3.84 × 10−3
1.63 × 10−3-7.54 ×
2/4
6
1736
Yfiler
Yfiler
Yfiler
Yfiler
[29]





10−3





DYS441

(TTCC)
12-21.2

1.18 × 10−3
1.66 × 10−4-3.93 ×
1/0
1
1419
ATGTACCTGTAG
AAGTTGCAGTGAG
TD
27
[45]





10−3



CCCCAGTGAAC
CGAAGATTG
70-50





DYS442

(GATA)
9-16(GACA)3

9.78 × 10−3
5.59 × 10−3-1.57 ×
 2/12
14
1497
AAACGCCCATC
CCCCAAGTCCCCA
TD
16
[45]





10−2



AATCAATGAGTG
AAGTGTGT
70-50





DYS443

(TTCC)
11-17(CTT)3

2.10 × 10−3
6.24 × 10−4-5.01 ×
2/1
3
1745
GAGTTCATGCTG
TCATTGGCCACCT
TD
29
[29]





10−3



ATGACAAGC
GACATTA
70-50





DYS444

(TAGA)
9-16

5.45 × 10−3
2.68 × 10−3-9.65 ×
3/6
9
1775
TGTGAACCATTT
TCACGTTGTTCAA
TD
45
[29]





10−3



GGCATGTT
GGGTCAA
60-50





DYS445

(TTTA)
6-14

2.16 × 10−3
6.38 × 10−4-5.15 ×
2/1
3
1704
GAGCTGAGATT
AGTTAAGAGCCCC
TD
32
[45]





10−3



ATGCCACCAAAA
ACCTTCCTG
70-50





DYS446

(TCTCT)
8-21

2.67 × 10−3
9.38 × 10−4-5.87 ×
2/2
4
1747
TATTTTCAGTCT
AAATGTATGGCCA
TD
30
[45]





10−3



TGTCCTGTC
ACATAGCAAAACC
70-50





DYS447

(TTATA)
6-7(TTATT)1(TTATA)8-13

2.12 × 10−3
6.28 × 10−4-5.11 ×
1/2
3
1722
GGGCTTGCTTTG
GGTCACAGCATGG
TD
27
[45]



(TTATT)1(TTATA)5-9

10−3



CGTTATCT
CTTGGTT
70-50





DYS448

(AGAGAT)
11-13N42(AGAGAT)8-9

3.94 × 10−4
1.41 × 10−5-2.11 ×
0/0
0
1747
Yfiler
Yfiler
Yfiler
Yfiler
[45]





10−3





DYS449

(TTCT)
13-19N22(TTCT)3N12(TTCT)13-19

1.22 × 10−2
7.54 × 10−3-1.85 ×
14/5 
19
1617
TGGAGTCTCTCA
CCATTGCACTCTA
TD
46
[29]





10−2



AGCCTGTTC
GGTTGGAC
60-50





DYS450

(TTTTA)
7-11N12(TTTTA)3

1.04 × 10−3
1.54 × 10−4-3.50 ×
0/1
1
1598
GCCTTTCCAATT
TGGAATATGATGC
TD
39
[45]





10−3



TCAATTTCTGA
AGCTGTTTGT
70-50





DYS452

(TATAC)
5-14
[(CATAC)
1
(TATAC)
1]2-4

4.02 × 10−3
1.56 × 10−3-8.28 ×
2/3
5
1411
TTTATTATACTC
GTGGTGTTCTGAT
TD
16
[45]



N20(TATAC)3(CATAC)1(TATAC)3

10−3



AGCTAATTAATT
GAGGATAAT
70-50










GGTT





DYS453

(AAAT)
9-15

3.89 × 10−4
1.43 × 10−5-2.08 ×
0/0
0
1782
GGGTAACAGAA
CTAAAAGTATGGA
TD
45
[45]





10−3



CAAGACAGT
TATTCTTCG
60-50





DYS454

(AAAT)
7-13

4.75 × 10−4
1.71 × 10−5-2.55 ×
0/0
0
1458
TCACAATGACCC
GTTCTTTGGCCCT
TD
46
[29]





10−3



TTTTGTGC
GCATTTA
60-50





DYS455

(ATTT)
6.2-11

4.26 × 10−4
1.59 × 10−5-2.28 ×
0/0
0
1618
ATCTGAGCCGA
GGGGTGGAAACG
TD
39
[45]





10−3



GAGAATGATA
AGTGTT
70-50





DYS456

(AGAT)
11-23

4.94 × 10−3
2.35 × 10−3-8.97 ×
6/2
8
1757
Yfiler
Yfiler
Yfiler
Yfiler
[45]





10−3





DYS458

(GAAA)
11-24

8.36 × 10−3
4.80 × 10−3-1.34 ×
7/7
14
1756
Yfiler
Yfiler
Yfiler
Yfiler
[45]





10−2





DYS459

(ATTT)
6-11

2.67 × 10−3
9.36 × 10−4-5.86 ×
2/2
4
1741
CAGGTGAACTG
TTGAGCAACAGAG
TD
27
[45]





10−3



GGGTAAATAAT
CAAGACTTA
70-50





DYS460

(TAGA)
8-13

6.22 × 10−3
3.19 × 10−3-1.07 ×
2/8
10
1717
GCCAAACTCTTT
TCTATCCTCTGCC
TD
20
[29]





10−2



CCAAGAAG
TATCATTTATTA
60-50





DYS461

(TAGA)
8-13

9.89 × 10−4
1.40 × 10−4-3.29 ×
0/1
1
1695
AGGCAGAGGAT
TTCAGGTAAATCT
TD
19
[29]





10−3



AGATGATATGG
GTCCAGTAGTGA
60-50









AT





DYS462

(CATA)
9-14

2.65 × 10−3
9.20 × 10−4-5.80 ×
1/3
4
1771
TGTGCTGTACCA
CCAGCCTGAGCAA
TD
30
[45]





10−3



GTTGCCTA
GAGAGTA
70-50





DYS463

(AAAGG)
6-7
(AAGGG)
9-19

1.51 × 10−3
3.49 × 10−4-4.07 ×
2/0
2
1776
AATTCTAGGTTT
ATGAGGTTGTGTG
TD
33
[45]





10−3



GAGCAAAGACA
ACTTGACTG
70-50





DYS464

(CCTT)
9-20N46(CCTT)3N8(CCTT)4

7.27 × 10−3
3.96 × 10−3-1.20 ×
5/7
12
1745
TTACGAGCTTTG
CCTGGGTAACAGA
TD
31
[45]





10−2



GGCTATG
GAGACTCTT
70-50





DYS468
(CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8
1.74 × 10−3
4.03 × 10−4-4.69 ×
1/1
2
1535
GGGAGTTCCAA
GGGGGAAGATGA
TD
37
[29]



(CTC)4(CTT)7-9(ATTCAT)8-10

10−3



ACTTTTTCACA
CAATGATG
70-50





DYS469
(CTT)3N39(CTT)4(GTT)1(CTT)10-30T
2.99 × 10−3
1.04 × 10−3-6.54 ×
3/1
4
1555
TTTGGGGACTGA
CCCCAGCTGGTAA
TD
41
[29]



(CTT)3N17(CTT)5N37(CTT)3N12(CTT)4

10−3



ATTCAAAA
AATGAGT
60-50



N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3



(CCT)3





DYS470

(GTT)
8-12N33(GTT)3

4.20 × 10−4
1.51 × 10−5-2.23 ×
0/0
0
1651
GGTCCTTCAGGA
TGGCTGTAAAACA
TD
44
[29]





10−3



ACCAGTTG
AATATCAGCA
60-50





DYS472

(AAT)
7-9

4.46 × 10−4
1.62 × 10−5-2.37 ×
0/0
0
1549
AGATTGTCCCAC
GAGGCACTGTGTT
TD
1
[29]





10−3



CTGCACTC
CAGCAAA
70-50





DYS473
(AAT)8N12(AAT)9-13
4.13 × 10−4
1.47 × 10−5-2.21 ×
0/0
0
1676
CAGCCTGGATA
CCTCTTTTCTTTGC
TD
44
[29]





10−3



GCAGAGTGA
TGGTTCCTT
60-50





DYS474

(AAC)
9-10

3.92 × 10−4
1.41 × 10−5-2.08 ×
0/0
0
1766
CCCCTGAACTTA
GGCATCTAGGTTT
TD
22
[29]





10−3



AAAGGTGGA
ACTGTGAGGA
60-50





DYS475

(TAA)
7-9(CAA)1(TAA)3

4.14 × 10−4
1.54 × 10−5-2.21 ×
0/0
0
1681
CCCACCAAGGG
CCCACAGAAAGAT
TD
23
[29]





10−3



TTTTCAGA
GTTGAGG
60-50





DYS476

(TGA)
7-13

9.40 × 10−4
1.35 × 10−4-3.12 ×
1/0
1
1779
CGACTATGATTT
AGCTGGGAAGTAC
TD
7
[29]





10−3



GGGCTGTG
TCAATGCTC
70-50





DYS477

(TTG)
8-9

3.91 × 10−4
1.37 × 10−5-2.07 ×
0/0
0
1765
TAACTTACAGAA
AAGTGAATCGAGT
TD
42
[29]





10−3



AAGCTCAGGG
GCCTAGC
60-50





DYS478
(CAG)4(CAA)1(CAG)8
4.04 × 10−4
1.46 × 10−5-2.17 ×
0/0
0
1718
ACAGGCAACAA
TCAGGATAAGCTA
TD
20
[29]





10−3



ATTGGGTA
GCAGTCTATG
60-50





DYS480

(TTA)
6-10

3.91 × 10−4
1.44 × 10−5-2.09 ×
0/0
0
1783
CCAGCACCTAG
CAGCACTCCAAAA
TD
9
[29]





10−3



GTTGAGGTA
TGACAGA
70-50





DYS481

(CTT)
22-32

4.97 × 10−3
2.36 × 10−3-9.03 ×
3/5
8
1744
AGGAATGTGGC
ACAGCTCACCAGA
TD
12
[29]





10−3



TAACGCTGT
AGGTTGC
70-50





DYS484

(AAT)
10-16N12(AAT)3(TAT)3

2.61 × 10−3
9.09 × 10−4-5.73 ×
2/2
4
1792
CCTATCATCCGC
CCTGGTTGACAAA
TD
21
[29]





10−3



ATGGACTT
GCCAGAT
60-50





DYS485

(TTT)
0-1
(TTA)
11-21

4.04 × 10−4
1.53 × 10−5-2.13 ×
0/0
0
1730
AAAGCAGACTT
AAAAATTAGCTGG
TD
9
[29]





10−3



CGCCACTACA
GCCTGGT
70-50





DYS487

(AAT)
10-16

1.77 × 10−3
4.08 × 10−4-4.78 ×
1/1
2
1511
TGTGGGAGGCCT
CCTGGGCAACAGA
TD
1
[29]





10−3



TAAGAAAA
GAAAGAC
70-50





DYS488

(ATA)
10-16

4.40 × 10−4
1.60 × 10−5-2.32 ×
0/0
0
1576
GGGGAGGGATA
TACCCTGGTCCAC
TD
3
[29]





10−3



GCATTAGGA
TTCAACC
70-50





DYS489

(TTA)
10-15

4.48 × 10−4
1.66 × 10−5-2.38 ×
0/0
0
1552
ACCCAAAGATTT
AAAATTAGCCGAG
TD
37
[29]





10−3



GTCGGCTA
CATGGTG
70-50





DYS490

(TTA)
8-16

3.95 × 10−4
1.48 × 10−5-2.10 ×
0/0
0
1759
CCTGGCAGGAA
GCAGAGCTTGCAC
TD
10
[29]





10−3



TTATCCAGA
TGAGCT
70-50





DYS491

(ATA)
8-14

4.09 × 10−4
1.45 × 10−5-2.17 ×
0/0
0
1706
GGAATGGGGAG
GGAGAAAATTCA
TD
15
[29]





10−3



GGATAACAT
ATGCAGATACC
70-50





DYS492

(ATA)
9-15

3.92 × 10−4
1.45 × 10−5-2.09 ×
0/0
0
1770
AGATGAGCCAG
AGTAGGGGTCAG
TD
7
[29]





10−3



GCTTCAGAC
GCACAATG
70-50





DYS493

(AAC)
8-11

3.86 × 10−4
1.45 × 10−5-2.06 ×
0/0
0
1800
ACTCCAGTCTGG
CCCTGGGATTATA
TD
36
[29]





10−3



GTGGACAG
GGCATGA
70-50





DYS494

(TA)
4-6
(TAA)
7-11

3.89 × 10−4
1.43 × 10−5-2.07 ×
0/0
0
1783
TTGCAACACTGT
AACAAACCTGCAT
TD
11
[29]





10−3



TCATTTGGA
GTTCTTCAA
70-50





DYS495

(AAT)
12-19

2.09 × 10−3
6.19 × 10−4-4.97 ×
2/1
3
1755
CCCAGCTATTCA
GCCAGAAAGTGTG
TD
10
[29]





10−3



GGAGGTTG
AGTCATCC
70-50





DYS497

(TTA)
9-16

1.49 × 10−3
3.46 × 10−4-4.05 ×
1/1
2
1786
AACATGTGCGTT
GCATGTTGTGCAC
TD
13
[29]





10−3



TTCAACCA
ATGTAACC
70-50





DYS499
(TTG)8
3.93 × 10−4
1.40 × 10−5-2.09 ×
0/0
0
1771
TGGGTCAGAGA
GGAGGAAGAGGT
TD
47
[29]





10−3



AAGGATTGC
TGCAATGA
70-50





DYS502

(AAT)
4
(TGC)
1
(CAT)
6-9

3.85 × 10−4
1.43 × 10−5-2.05 ×
0/0
0
1792
CAGCAAGCCAC
TGTGCTTTTGGAG
TD
34
[29]





10−3



CATACCATA
TTTGGAG
70-50





DYS504

(CCTT)
10-20N7(CCCT)3

3.24 × 10−3
1.26 × 10−3-6.62 ×
1/4
5
1746
TCTACACCACTG
GGCAACAGAGCA
TD
8
[29]





10−3



TGCCAAGC
ACCCTCT
70-50





DYS505

(TCCT)
9-15

1.51 × 10−3
3.50 × 10−4-4.07 ×
1/1
2
1760
TCTGGCGAAGTA
TCGAGTCAGTTCA
TD
6
[29]





10−3



ACCCAAAC
CCAGAAGG
70-50





DYS508

(TATC)
8-15

3.03 × 10−3
1.05 × 10−3-6.63 ×
2/2
4
1544
ACAATGGCAAT
GAACAAATAAGG
TD
1
[29]





10−3



CCCAAATTC
TGGGATGGAT
70-50





DYS509

(AAAT)
7-11(AATAA)1(AAAT)3

1.06 × 10−3
1.55 × 10−4-3.53 ×
0/1
1
1590
AACATGGTGAA
TGTCCCCAGGGCT
TD
37
[29]





10−3



TCCCTGTCTCT
TTTTAAT
70-50





DYS510
(GATA)3N12(GATA)9-15N13(GGAT)4
5.99 × 10−3
3.09 × 10−3-1.03 ×
4/6
10
1779
TTTTTCCTCCCTT
TCTGGAGAAGACA
TD
34
[29]



N9(GATA)3

10−2



ACCACAGA
GAACTTGTCA
70-50





DYS511

(GATA)
9-14

1.52 × 10−3
3.51 × 10−4-4.11 ×
1/1
2
1760
GATAGGATGGG
TGTGAATTCCCCT
TD
13
[29]





10−3



GTGGATGTG
TCTACATCTC
70-50





DYS512

(AGAT)
7-13

3.96 × 10−4
1.44 × 10−5-2.11 ×
0/0
0
1738
CACGCCCAGCT
GGGAGGAATAAA
TD
26
[29]





10−3



AATTTTTGT
GGAAGGTTG
70-50





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1
6.09 × 10−3
3.14 × 10−3-1.05 ×
6/4
10
1751
ATTGATCCATCC
GTTGGATGAAGGG
TD
32
[29]




(TCTA)
9-15


10−2



GTCTGTCC
AGAGCAG
70-50





DYS516
(TTCT)4N30(TTCT)9-18
6.66 × 10−3
3.55 × 10−3-1.12 ×
7/4
11
1753
TTTCCAATGACC
CGAACCTGCAAAT
TD
22
[29]





10−2



AAGACGTG
TGTTCAC
60-50





DYS517

(AAAG)
10-18N8(AAAG)3

3.21 × 10−3
1.25 × 10−3-6.62 ×
3/2
5
1766
TAATCGTCCCAT
TGCAATCCCAAAC
TD
22
[29]





10−3



TTTGAGCA
TCAGAAA
60-50





DYS518
(AAAG)3(GAAG)1(AAAG)14-22(GGAG)1
1.84 × 10−2
1.25 × 10−2-2.60 ×
 8/20
28
1556
GGCAACACAAG
TCAGCTCTTACCA
TD
54
[29]



(AAAG)4N6(AAAG)11-19N27(AAGG)4

10−2



TGAAACTGC
TGGGTGAT
70-50





DYS520

(GATA)
10-13
(CATA)
10
−11

2.66 × 10−3
9.22 × 10−4-5.80 ×
2/2
4
1760
AACAGCCTGCC
ACCATCATGCCCT
TD
24
[29]





10−3



CAACATAGT
GCAATA
70-50





DYS521
(CTTT)5(TCTT)3(TTTT)1(CTTT)5T
9.54 × 10−4
1.37 × 10−4-3.18 ×
0/1
1
1751
GCCACAGCACC
GCTGGGAGTGAG
TD
24
[29]




(CTTT)
4-14


10−3



TGTTCAGTA
ACCCTGTA
70-50





DYS522

(ATAG)
8-15

1.04 × 10−3
1.53 × 10−4-3.44 ×
1/0
1
1620
CCTTTGAAATCA
TCATAAACAGAGG
TD
4
[29]





10−3



TTCATAATGC
GTTCTGG
70-50





DYS525

(AGAT)
8-13

9.78 × 10−4
1.42 × 10−4-3.26 ×
0/1
1
1712
ATTCACACCATT
CCATCTGTTTATC
TD
2
[29]





10−3



GCACTCCA
TTCCCATCA
70-50





DYS526a

(CCTT)
10-17

2.72 × 10−3
9.52 × 10−4-5.97 ×
2/2
4
1716
TCTGGTGAACTG
GGGTTACTTCGCC
TD
51
[29]





10−3



ATCCAAACC
AGAAGGT
65-50





DYS526b
(CCCT)3N20(CTTT)11-17(CCTT)6-10N113
1.25 × 10−2
7.88 × 10−3-1.87 ×
 9/11
20
1651
TCTGGTGAACTG
GGGTTACTTCGCC
TD
51
[29]




(CCTT)
10-17


10−2



ATCCAAACC
AGAAGGT
65-50





DYS530

(AAAC)
8-11

3.94 × 10−4
1.45 × 10−5-2.10 ×
0/0
0
1760
CAGGGTCAAAA
CTGCGGGACAATG
TD
15
[29]





10−3



TCACCTTCC
AAACAC
70-50





DYS531

(AAAT)
9-13

1.00 × 10−3
1.45 × 10−4-3.50 ×
0/1
1
1682
GACCCACTGGC
TGCTCCCTTTCTTT
TD
3
[29]





10−3



ATTCAAATC
GTAGACG
70-50





DYS532
(TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1
3.24 × 10−3
1.13 × 10−3-7.10 ×
3/1
4
1441
TTGGTTTTATGC
TAGGTGACAGAGC
TD
39
[29]




(TTCT)
6-17N17(TTCT)3N13(TTCC)4N70


10−3



CTTTCACT
AGGATTC
70-50



(TTCT)3N6(TTCT)3





DYS533

(TATC)
9-14

5.01 × 10−3
2.39 × 10−3-9.11 ×
4/4
8
1730
CATCTAACATCT
TGATCAGTTCTTA
TD
5
[29]





10−3



TTGTCATCTACC
ACTCAACCA
70-50





DYS534
(CTTT)3N8(CTTT)9-20N9(CTTT)3
6.51 × 10−3
3.44 × 10−3-1.10 ×
9/2
11
1794
CATCTACCCAAC
GACAAAGATGTTA
TD
18
[29]





10−2



ATCCATCTA
GATGAATAGACA
60-50





DYS536

(TCCT)
7-19N8(TTCT)4

1.15 × 10−3
1.66 × 10−4-3.83 ×
1/0
1
1453
TTGCTTTTCTGC
ATCGCATTCCCCT
52
53
[29]





10−3



TTCCCTTC
CTCCTAC





DYS537

(TCTA)
8-13

2.38 × 10−3
7.12 × 10−4-5.70 ×
2/1
3
1539
GGTCTCCAATTC
TGGAACATGCCCA
TD
3
[29]





10−3



CATCCAGA
TTAATCA
70-50





DYS538

(GATA)
9-13

3.94 × 10−4
1.47 × 10−5-2.10 ×
0/0
0
1765
CCCCTGAATCAC
AACCAGCCCAAAT
TD
31
[29]





10−3



CAGAGTTC
ACCCATC
70-50





DYS539

(TAGA)
8-14

1.00 × 10−3
1.46 × 10−4-3.32 ×
0/1
1
1676
GTTGAAGCCCTC
GGTGCAGATCTCC
TD
19
[29]





10−3



AATCTGGT
CAAATTC
60-50





DYS540

(TTAT)
9-14

3.30 × 10−3
1.28 × 10−3-6.79 ×
2/3
5
1718
GACCGTGTACTC
CAGGAGGCTAGCT
TD
7
[29]





10−3



TGGCCAAT
CAGGAGA
70-50





DYS541

(TATC)
10-15(TTC)1(TATC)3

3.92 × 10−3
1.65 × 10−3-7.68 ×
2/4
6
1700
TTCTATCTGTTC
ACCTTTAAGAAGC
TD
20
[29]





10−3



ATCCATCTAGG
CTTCACC
60-50





DYS543
(AGAT)3(GATA)7.2-16N42(ATGT)3-4
7.10 × 10−3
3.77 × 10−3-3.53 ×
4/7
11
1645
CAAGGGCCAAT
TGATCTTCCTGGT
TD
23
[29]




(ATGG)
2-3N35(GAAA)3


10−3



TATGTATGT
CACTTTT
60-50





DYS544
(TAGA)3N15(TAGA)3(TGGA)1(TAGA)6-12
3.96 × 10−4
1.44 × 10−5-1.20 ×
0/0
0
1748
CTGGGCAACAG
AATGCTGGCCAAA
TD
32
[29]





10−2



AGCAAGATT
ACAAAGT
70-50





DYS545

(TGTT)
8-11

3.90 × 10−4
1.39 × 10−5-2.09 ×
0/0
0
1779
GAGGGGAGTGT
GATCCAAGATGGT
TD
30
[29]





10−3



AGAAAGAATGC
GCCATTG
70-50





DYS546
(TTCC)3N23(TTCT)3N33(TTCC)3N16
4.35 × 10−3
1.85 × 10−3-8.56 ×
2/4
6
1531
CCTGAGCTATTT
TGCAGTACATCCT
TD
35
[29]




(TTCT)
9-19


10−3



TCCCTTTGC
GGGGAAT
70-50





DYS547

(CCTT)
9-13T(CTTC)4-5N56(TTTC)10-22

2.36 × 10−2
1.70 × 10−2-3.18 ×
22/17
39
1679
TCCATGTTACTG
TGACAGAGCATAA
TD
17
[29]



N10(CCTT)4(TCTC)1(TTTC)9-16N14

10−2



CAAAATACAC
ACGTGTC
60-50



(TTTC)3





DYS549

(GATA)
9-15

4.55 × 10−3
2.05 × 10−3-8.58 ×
1/6
7
1684
AACCAAATTCA
GTCCCCTTTTCCA
TD
15
[29]





10−3



GGGATGTACTGA
TTTGTGA
70-50





DYS550
(AAGG)4N16(AAGG)4(AAAG)1
3.87 × 10−4
1.41 × 10−5-2.06 ×
0/0
0
1794
GCCTGGGTAAC
AGCTGAAAACTGT
TD
34
[29]




(AAGG)
6-11


10−3



AGGAGTGAA
GCTGCTG
70-50





DYS551
(AGAT)10-16N8(AGAC)3(AGGT)1(AGAT)4
3.26 × 10−3
1.26 × 10−3-6.72 ×
1/4
5
1737
CCAGCCTGGGT
AAAGTTCCTCCCA
TD
38
[29]





10−3



GACAAAGTA
GTTGCAC
70-50





DYS552
(TCTA)3(TCTG)1(TCTA)7-12N40
2.69 × 10−3
9.21 × 10−4-5.87 ×
3/1
4
1742
CCATAGTGCCG
AACACCTGATGCC
TD
38
[29]




(TCTA)
11-16


10−3



AGGTCAAGT
TGGTTG
70-50





DYS554

(TAAA)
8-11

9.41 × 10−4
1.36 × 10−4-3.15 ×
1/0
1
1777
CTGGGCCACAG
GGGCCAGTCTTTG
TD
13
[29]





10−3



AGTGAGAC
CAATATC
70-50





DYS556

(AAAT)
8-12

1.59 × 10−3
3.70 × 10−4-4.30 ×
1/1
2
1683
TGCTGTCACATC
TTTGGTTGCTGAA
TD
14
[29]





10−3



ACCAATGA
GCATTGA
70-50





DYS557
(TTTC)4(TTCTC)1(TTTC)4(TTC)1
3.80 × 10−3
1.60 × 10−3-7.45 ×
3/3
6
1758
TTTTCTGTGCCA
TCTAATGCACCTT
TD
21
[29]




(TTTC)
12-21


10−3



AGCCTACA
GAGGGATG
60-50





DYS558
(TTTG)3(TTTA)5-10
3.98 × 10−4
1.42 × 10−5-2.13 ×
0/0
0
1741
GGTGGTCAGAA
GCAGGCCAATATT
TD
26
[29]





10−3



AATCCCTCA
CACCATT
70-50





DYS559

(TAAA)
7-9

9.63 × 10−4
1.40 × 10−4-3.19 ×
1/0
1
1750
AGCCAAGGTCA
TCGGTGAAGGCAC
TD
25
[29]





10−3



TACCACTGC
CAATAAT
70-50





DYS561

(GATA)
9-13(GACA)4

9.41 × 10−4
1.36 × 10−4-3.11 ×
0/1
1
1783
GCCTGATGCCAT
TGATCCCAACAAC
TD
17
[29]





10−3



CTGAAAAT
TGCACTC
60-50





DYS565

(ATAA)
9-14

2.09 × 10−3
6.20 × 10−4-4.95 ×
1/2
3
1757
AAACCCAGGAA
CCTGGCTCAGCAC
TD
11
[29]





10−3



GCAGTGTTG
ATGAATA
70-50





DYS567

(ATAA)
7-13

4.08 × 10−4
1.48 × 10−5-2.14 ×
0/0
0
1713
GGAAGCTGAGG
TTATGACCGGGAT
TD
10
[29]





10−3



AAGGAGGAG
CAAGTGC
70-50





DYS568

(AAAT)
9-13

1.08 × 10−3
1.56 × 10−4-3.60 ×
0/1
1
1547
GTGGCAGACAA
TTGAAAAGGGATG
TD
3
[29]





10−3



AACCCAGTT
GGACTCA
70-50





DYS569

(ATTT)
8.2-13

1.58 × 10−3
3.66 × 10−4-4.24 ×
0/2
2
1696
TCCATGGGATAT
GGCAGCCTGTAGG
TD
12
[29]





10−3



GATGAGCA
ACAGAGA
70-50





DYS570

(TTTC)
14-24

1.24 × 10−2
7.52 × 10−3-1.91 ×
8/9
17
1426
GAACTGTCTACA
TCAGCATAGTCAA
TD
1
[29]





10−2



ATGGCTCACG
GAAACCAGACA
70-50





DYS571
(TTTTC)4N7(TTTA)9-12
4.13 × 10−4
1.51 × 10−5-2.20 ×
0/0
0
1682
AGCCTTCAGCG
AGCTGAGATCATC
TD
47
[29]





10−3



ACTGCTTTA
CCATTGC
70-50





DYS572

(AAAT)
8-13

2.07 × 10−3
6.17 × 10−4-4.96 ×
0/3
3
1770
CTAAGGACGCC
CTCATTCCCTATG
TD
9
[29]





10−3



TCCCATACA
GTTTGCAC
70-50





DYS573

(TTTA)
8-13

4.10 × 10−4
1.51 × 10−5-2.17 ×
0/0
0
1698
GGGGGAGAAAA
AAAAATGGGGAG
TD
14
[29]





10−3



AGTTTGGTG
GTGGAAAT
70-50





DYS574

(TTAT)
8-12

9.77 × 10−4
1.43 × 10−4-3.25 ×
0/1
1
1721
GGTGGGGCTTCC
AATGTAGACGACG
TD
43
[29]





10−3



ATATTTTT
GGTTGATG
60-50





DYS575

(AAAT)
8-11

3.91 × 10−4
1.47 × 10−5-2.09 ×
0/0
0
1764
GGTGGTGGACA
AGTAATGGGATGC
TD
11
[29]





10−3



TCCGTAATC
TGGGTCA
70-50





DYS576

(AAAG)
13-22

1.43 × 10−2
9.41 × 10−3-2.07 ×
12/12
24
1727
TTGGGCTGAGG
GGCAGTCTCATTT
TD
12
[29]





10−2



AGTTCAATC
CCTGGAG
70-50





DYS577

(ATTC)
6-10

4.11 × 10−4
1.51 × 10−5-2.19 ×
0/0
0
1691
TCAATGCATGTT
GGAGGATGGTTTG
TD
40
[29]





10−3



TTTCTACGTG
AACCTGA
60-50





DYS578

(AAAT)
7-10

9.95 × 10−4
1.43 × 10−4-3.30 ×
1/0
1
1686
GAGGCGGAACT
GCTTCAACAACCC
TD
4
[29]





10−3



TTCAGTGAG
TGGACAT
70-50





DYS579

(TATT)
7-10

3.94 × 10−4
1.40 × 10−5-2.10 ×
0/0
0
1755
GCCAGCAGTAG
AGGCAGAGGTTGC
TD
2
[29]





10−3



ACCCAGACT
AGTGAGT
70-50





DYS580

(AATA)
8-10

4.05 × 10−4
1.47 × 10−5-2.13 ×
0/0
0
1725
GCAGTGAGCCG
GGAGCAAACACT
TD
4
[29]





10−3



AGATCAGG
GCAATTTCC
70-50





DYS581

(TAGG)
7-9

3.84 × 10−4
1.43 × 10−5-2.04 ×
0/0
0
1807
GTAGGGTCTTGA
CGAGCCAAGCTGC
TD
36
[29]





10−3



ACAGCATACG
TGTTAT
70-50





DYS583

(AAAC)
7-9

3.99 × 10−4
1.44 × 10−5-2.12 ×
0/0
0
1730
GCAGGAAAATT
CCTCATCCAATAG
TD
2
[29]





10−3



GCTTGAACC
CTCTTCCT
70-50





DYS584

(CAAT)
7-8

3.90 × 10−4
1.43 × 10−5-2.10 ×
0/0
0
1777
TGCAGAATGTAT
CTGCCAGTCTATT
TD
45
[29]





10−3



GGTCTTTTTGA
GCCCTTC
60-50





DYS585

(TTATG)
8-12

2.12 × 10−3
6.33 × 10−4-5.06 ×
2/1
3
1734
TGGAAGTATTCC
CTCAAGTGGGGAA
TD
42
[29]





10−3



ACTCACTTGCT
GTCAAGG
60-50





DYS587

(CAATA)
8-16[(CAGTA)1(CAATA)1]3

2.62 × 10−3
9.16 × 10−4-5.75 ×
2/2
4
1782
CCTAAAGCGAA
TGAAGGCCAAAG
TD
18
[29]





10−3



GAGACCATGA
AGTGAAAGA
60-50





DYS588

(GCATT)
9-16

3.92 × 10−4
1.47 × 10−5-2.10 ×
0/0
0
1747
GAATGCAGAAC
AGCCTGGGTGACA
TD
42
[29]





10−3



CCTCAAGGA
GAAACAC
60-50





DYS590

(TTTTG)
5-9

3.91 × 10−4
1.45 × 10−5-2.06 ×
0/0
0
1780
GGGAACATAGT
GGGTGACAGAGC
TD
5
[29]





10−3



CGGGCTGTA
AAGAATCC
70-50





DYS593
(AAAAC)4(AAAAT)7-10
1.51 × 10−3
3.47 × 10−4-4.06 ×
1/1
2
1775
CTTGAACCCAG
TTATGCCCAAGTG
TD
29
[29]





10−3



GAAGCAGAC
ACACTGC
70-50





DYS594

(AAATA)
8-13

1.03 × 10−3
1.46 × 10−4-3.41 ×
1/0
1
1635
GATGTGCCTAAT
CCCTGGTGTTAAT
TD
5
[29]





10−3



GCCACAGA
CGTGTCC
70-50





DYS595

(ATTTA)
6-9

3.96 × 10−4
1.46 × 10−5-2.10 ×
0/0
0
1750
TGTTTTCGGTTC
AGGGGAACAACA
TD
28
[29]





10−3



CTCTGTCC
CACACTGG
70-50





DYS596
(GGA)5(GTA)1(GGA)3(GAA)3
4.24 × 10−4
1.52 × 10−5-2.28 ×
0/0
0
1630
ATAACCGTGCCC
TTTTGACAAGCCC
TD
44
[29]




[(GGA)
1
(GAA)
1
]
8-10


10−3



TTTACTGC
AAAGTTCT
60-50





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5
8.89 × 10−3
4.86 × 10−3-1.47 ×
3/9
12
1426
TACAGGTGTGCA
CTTGGCAACATAG
TD
35
[29]



(CTC)1(TTC)3N15(TTC)4(CT)1(TTC)3

10−2



CCATGAGG
CAGATCC
70-50



(CTC)1(TTC)3 N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)7-21N23



(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)19-31
1.45 × 10−2
9.61 × 10−3-2.09 ×
11/14
25
1767
CCCCCATGCCAG
TGAGGGAAGGCA
TD
42
[29]





10−2



TAAGAATA
AAAGAAAA
60-50





DYS613
(ATG)8(ATA)1(ATG)8-9
4.35 × 10−4
1.60 × 10−5-2.32 ×
0/0
0
1588
ATAGAAGGCAA
AAAGTTAATGACG
TD
23
[29]





10−3



ATTCTTTATCAA
CCTTGTC
60-50





DYS614
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1
4.32 × 10−3
1.94 × 10−3-8.14 ×
2/5
7
1776
GTGGCGATGTTG
GCCACCAAAAGGT
TD
33
[29]



(CTT)3N18(CCT)3(CTT)5N20

 10−3



TGAGTGTT
TTTCAGA
70-50



[(CTT)1(CTG)1]3 (CT)1(CTT)12-22N8



(CTT)4[(CTC)1(CTT)1]3



[(CTC)1(TTT)1](CTT)5





DYS615

(TTG)
7-8

3.91 × 10−4
1.43 × 10−5-2.09 ×
0/0
0
1766
GGTCGAAGAAG
TGATTCTGCTAAT
TD
25
[29]





10−3



GTGTCACAGA
TCCCATGC
70-50





DYS616

(TAT)
8-16(CAT)1(TAT)3

1.72 × 10−3
4.03 × 10−4-4.64 ×
1/1
2
1564
GGCAAACAGAT
TTGTTCTGCCCAG
TD
35
[29]





10−3



AGCAATTTACA
CAGTAT
70-50





DYS617

(TTA)
11-15

4.13 × 10−4
1.53 × 10−5-2.21 ×
0/0
0
1684
AGCATGATGCCT
GGATTGGGGAGTG
TD
5
[29]





10−3



TCAGCTTT
ATAGCAT
70-50





DYS618

(TAT)
8-14

3.95 × 10−4
1.46 × 10−5-2.09 ×
0/0
0
1766
CCCATACCCTTG
GAGGGCTATGGG
TD
13
[29]





10−3



GTGTTGTC
AGGGATAG
70-50





DYS619

(AAT)
6-10

4.69 × 10−4
1.70 × 10−5-2.50 ×
0/0
0
1479
GGCGACAGAGC
GGCATGTGAGTTG
TD
16
[29]





10−3



GAGACTCTA
AGGAACA
70-50





DYS620

(ATA)
8-9

4.11 × 10−4
1.47 × 10−5-2.22 ×
0/0
0
1678
TGACGAGTTAAT
TGAGTTTGCTCCT
TD
40
[29]





10−3



GGGTGCAG
CTAGCTTTC
60-50





DYS621

(TTA)
7-9

4.44 × 10−4
1.70 × 10−5-2.38 ×
0/0
0
1543
GCCCAAATTAA
TGACGAGTTAGTG
TD
35
[29]





10−3



AAGGCACAA
GGTGCAG
70-50





DYS622
(GAAA)6(AGAAG)1(GAAA)8-16
3.40 × 10−3
1.32 × 10−3-7.01 ×
2/3
5
1663
TCCAGCCTCGGT
GGCTGAAGTGGGT
TD
44
[29]





10−3



GATAAGAG
TGTGTTA
60-50





DYS624

(GGAT)
8-10
(G/AGAT)1N35(GGAT)3

4.06 × 10−4
1.55 × 10−5-2.18 ×
0/0
0
1699
GCATCTCAAATC
TCCACCTGCTTTT
TD
43
[29]





10−3



CTTTGTGGA
CTCTTCA
60-50





DYS625
(CTTT)4(TTCT)1(CTTT)3(TTT)1(CTTT)4
9.58 × 10−4
1.40 × 10−4-3.18 ×
0/1
1
1746
TCATCACACATG
GGCAAGTCACATG
TD
22
[29]



(TT)1 (CTTT)3N47(CTTT)3-5(CT)1

10−3



GCCTAATTG
CATTACAA
60-50



(CTTT)4(CCTT)1 CTTT)3N10(CTTT)3





DYS626

(GAAA)
14-23N24(GAAA)3N6(GAAA)5

1.22 × 10−2
7.70 × 10−3-1.82 ×
13/7 
20
1689
GCAAGACCCCA
AAGAAGAATTTTG
TD
23
[29]



(AAA)1 (GAAA)2-3(GAAG)1(GAAA)3

10−2



TAGCAAAAG
GGACATGTTT
60-50





DYS627
(AGAA)3N16(AGAG)3(AAAG)12-24N81
1.23 × 10−2
7.80 × 10−3-1.81 ×
12/9 
21
1766
CTAGGTGACAG
GGATAATGAGCA
TD
21
[29]



(AAGG)3

10−2



CGCAGGATT
AATGGCAAG
60-50





DYS629

(TATC)
5-12

9.91 × 10−4
1.41 × 10−4-3.31 ×
1/0
1
1689
GGGATTATTACA
TATGGGTAAATGG
TD
19
[29]





10−3



ATTCAAGGTC
CAAAAGT
60-50





DYS630
(AAAG)4(AGAG)3N18(AAAG)12-21
4.86 × 10−3
2.31 × 10−3-8.85 ×
5/3
8
1784
GCCTTTGGACAG
AGCCATGGAAAG
TD
25
[29]





10−3



AGCAAGAC
CTGTGAGT
70-50





DYS631
(AATA)4(CATA)1(AATA)7-11
9.77 × 10−4
1.40 × 10−4-3.25 ×
0/1
1
1721
CACTCCAGCCTC
GCGCTCTGTGGAC
TD
43
[29]





10−3



GGAGATAG
ATTATCA
60-50





DYS632

(CATT)
8-10

3.97 × 10−4
1.47 × 10−5-2.13 ×
0/0
0
1745
GGCCGTTGCAA
TCTGGGCAACAGA
TD
24
[29]





10−3



AATAAACTG
AGGAGAC
70-50





DYS633
(AAAT)5N16(AAAT)7-9
3.81 × 10−4
1.38 × 10−5-2.02 ×
0/0
0
1814
GGCAACAAGAG
CCACCAGGGAAGT
TD
46
[29]





10−3



CAAAACTCC
GTCTTTC
60-50





DYS634
(GGAA)6N10(AAGG)7-10N12(AGGGG)3
4.20 × 10−4
1.51 × 10−5-2.25 ×
0/0
0
1646
TCAGAAGCATG
TTGCTCCTTACAG
TD
19
[29]





10−3



CTAGAACCCTA
AAGAGGTGA
60-50





DYS635
(TCTA)4(TGTA)2(TCTA)2(TGTA)2
3.85 × 10−3
1.63 × 10−3-7.55 ×
1/5
6
1732
Yfiler
Yfiler
Yfiler
Yfiler
[29]



(TCTA)2 (TATG)0-2(TCTA)4-17

10−3





DYS637
(AAAT)4(ACAT)8-14
1.04 × 10−3
1.53 × 10−4-3.42 ×
0/1
1
1623
AAGCCAGTCAA
TGCTGGGGTTGAA
TD
41
[29]





10−3



CCAAACACA
GGTAAAA
60-50





DYS638

(TTTA)
8-13

1.04 × 10−3
1.47 × 10−4-3.45 ×
1/0
1
1617
ACAATTTCCCTT
CATGGTGGTAGGC
TD
6
[29]





10−3



GGGGCTAC
ACCTGTA
70-50





DYS640

(AAAT)
9-13

3.98 × 10−4
1.41 × 10−5-2.16 ×
0/0
0
1716
TGGGAAAAACC
TAGGGTCAAGCCC
TD
15
[29]





10−3



ATGAGATCC
GTTCATA
70-50





DYS641

(TAAA)
8-12

3.90 × 10−4
1.41 × 10−5-2.09 ×
0/0
0
1768
CTTGAGCCCAG
CCACACGATGCAA
TD
6
[29]





10−3



GAAGCATAG
TTTTGTC
70-50





DYS642

(TAAA)
6-10

3.91 × 10−4
1.45 × 10−5-2.07 ×
0/0
0
1785
CATTGTGCACGT
AAAGGGTTGTGCT
TD
33
[29]





10−3



GTACCCTAA
GCATGAT
70-50





DYS643

(CTTTT)
6-15

1.50 × 10−3
3.49 × 10−4-4.05 ×
2/0
2
1773
AAGCCATGCCT
TGTAACCAAACAC
TD
14
[29]





10−3



GGTTAAACT
CACCCATT
70-50





DYS644

(TTTTA)
10-11
(TTTA)
0-1
(TTTTA)
0-13

3.22 × 10−3
1.25 × 10−3-6.62 ×
3/2
5
1761
TGACTTCGGGGT
CCTGGGCAAAAG
TD
8
[29]





10−3



AGTTCCAG
AGTGAGAC
70-50





DYS645

(TGTTT)
7-9

4.07 × 10−4
1.49 × 10−5-2.14 ×
0/0
0
1698
GGTTACGGGTG
ACTGCCAGACTCA
TD
40
[29]





10−3



GCAATCATA
CACATGG
60-50





Y-GATA-

(ATCT)
11-16

3.32 × 10−3
1.25 × 10−3-6.80 ×
3/2
5
1713
CCTGCCATCTCT
ATAAATGGAGATA
TD
41
[29]


A10


10−3



ATTTATCTTGCA
GTGGGTGGATT
60-50









TATA





Y-GATA-
(TAGA)3N12(TAGG)3(TAGA)8-15
3.22 × 10−3
1.28 × 10−3-6.62 ×
1/4
5
1755
Yfiler
Yfiler
Yfiler
Yfiler
[29]


H4
N22(TAGA)4

10−3





Notes:


The repeat nomenclature used is in accordance with rules defined by Kayser et al. (2004).


Separation of repeat blocks by “N” represents the break point between the separate loci present within complex markers (as described in Methods and Materials).


Repeat arrays observed to be variable through sequence analysis are highlighted in bold.


The allele ranges given are those seen with the 1966 father-son pairs of European origin.


The “Total number of Meioses” reported is the number of meioses for the marker, and is not the number of allele transmissions for multicopy markers.


The mutations reported for the Yfiler loci have been previously reported in Reference 28.






PCR Protocols:















TD60-50
TD65-50
TD65-55
TD70-50






























95 C.
10
min

95 C.
15
min

95 C.
10
min

95 C.
15
min



94 C.
30
s
X10
94 C.
30
s
X20
94 C.
30
s
X10
94 C.
30
s
X20


60-1 C.  
30
s

65-1 C.  
45
s

65-1 C.  
30
s

70-1 C.  
45
s


72 C.
45
s

72 C.
1
min

72 C.
45
s

72 C.
1
min


94 C.
30
s
X25
94 C.
30
s
X15
94 C.
30
s
X25
94 C.
30
s
X15


50 C.
30
s

50 C.
30
s

55 C.
30
s

50 C.
30
s


72 C.
45
s

72 C.
45
s

72 C.
45
s

72 C.
45
s


60 C.
45
min

60 C.
45
min

60 C.
45
min

60 C.
45
min


















15 C.
forever

15 C.
forever

15 C.
forever

15 C.
forever





















RM 1
RM 2 (DYS518,
RM 3 (DYF403S1a/b,


(DYF387S1, DYF399S1,
DYS526a/b.
DYF404S1, DYS449,


DYS570, DYS576)
DYS626, DYS627)
DYS547, DYS612)




















PCR Buffer
1x
PCR Buffer
1x
PCR Buffer
1x















MgCl2
2.27
mM
MgCl2
1.5
mM
MgCl2
2.0
mM


dNTPs
220
μM
dNTPs
250
μM
dNTPs
250
μM


DYF387S1 Primer
0.09
μM
DYS518 Primer
0.5
μM
DYF403S1a/b Primer
0.6
μM


DYF399S1 Primer
0.36
μM
DYS526a/b Primer
0.35
μM
DYSF404S1 Primer
0.1
μM


DYS570 Primer
0.09
μM
DYS626 Primer
0.2
μM
DYS449 Primer
0.1
μM


DYS576 Primer
0.09
μM
DYS627Primer
0.15
μM
DYS547 Primer
0.6
μM








DYS612 Primer
0.2
μM


Taq
0.25
U
Taq
0.35
U
Taq
0.5
U


DNA
2
ng
DNA
2
ng
DNA
2
ng












PCR Protocol
TD70-50
PCR Protocol
TD65-55
PCR Protocol
TD65-55
















TABLE 2







Details of the 924 mutations observed. The repeat structure of both the father and son's alleles at the


mutated Y-STR are given where possible. In the case of multicopy markers with multiple variable segments


within the STR, total repeat numbers or amplicon size is given in the absence of sequence information.


The age of the father at the time of the son's birth is given, as is an individual pair reference.














Father's
Father


Locus
Father Allele
Son Allele
Age
Reference #














DYF382S1

(GGAT)
13(AGAT)1(GGAT)3N8(GGAC)3


(GGAT)
14(AGAT)1(GGAT)3N8(GGAC)3

59
1953





DYF386S1

(AAT)
12


(AAT)
13

27
20





DYF386S1

(AAT)
14


(AAT)
13

32
84





DYF386S1

(AAT)
13


(AAT)
12

38
94





DYF386S1

(AAT)
15


(AAT)
13

20
208





DYF386S1

(AAT)
14


(AAT)
13

25
317





DYF386S1

(AAT)
11


(AAT)
12

19
641





DYF386S1

(AAT)
14


(AAT)
13

27
1195





DYF386S1

(AAT)
14


(AAT)
15

40
1558





DYF386S1

(AAT)
14


(AAT)
13

42
1644





DYF386S1

(AAT)
14


(AAT)
13

52
1864





DYF387S1
21
24
21
46





DYF387S1
23
22
48
74





DYF387S1
23
24
36
150





DYF387S1
20
21
29
155





DYF387S1
24
23
24
259





DYF387S1
22
21
28
677





DYF387S1
24
23
40
738





DYF387S1
25
24
22
817





DYF387S1
25
26
36
830





DYF387S1
25
26
18
852





DYF387S1
23
24
28
880





DYF387S1
24
23
19
916





DYF387S1
21
22
33
955





DYF387S1
22
23
43
1159





DYF387S1
23
24
Unknown
1202





DYF387S1
24
23
30
1274





DYF387S1
23
22
37
1319





DYF387S1
23
21
Unknown
1328





DYF387S1
24
25
31
1390





DYF387S1
23
24
39
1451





DYF387S1
22
21
24
1469





DYF387S1
22
23
38
1494





DYF387S1
21
22
39
1552





DYF387S1
21
22
20
1592





DYF387S1
23
22
42
1644





DYF387S1
23
22
23
1710





DYF387S1
23
22
18
1750





DYF387S1
23
25
54
1911





DYF388S1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)13N18(CTTC)3(TTTC)1
37
36



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)14N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
34
372



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)13N18(CTTC)3(TTTC)1
28
674



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)13N18(CTTC)3(TTTC)1
21
769



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)11N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
49
945



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)11N18(CTTC)3(TTTC)1
28
1035



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)13N18(CTTC)3(TTTC)1
30
1177



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)13N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
56
1272



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)13N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
Unknown
1352



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)13N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
31
1518



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF388S1
(CTTC)6(CTTT)14N18(CTTC)3(TTTC)1
(CTTC)6(CTTT)12N18(CTTC)3(TTTC)1
28
1734



(CTTC)3N8(CTTC)3N32(CTTC)3
(CTTC)3N8(CTTC)3N32(CTTC)3





DYF390S1

(TTTA)
11


(TTTA)
10

21
1667





DYF393S1
(AAG)4(AA)1(AAG)26(CAG)1
(AAG)4(AA)1(AAG)25(CAG)1
32
19





DYF393S1
(AAG)4(AA)1(AAG)28(CAG)1
(AAG)4(AA)1(AAG)29(CAG)1
32
84





DYF393S1
(AAG)4(AA)1(AAG)19(CAG)1
(AAG)4(AA)1(AAG)20(CAG)1
34
183





DYF393S1
(AAG)4(AA)1(AAG)26(CAG)1
(AAG)4(AA)1(AAG)25(CAG)1
32
213





DYF393S1
(AAG)4(AA)1(AAG)25(CAG)1
(AAG)4(AA)1(AAG)24(CAG)1
26
303





DYF393S1
(AAG)4(AA)1(AAG)22(CAG)1
(AAG)4(AA)1(AAG)23(CAG)1
31
927





DYF393S1
(AAG)4(AA)1(AAG)26(CAG)2
(AAG)4(AA)1(AAG)27(CAG)2
23
941





DYF393S1
(AAG)4(AA)1(AAG)22(CAG)1
(AAG)4(AA)1(AAG)23(CAG)1
64
951





DYF393S1
(AAG)4(AA)1(AAG)27(CAG)1
(AAG)4(AA)1(AAG)26(CAG)1
21
1207





DYF393S1
(AAG)4(AA)1(AAG)22(CAG)1
(AAG)4(AA)1(AAG)24(CAG)1
17
1406





DYF393S1
(AAG)4(AA)1(AAG)28(CAG)1
(AAG)4(AA)1(AAG)29(CAG)1
19
1530





DYF393S1
(AAG)4(AA)1(AAG)27(CAG)1
(AAG)4(AA)1(AAG)28(CAG)1
26
1551





DYF393S1
(AAG)4(AA)1(AAG)23(CAG)1
(AAG)4(AA)1(AAG)24(CAG)1
36
1672





DYF393S1
(AAG)4(AA)1(AAG)25(CAG)1
(AAG)4(AA)1(AAG)24(CAG)1
55
1928





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
22
14





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)17
46
21





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
36
22





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
30
25





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
32
32





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
16
55





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
32
59





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
30
62





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
46
72





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
46
72





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
25
79





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
25
80





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
28
91





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
32
95





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
30
99





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
27
119





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
48
122





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
33
126





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
36
136





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
28
153





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)17
33
189





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N7(GAAA)18
39
200





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)15
22
203





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
22
229





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)15
50
270





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
28
287





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
32
290





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)17
21
299





DYF399S1
(GAAA)3N8(GAAA)22
(GAAA)3N7(GAAA)21
27
302





DYF399S1
(GAAA)3N8(GAAA)15
(GAAA)3N8(GAAA)16
38
336





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)17
50
356





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)22
28
367





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)17
34
372





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)22
28
373





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)17
35
389





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)17
32
401





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)17
53
453





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N7(GAAA)18
34
459





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
26
480





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
28
484





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
26
488





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
39
492





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
27
494





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
35
500





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)15
19
546





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
34
559





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)22
30
586





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
29
603





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)17
56
608





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
32
614





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
43
624





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
25
630





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
30
640





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
43
657





DYF399S1
(GAAA)3N8(GAAA)22
(GAAA)3N7(GAAA)21
25
666





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
23
675





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
18
680





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
23
687





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N7(GAAA)18
20
706





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
33
718





DYF399S1
(GAAA)3N8(GAAA)15
(GAAA)3N8(GAAA)16
21
720





DYF399S1
(GAAA)3N8(GAAA)15
(GAAA)3N8(GAAA)14
22
747





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
28
772





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)15
28
805





DYF399S1
(GAAA)3N8(GAAA)22
(GAAA)3N8(GAAA)20
22
817





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
20
824





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
20
827





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
25
877





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
31
881





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
19
900





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)17
37
904





DYF399S1
(GAAA)3N8(GAAA)15
(GAAA)3N8(GAAA)14
34
911





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)17
19
916





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)16
24
926





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
22
986





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N7(GAAA)21
36
989





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)17
35
1001





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
41
1008





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
41
1008





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)15
33
1046





DYF399S1
(GAAA)3N8(GAAA)15
(GAAA)3N8(GAAA)16
33
1046





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
31
1072





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
22
1088





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
36
1091





DYF399S1
(GAAA)3N8(GAAA)15
(GAAA)3N8(GAAA)16
23
1095





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N7(GAAA)18
25
1104





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
43
1138





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)17
20
1154





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
36
1155





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)17
34
1158





DYF399S1
(GAAA)3N8(GAAA)22
(GAAA)3N7(GAAA)21
34
1158





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)17
43
1159





DYF399S1
(GAAA)3N8(GAAA)13
(GAAA)3N8(GAAA)14
21
1163





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
21
1207





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
Unknown
1263





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
Unknown
1265





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
Unknown
1268





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
39
1327





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
27
1397





DYF399S1
(GAAA)3N8(GAAA)14
(GAAA)3N8(GAAA)13
42
1407





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
42
1411





DYF399S1
(GAAA)3N8(GAAA)22
(GAAA)3N7(GAAA)21
40
1443





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
17
1446





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
24
1455





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
18
1456





DYF399S1
(GAAA)3N8(GAAA)15
(GAAA)3N8(GAAA)16
24
1466





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N7(GAAA)21
24
1466





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N7(GAAA)18
39
1471





DYF399S1
(GAAA)3N8(GAAA)14
(GAAA)3N8(GAAA)15
Unknown
1479





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
28
1554





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N8(GAAA)20
37
1577





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N7(GAAA)18
40
1606





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
25
1612





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
17
1620





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
Unknown
1650





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
24
1651





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
24
1658





DYF399S1
(GAAA)3N8(GAAA)14
(GAAA)3N8(GAAA)15
37
1663





DYF399S1
(GAAA)3N8(GAAA)22
(GAAA)3N7(GAAA)21
32
1664





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)20
17
1665





DYF399S1
(GAAA)3N8(GAAA)15
(GAAA)3N8(GAAA)14
20
1670





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
34
1691





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N7(GAAA)21
28
1696





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
23
1722





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)17
30
1733





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N7(GAAA)21
26
1760





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N7(GAAA)18
29
1773





DYF399S1
(GAAA)3N8(GAAA)20
(GAAA)3N8(GAAA)19
31
1798





DYF399S1
(GAAA)3N8(GAAA)15
(GAAA)3N8(GAAA)16
51
1813





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
19
1841





DYF399S1
(GAAA)3N8(GAAA)22
(GAAA)3N7(GAAA)21
55
1844





DYF399S1
(GAAA)3N8(GAAA)22
(GAAA)3N8(GAAA)23
59
1867





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
53
1869





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)15
73
1884





DYF399S1
(GAAA)3N7(GAAA)18
(GAAA)3N8(GAAA)19
52
1891





DYF399S1
(GAAA)3N7(GAAA)21
(GAAA)3N8(GAAA)20
52
1891





DYF399S1
(GAAA)3N8(GAAA)16
(GAAA)3N8(GAAA)15
55
1909





DYF399S1
(GAAA)3N8(GAAA)19
(GAAA)3N7(GAAA)18
60
1913





DYF399S1
(GAAA)3N8(GAAA)17
(GAAA)3N8(GAAA)16
50
1941





DYF401S1
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
37
36



(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6
(AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6





DYF401S1
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
34
372



(AAAG)1(AAGG)3N13(AAAG)17G(AAGG)6
(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6





DYF401S1
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
28
674



(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6
(AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6





DYF401S1
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
21
769



(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6
(AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6





DYF401S1
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
Unknown
1241



(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6
(AAAG)1(AAGG)3N13(AAAG)14G(AAGG)6





DYF401S1
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
56
1272



(AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6
(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6





DYF401S1
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
31
1518



(AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6
(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6





DYF401S1
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
(AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3
28
1734



(AAAG)1(AAGG)3N13(AAAG)17G(AAGG)6
(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6





DYF403S1a
342
338
20
73





DYF403S1a
321
316
32
128





DYF403S1a
316
321
27
132





DYF403S1a
316, 329, 338
321, 325, 334
17
175





DYF403S1a
346
350
37
186





DYF403S1a
342
346
22
201





DYF403S1a
354
350
37
406





DYF403S1a
350
354
20
423





DYF403S1a
342
346
19
546





DYF403S1a
325
329
24
681





DYF403S1a
325
321
39
749





DYF403S1a
334
338
22
817





DYF403S1a
321
342
28
841





DYF403S1a
338
342
37
904





DYF403S1a
308
312
34
911





DYF403S1a
342
346
18
943





DYF403S1a
312
316
20
977





DYF403S1a
342
346
46
1033





DYF403S1a
321
316
21
1053





DYF403S1a
350
354
39
1071





DYF403S1a
342
346
27
1085





DYF403S1a
325
329
44
1110





DYF403S1a
342
338
22
1323





DYF403S1a
346
350
36
1336





DYF403S1a
312
316
Unknown
1353





DYF403S1a
354
350
45
1364





DYF403S1a
342
338
44
1378





DYF403S1a
342
338
42
1411





DYF403S1a
346
350
42
1441





DYF403S1a
338
342
24
1480





DYF403S1a
325
329
40
1531





DYF403S1a
346
342
28
1554





DYF403S1a
312
316
33
1561





DYF403S1a
321
316
25
1634





DYF403S1a
342
334
36
1643





DYF403S1a
329
334
24
1704





DYF403S1a
312
316
26
1725





DYF403S1a
312
316
40
1785





DYF403S1a
312
316
31
1798





DYF403S1a
329
334
43
1818





DYF403S1a
346
342
27
1840





DYF403S1a
346
350
43
1883





DYF403S1a
329
334
57
1896





DYF403S1a
334
321
64
1912





DYF403S1a
346
342
50
1941





DYF403S1a
325, 346
329, 339
56
1947





DYF403S1b
 50
 49
40
28





DYF403S1b
 46.1
 45.1
32
115





DYF403S1b
 50
 49
33
137





DYF403S1b
 49
 47
17
175





DYF403S1b
 51
 50
53
453





DYF403S1b
 51
 50
18
470





DYF403S1b
 50
 49
39
749





DYF403S1b
 53
 52
19
916





DYF403S1b
 52
 53
21
1090





DYF403S1b
 50
 49
Unknown
1288





DYF403S1b
 52
 51
25
1381





DYF403S1b
 46.1
 47.1
54
1447





DYF403S1b
 49
 50
Unknown
1479





DYF403S1b
 48
 49
23
1761





DYF403S1b
 49
 48
56
1947





DYF403S1b
 46.1
 47.1
54
1951





DYF404S1

(TTTC)
15N42(TTTC)3


(TTTC)
16N42(TTTC)3

28
9





DYF404S1

(TTTC)
15N42(TTTC)3


(TTTC)
14N42(TTTC)3

26
376





DYF404S1

(TTTC)
16N42(TTTC)3


(TTTC)
17N42(TTTC)3

29
415





DYF404S1

(TTTC)
16N42(TTTC)3


(TTTC)
17N42(TTTC)3

29
481





DYF404S1

(TTTC)
16N42(TTTC)3


(TTTC)
17N42(TTTC)3

20
706





DYF404S1

(TTTC)
15N42(TTTC)3


(TTTC)
16N42(TTTC)3

22
757





DYF404S1

(TTTC)
15N42(TTTC)3


(TTTC)
16N42(TTTC)3

18
910





DYF404S1

(TTTC)
16N42(TTTC)3


(TTTC)
17N42(TTTC)3

32
1007





DYF404S1

(TTTC)
14N42(TTTC)3


(TTTC)
15N42(TTTC)3

23
1012





DYF404S1

(TTTC)
15N42(TTTC)3


(TTTC)
16N42(TTTC)3

27
1049





DYF404S1

(TTTC)
18N42(TTTC)3


(TTTC)
17N42(TTTC)3

31
1084





DYF404S1

(TTTC)
14N42(TTTC)3


(TTTC)
15N42(TTTC)3

38
1114





DYF404S1

(TTTC)
16N42(TTTC)3


(TTTC)
15N42(TTTC)3

21
1396





DYF404S1

(TTTC)
16N42(TTTC)3


(TTTC)
17N42(TTTC)3

23
1546





DYF404S1

(TTTC)
15N42(TTTC)3


(TTTC)
14N42(TTTC)3

40
1578





DYF404S1

(TTTC)
17N42(TTTC)3


(TTTC)
18N42(TTTC)3

36
1655





DYF404S1

(TTTC)
17N42(TTTC)3


(TTTC)
16N42(TTTC)3

26
1657





DYF404S1

(TTTC)
16N42(TTTC)3


(TTTC)
17N42(TTTC)3

36
1687





DYF404S1

(TTTC)
15N42(TTTC)3


(TTTC)
14N42(TTTC)3

19
1739





DYF404S1

(TTTC)
18N42(TTTC)3


(TTTC)
17N42(TTTC)3

50
1881





DYF404S1

(TTTC)
17N42(TTTC)3


(TTTC)
18N42(TTTC)3

60
1913





DYF405S1

(GGAA)
11N115(GGAA)3(GAAA)1(GGAA)3


(GGAA)
12N115(GGAA)3(GAAA)1(GGAA)3

31
438





DYF405S1

(GGAA)
14N115(GGAA)3(GAAA)1(GGAA)3


(GGAA)
13N115(GGAA)3(GAAA)1(GGAA)3

34
629





DYF406S1

(TATC)
12


(TATC)
11

26
204





DYF406S1

(TATC)
11


(TATC)
10

47
347





DYF406S1

(TATC)
12


(TATC)
13

35
518





DYF406S1

(TATC)
11


(TATC)
10

33
1011





DYF406S1

(TATC)
12


(TATC)
13

41
1122





DYF406S1

(TATC)
12


(TATC)
13

Unknown
1263





DYF410S1

(AAAT)
9


(AAAT)
10

Unknown
1457





DYF410S1

(AAAT)
9


(AAAT)
10

21
1667





DYS19
(TAGA)3(TAGG)1(TAGA)13
(TAGA)3(TAGG)1(TAGA)14
46
21





DYS19
(TAGA)3(TAGG)1(TAGA)11
(TAGA)3(TAGG)1(TAGA)12
43
472





DYS19
(TAGA)3(TAGG)1(TAGA)14
(TAGA)3(TAGG)1(TAGA)13
24
726





DYS19
(TAGA)3(TAGG)1(TAGA)14
(TAGA)3(TAGG)1(TAGA)15
31
927





DYS19
(TAGA)3(TAGG)1(TAGA)12
(TAGA)3(TAGG)1(TAGA)13
Unknown
1224





DYS19
(TAGA)3(TAGG)1(TAGA)14
(TAGA)3(TAGG)1(TAGA)13
29
1257





DYS19
(TAGA)3(TAGG)1(TAGA)14
(TAGA)3(TAGG)1(TAGA)13
24
1767





DYS385a
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)13
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)5(GAAA)13
22
602





DYS385a
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)13
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14
30
1000





DYS385a
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15
60
1695





DYS385b
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)16
39
501





DYS385b
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)16
48
781





DYS385b
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15
24
835





DYS385b
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15
21
896





DYS385b
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15
23
1080





DYS385b
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)11
(AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)12
52
1527





DYS389I
(TCTG)3(TCTA)12
(TCTG)3(TCTA)11
32
12





DYS389I
(TCTG)3(TCTA)11
(TCTG)3(TCTA)10
23
96





DYS389I
(TCTG)3(TCTA)10
(TCTG)3(TCTA)11
23
207





DYS389I
(TCTG)3(TCTA)11
(TCTG)3(TCTA)10
26
214





DYS389I
(TCTG)3(TCTA)9
(TCTG)3(TCTA)10
23
1119





DYS389I
(TCTG)3(TCTA)10
(TCTG)3(TCTA)11
Unknown
1265





DYS389I
(TCTG)3(TCTA)10
(TCTG)3(TCTA)9
39
1700





DYS389I
(TCTG)3(TCTA)10
(TCTG)3(TCTA)11
46
1946





DYS389I
(TCTG)3(TCTA)11
(TCTG)3(TCTA)10
33
1966





DYS389II
(TCTG)5(TCTA)12N28(TCTG)3(TCTA)10
(TCTG)5(TCTA)11N28(TCTG)3(TCTA)10
32
401





DYS389II
(TCTG)5(TCTA)14N28(TCTG)3(TCTA)11
(TCTG)5(TCTA)13N28(TCTG)3(TCTA)11
36
519





DYS389II
(TCTG)5(TCTA)13N28(TCTG)3(TCTA)11
(TCTG)5(TCTA)12N28(TCTG)3(TCTA)11
21
721





DYS389II
(TCTG)5(TCTA)12N28(TCTG)3(TCTA)10
(TCTG)5(TCTA)13N28(TCTG)3(TCTA)10
Unknown
1221





DYS389II
(TCTG)5(TCTA)12N28(TCTG)3(TCTA)9
(TCTG)5(TCTA)13N28(TCTG)3(TCTA)9
24
1312





DYS389II
(TCTG)5(TCTA)13N28(TCTG)3(TCTA)9
(TCTG)5(TCTA)12N28(TCTG)3(TCTA)9
54
1942





DYS390
(TCTG)8(TCTA)12(TCTG)1(TCTG)4
(TCTG)8(TCTA)11(TCTG)1(TCTG)4
30
975





DYS390
(TCTG)8(TCTA)12(TCTG)1(TCTG)4
(TCTG)8(TCTA)11(TCTG)1(TCTG)4
24
1148





DYS391
(TCTG)3(TCTA)11
(TCTG)3(TCTA)10
20
240





DYS391
(TCTG)3(TCTA)10
(TCTG)3(TCTA)11
22
689





DYS391
(TCTG)3(TCTA)11
(TCTG)3(TCTA)10
31
881





DYS391
(TCTG)3(TCTA)11
(TCTG)3(TCTA)12
50
884





DYS391
(TCTG)3(TCTA)11
(TCTG)3(TCTA)12
42
1411





DYS392

(TAT)
13


(TAT)
14

60
1802





DYS393

(AGAT)
14


(AGAT)
13

22
1028





DYS393

(AGAT)
13


(AGAT)
14

42
1411





DYS393

(AGAT)
14


(AGAT)
15

51
1852





DYS425

(TGT)
13


(TGT)
12

31
1084





DYS425

(TGT)
12


(TGT)
13

41
1476





DYS435

(TGGA)
11


(TGGA)
10

19
916





DYS437

(TCTA)
8(TCTG)2(TCTA)4


(TCTA)
9(TCTG)2(TCTA)4

32
1025





DYS437

(TCTA)
9(TCTG)2(TCTA)4


(TCTA)
10(TCTG)2(TCTA)4

53
1869





DYS438

(TTTTC)
12


(TTTTC)
10, (TTTTC)12

46
23





DYS439
(GATA)3N32(GATA)10
(GATA)3N32(GATA)11
24
516





DYS439
(GATA)3N32(GATA)13
(GATA)3N32(GATA)14
36
617





DYS439
(GATA)3N32(GATA)13
(GATA)3N32(GATA)12
23
620





DYS439
(GATA)3N32(GATA)13
(GATA)3N32(GATA)12
40
1204





DYS439
(GATA)3N32(GATA)14
(GATA)3N32(GATA)13
37
1211





DYS439
(GATA)3N32(GATA)13
(GATA)3N32(GATA)12
21
1463





DYS441

(TTCC)
14


(TTCC)
15

38
589





DYS442

(GATA)
13(GACA)3


(GATA)
12(GACA)3

32
213





DYS442

(GATA)
13(GACA)3


(GATA)
12(GACA)3

26
354





DYS442

(GATA)
13(GACA)3


(GATA)
12(GACA)3

45
409





DYS442

(GATA)
15(GACA)3


(GATA)
14(GACA)3

28
425





DYS442

(GATA)
16(GACA)3


(GATA)
15(GACA)3

30
533





DYS442

(GATA)
14(GACA)3


(GATA)
13(GACA)3

26
775





DYS442

(GATA)
15(GACA)3


(GATA)
14(GACA)3

27
953





DYS442

(GATA)
14(GACA)3


(GATA)
15(GACA)3

30
1181





DYS442

(GATA)
13(GACA)3


(GATA)
12(GACA)3

16
1238





DYS442

(GATA)
12(GACA)3


(GATA)
11(GACA)3

39
1239





DYS442

(GATA)
14(GACA)3


(GATA)
13(GACA)3

Unknown
1245





DYS442

(GATA)
12(GACA)3


(GATA)
13(GACA)3

28
1537





DYS442

(GATA)
12(GACA)3


(GATA)
11(GACA)3

73
1884





DYS442

(GATA)
13(GACA)3


(GATA)
12(GACA)3

51
1888





DYS443

(TTCC)
15(CTT)3


(TTCC)
14(CTT)3

18
69





DYS443

(TTCC)
14(CTT)3


(TTCC)
15(CTT)3

35
97





DYS443

(TTCC)
14(CTT)3


(TTCC)
15(CTT)3

28
473





DYS444

(TAGA)
12


(TAGA)
11

46
23





DYS444

(TAGA)
13


(TAGA)
12

20
73





DYS444

(TAGA)
13


(TAGA)
12

30
448





DYS444

(TAGA)
14


(TAGA)
15

25
673





DYS444

(TAGA)
15


(TAGA)
14

30
1067





DYS444

(TAGA)
15


(TAGA)
14

22
1131





DYS444

(TAGA)
15


(TAGA)
14

28
1294





DYS444

(TAGA)
12


(TAGA)
13

33
1680





DYS444

(TAGA)
13


(TAGA)
12

51
1813





DYS445

(TTTA)
12


(TTTA)
11

57
464





DYS445

(TTTA)
11


(TTTA)
12

22
886





DYS445

(TTTA)
13


(TTTA)
14

21
1448





DYS446

(TCTCT)
13


(TCTCT)
14

41
313





DYS446

(TCTCT)
11


(TCTCT)
10

51
1442





DYS446

(TCTCT)
12


(TCTCT)
11

55
1844





DYS446

(TCTCT)
12


(TCTCT)
13

53
1893





DYS447
(TTATA)6(TTATT)1(TTATA)8(TTATT)1(TTATA)7
(TTATA)6(TTATT)1(TTATA)9(TTATT)1(TTATA)7
33
690





DYS447
(TTATA)7(TTATT)1(TTATA)10(TTATT)1(TTATA)7
(TTATA)7(TTATT)1(TTATA)9(TTATT)1(TTATA)7
47
1302





DYS447
(TTATA)6(TTATT)1(TTATA)9(TTATT)1(TTATA)9
(TTATA)6(TTATT)1(TTATA)9(TTATT)1(TTATA)8
56
1677





DYS449
(TTCT)15N22(TTCT)3N12(TTCT)16
(TTCT)15N22(TTCT)3N12(TTCT)15
29
78





DYS449

(TTCT)
15N22(TTCT)3N12(TTCT)19


(TTCT)
14N22(TTCT)3N12(TTCT)19

27
170





DYS449

(TTCT)
16N22(TTCT)3N12(TTCT)17


(TTCT)
17N22(TTCT)3N12(TTCT)17

23
251





DYS449

(TTCT)
16N22(TTCT)3N12(TTCT)17


(TTCT)
15N22(TTCT)3N12(TTCT)17

38
449





DYS449
(TTCT)15N22(TTCT)3N12(TTCT)18
(TTCT)15N22(TTCT)3N12(TTCT)19
39
492





DYS449
(TTCT)17N22(TTCT)3N12(TTCT)13
(TTCT)17N22(TTCT)3N12(TTCT)14
35
531





DYS449
(TTCT)14N22(TTCT)3N12(TTCT)14
(TTCT)14N22(TTCT)3N12(TTCT)15
34
568





DYS449
(TTCT)16N22(TTCT)3N12(TTCT)16
(TTCT)16N22(TTCT)3N12(TTCT)17
21
786





DYS449
(TTCT)16N22(TTCT)3N12(TTCT)17
(TTCT)16N22(TTCT)3N12(TTCT)18
25
840





DYS449

(TTCT)
15N22(TTCT)3N12(TTCT)13


(TTCT)
16N22(TTCT)3N12(TTCT)13

22
894





DYS449
(TTCT)15N22(TTCT)3N12(TTCT)18
(TTCT)15N22(TTCT)3N12(TTCT)17
37
904





DYS449
(TTCT)15N22(TTCT)3N12(TTCT)17
(TTCT)15N22(TTCT)3N12(TTCT)16
33
966





DYS449

(TTCT)
16N22(TTCT)3N12(TTCT)16


(TTCT)
15N22(TTCT)3N12(TTCT)16

24
1167





DYS449

(TTCT)
15N22(TTCT)3N12(TTCT)14


(TTCT)
16N22(TTCT)3N12(TTCT)14

22
1349





DYS449

(TTCT)
15N22(TTCT)3N12(TTCT)14


(TTCT)
16N22(TTCT)3N12(TTCT)14

45
1364





DYS449

(TTCT)
18N22(TTCT)3N12(TTCT)16


(TTCT)
19N22(TTCT)3N12(TTCT)16

37
1418





DYS449
(TTCT)14N22(TTCT)3N12(TTCT)14
(TTCT)14N22(TTCT)3N12(TTCT)15
21
1505





DYS449

(TTCT)
15N22(TTCT)3N12(TTCT)15


(TTCT)
14N22(TTCT)3N12(TTCT)15

22
1526





DYS449
(TTCT)14N22(TTCT)3N12(TTCT)15
(TTCT)14N22(TTCT)3N12(TTCT)16
54
1845





DYS450

(TTTTA)
9N12(TTTTA)3


(TTTTA)
8N12(TTTTA)3

44
1619





DYS452

(TATAC)
12[(CATAC)1(TATAC)1]2N20(TATAC)3


(TATAC)
13[(CATAC)1(TATAC)1]2N20(TATAC)3

17
967



(CATAC)1(TATAC)3
(CATAC)1(TATAC)3





DYS452

(TATAC)
11[(CATAC)1(TATAC)1]2N20(TATAC)3


(TATAC)
12[(CATAC)1(TATAC)1]2N20(TATAC)3

26
971



(CATAC)1(TATAC)3
(CATAC)1(TATAC)3





DYS452

(TATAC)
11[(CATAC)1(TATAC)1]2N20(TATAC)3


(TATAC)
10[(CATAC)1(TATAC)1]2N20(TATAC)3

33
1046



(CATAC)1(TATAC)3
(CATAC)1(TATAC)3





DYS452

(TATAC)
10[(CATAC)1(TATAC)1]2N20(TATAC)3


(TATAC)
9[(CATAC)1(TATAC)1]2N20(TATAC)3

41
1453



(CATAC)1(TATAC)3
(CATAC)1(TATAC)3





DYS452
(TATAC)8[(CATAC)1(TATAC)1]4N20(TATAC)3
(TATAC)8[(CATAC)1(TATAC)1]3N20(TATAC)3
55
1858



(CATAC)1(TATAC)3
(CATAC)1(TATAC)3





DYS456

(AGAT)
15


(AGAT)
16

34
308





DYS456

(AGAT)
16


(AGAT)
17

32
401





DYS456

(AGAT)
15


(AGAT)
16

28
525





DYS456

(AGAT)
16


(AGAT)
17

24
560





DYS456

(AGAT)
15


(AGAT)
16

36
830





DYS456

(AGAT)
17


(AGAT)
16

20
1037





DYS456

(AGAT)
17


(AGAT)
16

Unknown
1333





DYS456

(AGAT)
16


(AGAT)
17

29
1790





DYS458

(GAAA)
18


(GAAA)
17

25
307





DYS458

(GAAA)
18


(GAAA)
19

41
313





DYS458

(GAAA)
17


(GAAA)
18

28
466





DYS458

(GAAA)
17


(GAAA)
18

27
734





DYS458

(GAAA)
16


(GAAA)
15

24
771





DYS458

(GAAA)
17


(GAAA)
18

29
826





DYS458

(GAAA)
15


(GAAA)
16

Unknown
1063





DYS458

(GAAA)
16


(GAAA)
15

19
1132





DYS458

(GAAA)
17


(GAAA)
16

34
1428





DYS458

(GAAA)
16


(GAAA)
17

37
1454





DYS458

(GAAA)
17


(GAAA)
16

19
1508





DYS458

(GAAA)
17


(GAAA)
16

Unknown
1613





DYS458

(GAAA)
18


(GAAA)
17

64
1912





DYS458

(GAAA)
18


(GAAA)
19

65
1920





DYS459

(ATTT)
10


(ATTT)
9

29
246





DYS459

(ATTT)
9


(ATTT)
10

26
573





DYS459

(ATTT)
10


(ATTT)
9

43
928





DYS459

(ATTT)
10


(ATTT)
11

27
1195





DYS460

(TAGA)
13


(TAGA)
12

27
41





DYS460

(TAGA)
9


(TAGA)
10

29
481





DYS460

(TAGA)
11


(TAGA)
10

35
522





DYS460

(TAGA)
12


(TAGA)
11

24
560





DYS460

(TAGA)
11


(TAGA)
10

27
777





DYS460
(TAGA)11
(TAGA)10
30
1062





DYS460
(TAGA)12
(TAGA)11
33
1112





DYS460
(TAGA)11
(TAGA)10
29
1601





DYS460
(TAGA)10
(TAGA)11
21
1728





DYS460
(TAGA)13
(TAGA)12
28
1734





DYS461
(TAGA)11
(TAGA)10
23
1676





DYS462
(CATA)11
(CATA)10
18
692





DYS462
(CATA)13
(CATA)12
30
1425





DYS462
(CATA)11
(CATA)10
39
1502





DYS462
(CATA)11
(CATA)12
64
1912





DYS463
(AAAGG)6(AAGGG)15
(AAAGG)6(AAGGG)16
36
327





DYS463
(AAAGG)6(AAGGG)13
(AAAGG)6(AAGGG)14
54
1447





DYS464
(CCTT)16N46(CCTT)3N8(CCTT)4
(CCTT)17N46(CCTT)3N8(CCTT)4
25
4





DYS464
(CCTT)15N46(CCTT)3N8(CCTT)4
(CCTT)14N46(CCTT)3N8(CCTT)4
18
470





DYS464
(CCTT)17N46(CCTT)3N8(CCTT)4
(CCTT)16N46(CCTT)3N8(CCTT)4
25
512





DYS464
(CCTT)16N46(CCTT)3N8(CCTT)4
(CCTT)19N46(CCTT)3N8(CCTT)4
53
760





DYS464
(CCTT)13N46(CCTT)3N8(CCTT)4
(CCTT)14N46(CCTT)3N8(CCTT)4
18
847





DYS464
(CCTT)18N46(CCTT)3N8(CCTT)4
(CCTT)16N46(CCTT)3N8(CCTT)4
19
900





DYS464
(CCTT)16N46(CCTT)3N8(CCTT)4
(CCTT)15N46(CCTT)3N8(CCTT)4
20
1185





DYS464
(CCTT)17N46(CCTT)3N8(CCTT)4
(CCTT)16N46(CCTT)3N8(CCTT)4
31
1339





DYS464
(CCTT)15N46(CCTT)3N8(CCTT)4
(CCTT)16N46(CCTT)3N8(CCTT)4
22
1526





DYS464
(CCTT)18N46(CCTT)3N8(CCTT)4
(CCTT)19N46(CCTT)3N8(CCTT)4
43
1540





DYS464
(CCTT)17N46(CCTT)3N8(CCTT)4
(CCTT)16N46(CCTT)3N8(CCTT)4
19
1784





DYS464
(CCTT)18N46(CCTT)3N8(CCTT)4
(CCTT)17N46(CCTT)3N8(CCTT)4
56
1892





DYS468
(CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8
(CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8
29
1743



(CTC)4(CTT)8(ATTCAT)8
(CTC)4(CTT)9(ATTCAT)8





DYS468
(CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8
(CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8
60
1802



(CTC)4(CTT)9(ATTCAT)9
(CTC)4(CTT)9(ATTCAT)8





DYS469
(CTT)3N39(CTT)4(GTT)1(CTT)20T(CTT)3N17(CTT)5N37(CTT)3
(CTT)3N39(CTT)4(GTT)1(CTT)21T(CTT)3N17(CTT)5N37
24
107



N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3
(CTT)3N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3





DYS469
(CTT)3N39(CTT)4(GTT)1(CTT)15T(CTT)3N17(CTT)5N37(CTT)3
(CTT)3N39(CTT)4(GTT)1(CTT)16T(CTT)3N17(CTT)5N37(CTT)3
21
769



N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3
N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3





DYS469
(CTT)3N39(CTT)4(GTT)1(CTT)15T(CTT)3N17(CTT)5N37(CTT)3
(CTT)3N39(CTT)4(GTT)1(CTT)16T(CTT)3N17(CTT)5N37(CTT)3
29
1491



N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3
N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3





DYS469
(CTT)3N39(CTT)4(GTT)1(CTT)16T(CTT)3N17(CTT)5N37(CTT)3
(CTT)3N39(CTT)4(GTT)1(CTT)15T(CTT)3N17(CTT)5N37(CTT)3
29
1693



N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3
N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3





DYS476
(TGA)11
(TGA)12
59
1867





DYS481
(CTT)28
(CTT)29
30
99





DYS481
(CTT)22
(CTT)23
32
655





DYS481
(CTT)30
(CTT)29
24
778





DYS481
(CTT)32
(CTT)31
17
845





DYS481
(CTT)31
(CTT)30
24
1370





DYS481
(CTT)23
(CTT)21
42
1411





DYS481
(CTT)25
(CTT)24
36
1672





DYS481
(CTT)22
(CTT)23
54
1895





DYS484
(AAT)13N12(AAT)3(TAT)3
(AAT)11N12(AAT)3(TAT)3
22
45





DYS484
(AAT)13N12(AAT)3(TAT)3
(AAT)14N12(AAT)3(TAT)3
35
875





DYS484
(AAT)12N12(AAT)3(TAT)3
(AAT)13N12(AAT)3(TAT)3
25
1213





DYS484
(AAT)12N12(AAT)3(TAT)3
(AAT)10N12(AAT)3(TAT)3
26
1653





DYS487
(AAT)13
(AAT)14
21
172





DYS487
(AAT)14
(AAT)13
28
1410





DYS495
(AAT)15
(AAT)16
26
775





DYS495
(AAT)15
(AAT)16
30
1274





DYS495
(AAT)17
(AAT)16
31
1596





DYS497
(TTA)15
(TTA)14
25
58





DYS497
(TTA)15
(TTA)16
40
305





DYS504
(CCTT)17N7(CCCT)3
(CCTT)16N7(CCCT)3
25
275





DYS504
(CCTT)19N7(CCCT)3
(CCTT)18N7(CCCT)3
Unknown
1223





DYS504
(CCTT)17N7(CCCT)3
(CCTT)18N7(CCCT)3
39
1502





DYS504
(CCTT)18N7(CCCT)3
(CCTT)17N7(CCCT)3
30
1796





DYS504
(CCTT)18N7(CCCT)3
(CCTT)17N7(CCCT)3
54
1895





DYS505
(TCCT)13
(TCCT)12
64
951





DYS505
(TCCT)12
(TCCT)13
25
1070





DYS508
(TATC)10
(TATC)11
32
1369





DYS508
(TATC)11
(TATC)12
21
1635





DYS508
(TATC)11
(TATC)10
20
1862





DYS508
(TATC)14
(TATC)13
67
1954





DYS509
(AAAT)10(AATAA)1(AAAT)3
(AAAT)9(AATAA)1(AAAT)3
18
680





DYS510
(GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)13N13(GGAT)4N9(GATA)3
24
17





DYS510
(GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)11N13(GGAT)4N9(GATA)3
64
166





DYS510
(GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)11N13(GGAT)4N9(GATA)3
25
185





DYS510
(GATA)3N12(GATA)15N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)14N13(GGAT)4N9(GATA)3
19
761





DYS510
(GATA)3N12(GATA)11N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)10N13(GGAT)4N9(GATA)3
19
916





DYS510
(GATA)3N12(GATA)14N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)15N13(GGAT)4N9(GATA)3
43
928





DYS510
(GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)11N13(GGAT)4N9(GATA)3
33
1112





DYS510
(GATA)3N12(GATA)13N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3
34
1118





DYS510
(GATA)3N12(GATA)14N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)15N13(GGAT)4N9(GATA)3
45
1364





DYS510
(GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3
(GATA)3N12(GATA)13N13(GGAT)4N9(GATA)3
28
1758





DYS511
(GATA)13
(GATA)12
22
418





DYS511
(GATA)11
(GATA)12
52
1804





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13
33
29





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)14
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13
23
134





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12
33
187





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)14
30
1181





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)14
21
1216





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)14
Unknown
1308





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)11
22
1323





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13
36
1421





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12
36
1672





DYS513
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)11
(TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12
60
1695





DYS516
(TTCT)4N30(TTCT)16
(TTCT)4N30(TTCT)15
28
106





DYS516
(TTCT)4N30(TTCT)14
(TTCT)4N30(TTCT)13
37
904





DYS516
(TTCT)4N30(TTCT)12
(TTCT)4N30(TTCT)13
44
973





DYS516
(TTCT)4N30(TTCT)15
(TTCT)4N30(TTCT)16
34
1030





DYS516
(TTCT)4N30(TTCT)13
(TTCT)4N30(TTCT)14
Unknown
1241





DYS516
(TTCT)4N30(TTCT)12
(TTCT)4N30(TTCT)13
38
1524





DYS516
(TTCT)4N30(TTCT)14
(TTCT)4N30(TTCT)15
42
1628





DYS516
(TTCT)4N30(TTCT)15
(TTCT)4N30(TTCT)16
22
1778





DYS516
(TTCT)4N30(TTCT)15
(TTCT)4N30(TTCT)16
24
1782





DYS516
(TTCT)4N30(TTCT)12
(TTCT)4N30(TTCT)11
53
1869





DYS516
(TTCT)4N30(TTCT)17
(TTCT)4N30(TTCT)15
50
1881





DYS517
(AAAG)16N8(AAAG)3
(AAAG)15N8(AAAG)3
26
802





DYS517
(AAAG)14N8(AAAG)3
(AAAG)15N8(AAAG)3
30
1796





DYS517
(AAAG)16N8(AAAG)3
(AAAG)15N8(AAAG)3
63
1807





DYS517
(AAAG)14N8(AAAG)3
(AAAG)15N8(AAAG)3
54
1860





DYS517
(AAAG)14N8(AAAG)3
(AAAG)15N8(AAAG)3
53
1869





DYS518
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
33
29



N6(AAAG)17N27(AAGG)4
N6(AAAG)17N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)14(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)14(GGAG)1(AAAG)4
32
56



N6(AAAG)14N27(AAGG)4
N6(AAAG)15N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
48
74



N6(AAAG)12N27(AAGG)4
N6(AAAG)12N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)14(GGAG)1(AAAG)4
30
87



N6(AAAG)15N27(AAGG)4
N6(AAAG)15N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
34
88



N6(AAAG)16N27(AAGG)4
N6(AAAG)16N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
29
89



N6(AAAG)13N27(AAGG)4
N6(AAAG)13N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)19(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4
50
270



N6(AAAG)17N27(AAGG)4
N6(AAAG)17N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)19(GGAG)1(AAAG)4
25
426



N6(AAAG)15N27(AAGG)4
N6(AAAG)15N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)22(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)21(GGAG)1(AAAG)4
26
433



N6(AAAG)13N27(AAGG)4
N6(AAAG)13N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
28
525



N6(AAAG)12N27(AAGG)4
N6(AAAG)11N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
24
571



N6(AAAG)17N27(AAGG)4
N6(AAAG)16N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
21
593



N6(AAAG)14N27(AAGG)4
N6(AAAG)14N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4N6(AAAG)1N27
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
23
687



(AAGG)4
N6(AAAG)17N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
20
703



N6(AAAG)14N27(AAGG)4
N6(AAAG)15N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
20
741



N6(AAAG)15N27(AAGG)4
N6(AAAG)15N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
22
747



N6(AAAG)16N27(AAGG)4
N6(AAAG)17N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
15
763



N6(AAAG)16N27(AAGG)4
N6(AAAG)16N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
22
817



N6(AAAG)14N27(AAGG)4
N6(AAAG)16N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
23
888



N6(AAAG)18N27(AAGG)4
N6(AAAG)17N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)14(GGAG)1(AAAG)4
19
916



N6(AAAG)16N27(AAGG)4
N6(AAAG)16N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
56
1043



N6(AAAG)16N27(AAGG)4
N6(AAAG)15N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
37
1107



N6(AAAG)17N27(AAGG)4
N6(AAAG)16N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4
19
1115



N6(AAAG)17N27(AAGG)4
N6(AAAG)18N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4
21
1273



N6(AAAG)17N27(AAGG)4
N6(AAAG)16N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
45
1364



N6(AAAG)13N27(AAGG)4
N6(AAAG)13N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
42
1411



N6(AAAG)17N27(AAGG)4
N6(AAAG)15N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
32
1545



N6(AAAG)18N27(AAGG)4
N6(AAAG)19N27(AAGG)4





DYS518
(AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4
(AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4
29
1790



N6(AAAG)15N27(AAGG)4
N6(AAAG)15N27(AAGG)4





DYS520

(GATA)
12(CATA)11


(GATA)
11(CATA)11

32
56





DYS520

(GATA)
12(CATA)11


(GATA)
11(CATA)11

34
88





DYS520
(GATA)12(CATA)10
(GATA)12(CATA)11
31
141





DYS520

(GATA)
11(CATA)11


(GATA)
12(CATA)11

31
434





DYS521
(CTTT)5(TCTT)3(TTTT)1(CTTT)5T(CTTT)13
(CTTT)5(TCTT)3(TTTT)1(CTTT)5T(CTTT)12
25
133





DYS522

(ATAG)
10


(ATAG)
11

22
1088





DYS525

(AGAT)
11


(AGAT)
10

24
571





DYS526a

(CCTT)
16


(CCTT)
15

64
166





DYS526a

(CCTT)
13


(CCTT)
14

53
453





DYS526a

(CCTT)
14


(CCTT)
13

31
1315





DYS526a

(CCTT)
11


(CCTT)
12

31
1652





DYS526b
(CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)11
(CCCT)3N20(CTTT)13(CCTT)9N113(CCTT)11
24
17





DYS526b
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14
50
42





DYS526b
(CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14
34
88





DYS526b
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)12
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)12
25
185





DYS526b
(CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14
41
298





DYS526b
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14
41
386





DYS526b
(CCCT)3N20(CTTT)11(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)12(CCTT)9N113(CCTT)14
31
505





DYS526b
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)10
(CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)10
32
523





DYS526b
(CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)10
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)10
39
654





DYS526b
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)14
25
918





DYS526b
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)15(CCTT)8N113(CCTT)14
36
983





DYS526b
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14
37
1107





DYS526b
(CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14
41
1122





DYS526b
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)14
22
1161





DYS526b
(CCCT)3N20(CTTT)13(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)14
45
1171





DYS526b
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14
48
1250





DYS526b
(CCCT)3N20(CTTT)13(CCTT)9N113(CCTT)12
(CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)12
54
1447





DYS526b
(CCCT)3N20(CTTT)13(CCTT)9N113(CCTT)13
(CCCT)3N20(CTTT)12(CCTT)9N113(CCTT)13
21
1555





DYS526b
(CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)13
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)13
29
1662





DYS526b
(CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14
(CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14
50
1881





DYS531

(AAAT)
11


(AAAT)
9

22
747





DYS532
(TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)12N17(TTCT)3
(TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)13N17(TTCT)3
26
759



N13(TTCC)4N70(TTCT)3N6(TTCT)3
N13(TTCC)4N70(TTCT)3N6(TTCT)3





DYS532
(TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)12N17(TTCT)3
(TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)11N17(TTCT)3
30
1101



N13(TTCC)4N70(TTCT)3N6(TTCT)3
N13(TTCC)4N70(TTCT)3N6(TTCT)3





DYS532
(TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)12N17(TTCT)3
(TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)13N17(TTCT)3
29
1255



N13(TTCC)4N70(TTCT)3N6(TTCT)3
N13(TTCC)4N70(TTCT)3N6(TTCT)3





DYS532
(TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)12N17(TTCT)3
(TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)13N17(TTCT)3
30
1347



N13(TTCC)4N70(TTCT)3N6(TTCT)3
N13(TTCC)4N70(TTCT)3N6(TTCT)3





DYS533

(TATC)
13


(TATC)
12

34
27





DYS533

(TATC)
13


(TATC)
12

29
892





DYS533

(TATC)
13


(TATC)
12

37
905





DYS533

(TATC)
13


(TATC)
14

18
1039





DYS533

(TATC)
12


(TATC)
13

42
1054





DYS533

(TATC)
14


(TATC)
15

34
1158





DYS533

(TATC)
12


(TATC)
13

21
1166





DYS533

(TATC)
13


(TATC)
12

40
1281





DYS534
(CTTT)3N8(CTTT)16N9(CTTT)3
(CTTT)3N8(CTTT)17N9(CTTT)3
37
135





DYS534
(CTTT)3N8(CTTT)16N9(CTTT)3
(CTTT)3N8(CTTT)17N9(CTTT)3
27
167





DYS534
(CTTT)3N8(CTTT)15N9(CTTT)3
(CTTT)3N8(CTTT)16N9(CTTT)3
17
235





DYS534
(CTTT)3N8(CTTT)14N9(CTTT)3
(CTTT)3N8(CTTT)15N9(CTTT)3
41
250





DYS534
(CTTT)3N8(CTTT)14N9(CTTT)3
(CTTT)3N8(CTTT)15N9(CTTT)3
34
308





DYS534
(CTTT)3N8(CTTT)17N9(CTTT)3
(CTTT)3N8(CTTT)16N9(CTTT)3
39
419





DYS534
(CTTT)3N8(CTTT)18N9(CTTT)3
(CTTT)3N8(CTTT)19N9(CTTT)3
28
674





DYS534
(CTTT)3N8(CTTT)13N9(CTTT)3
(CTTT)3N8(CTTT)14N9(CTTT)3
23
1205





DYS534
(CTTT)3N8(CTTT)16N9(CTTT)3
(CTTT)3N8(CTTT)17N9(CTTT)3
45
1364





DYS534
(CTTT)3N8(CTTT)14N9(CTTT)3
(CTTT)3N8(CTTT)13N9(CTTT)3
58
1808





DYS534
(CTTT)3N8(CTTT)17N9(CTTT)3
(CTTT)3N8(CTTT)18N9(CTTT)3
61
1836





DYS536

(TCCT)
12N8(TTCT)4


(TCCT)
13N8(TTCT)4

20
1092





DYS537

(TCTA)
12


(TCTA)
13

29
609





DYS537

(TCTA)
13


(TCTA)
12

27
1248





DYS537

(TCTA)
11


(TCTA)
12

40
1427





DYS539

(TAGA)
11


(TAGA)
10

63
1902





DYS540

(TTAT)
12


(TTAT)
13

31
141





DYS540

(TTAT)
12


(TTAT)
11

59
152





DYS540

(TTAT)
11


(TTAT)
10

19
682





DYS540

(TTAT)
11


(TTAT)
12

38
1020





DYS540

(TTAT)
12


(TTAT)
11

31
1134





DYS541

(TATC)
12(TTC)1(TATC)3


(TATC)
13(TTC)1(TATC)3

34
151





DYS541

(TATC)
12(TTC)1(TATC)3


(TATC)
11(TTC)1(TATC)3

34
239





DYS541

(TATC)
14(TTC)1(TATC)3


(TATC)
13(TTC)1(TATC)3

33
339





DYS541

(TATC)
13(TTC)1(TATC)3


(TATC)
12(TTC)1(TATC)3

36
733





DYS541

(TATC)
14(TTC)1(TATC)3


(TATC)
13(TTC)1(TATC)3

25
1415





DYS541

(TATC)
12(TTC)1(TATC)3


(TATC)
13(TTC)1(TATC)3

64
1843





DYS543
(AGAT)3(GATA)11N42(ATGT)4(ATGG)2N35(GAAA)3
(AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3
23
16





DYS543
(AGAT)3(GATA)15N42(ATGT)3(ATGG)3N35(GAAA)3
(AGAT)3(GATA)14N42(ATGT)3(ATGG)3N35(GAAA)3
40
774





DYS543
(AGAT)3(GATA)15N42(ATGT)3(ATGG)3N35(GAAA)3
(AGAT)3(GATA)14N42(ATGT)3(ATGG)3N35(GAAA)3
33
844





DYS543
(AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3
(AGAT)3(GATA)11N42(ATGT)4(ATGG)2N35(GAAA)3
43
939





DYS543
(AGAT)3(GATA)13N42(ATGT)3(ATGG)3N35(GAAA)3
(AGAT)3(GATA)14N42(ATGT)3(ATGG)3N35(GAAA)3
42
1054





DYS543
(AGAT)3(GATA)15N42(ATGT)3(ATGG)3N35(GAAA)3
(AGAT)3(GATA)16N42(ATGT)3(ATGG)3N35(GAAA)3
Unknown
1063





DYS543
(AGAT)3(GATA)13N42(ATGT)4(ATGG)2N35(GAAA)3
(AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3
Unknown
1223





DYS543
(AGAT)3(GATA)15N42(ATGT)3(ATGG)3N35(GAAA)3
(AGAT)3(GATA)14N42(ATGT)3(ATGG)3N35(GAAA)3
31
1229





DYS543
(AGAT)3(GATA)13N42(ATGT)3(ATGG)3N35(GAAA)3
(AGAT)3(GATA)12N42(ATGT)3(ATGG)3N35(GAAA)3
31
1315





DYS543
(AGAT)3(GATA)11N42(ATGT)4(ATGG)2N35(GAAA)3
(AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3
Unknown
1591





DYS543
(AGAT)3(GATA)13N42(ATGT)4(ATGG)2N35(GAAA)3
(AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3
28
1712





DYS546
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)17
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)18
34
371





DYS546
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)14
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)13
20
706





DYS546
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)16
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)17
20
756





DYS546
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)17
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)16
31
878





DYS546
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)18
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)17
23
1119





DYS546
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)16
(TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)14
55
1840





DYS547
(CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4
(CCTT)10T(CTTC)5N56(TTTC)17N10(CCTT)4
28
1



(TCTC)1(TTTC)11N14(TTTC)3
(TCTC)1(TTTC)11N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4
46
10



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)13N14(TTTC)3





DYS547
(CCTT)11T(CTTC)5N56(TTTC)17N10(CCTT)4
(CCTT)11T(CTTC)5N56(TTTC)18N10(CCTT)4
59
152



(TCTC)1(TTTC)14N14(TTTC)3
(TCTC)1(TTTC)14N14(TTTC)3





DYS547

(CCTT)
13T(CTTC)5N56(TTTC)16N10(CCTT)4


(CCTT)
12T(CTTC)5N56(TTTC)16N10(CCTT)4

34
243



(TCTC)1(TTTC)13N14(TTTC)3
(TCTC)1(TTTC)13N14(TTTC)3





DYS547
(CCTT)13T(CTTC)5N56(TTTC)14N10(CCTT)4
(CCTT)13T(CTTC)5N56(TTTC)14N10(CCTT)4
31
268



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)11N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4
50
270



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)11N14(TTTC)3





DYS547
(CCTT)10T(CTTC)5N56(TTTC)18N10(CCTT)4
(CCTT)10T(CTTC)5N56(TTTC)19N10(CCTT)4
33
339



(TCTC)1(TTTC)10N14(TTTC)3
(TCTC)1(TTTC)10N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4
36
378



(TCTC)1(TTTC)11N14(TTTC)3
(TCTC)1(TTTC)10N14(TTTC)3





DYS547
(CCTT)13T(CTTC)4N56(TTTC)16N10(CCTT)4
(CCTT)13T(CTTC)4N56(TTTC)17N10(CCTT)4
28
425



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)13T(CTTC)5N56(TTTC)16N10(CCTT)4
(CCTT)13T(CTTC)5N56(TTTC)18N10(CCTT)4
28
484



(TCTC)1(TTTC)11N14(TTTC)3
(TCTC)1(TTTC)11N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4
31
613



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4
39
654



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)11N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)14N10(CCTT)4
27
710



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)13T(CTTC)5N56(TTTC)15N10(CCTT)4
(CCTT)13T(CTTC)5N56(TTTC)14N10(CCTT)4
25
711



(TCTC)1(TTTC)11N14(TTTC)3
(TCTC)1(TTTC)11N14(TTTC)3





DYS547
(CCTT)10T(CTTC)5N56(TTTC)18N10(CCTT)4
(CCTT)10T(CTTC)5N56(TTTC)17N10(CCTT)4
59
846



(TCTC)1(TTTC)10N14(TTTC)3
(TCTC)1(TTTC)10N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4
37
904



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)18N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)19N10(CCTT)4
22
986



(TCTC)1(TTTC)13N14(TTTC)3
(TCTC)1(TTTC)13N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)22N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)21N10(CCTT)4
55
1022



(TCTC)1(TTTC)9N14(TTTC)3
(TCTC)1(TTTC)9N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4
43
1153



(TCTC)1(TTTC)13N14(TTTC)3
(TCTC)1(TTTC)14N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)19N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)18N10(CCTT)4
31
1229



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4
29
1276



(TCTC)1(TTTC)13N14(TTTC)3
(TCTC)1(TTTC)14N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)18N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)19N10(CCTT)4
28
1294



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)11T(CTTC)4N56(TTTC)16N10(CCTT)4
(CCTT)11T(CTTC)4N56(TTTC)16N10(CCTT)4
30
1297



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)13N14(TTTC)3





DYS547
(CCTT)11T(CTTC)5N56(TTTC)15N10(CCTT)4
(CCTT)11T(CTTC)5N56(TTTC)15N10(CCTT)4
32
1321



(TCTC)1(TTTC)11N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4
41
1379



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)13N14(TTTC)3





DYS547
(CCTT)10T(CTTC)5N56(TTTC)18N10(CCTT)4
(CCTT)10T(CTTC)5N56(TTTC)19N10(CCTT)4
24
1466



(TCTC)1(TTTC)10N14(TTTC)3
(TCTC)1(TTTC)10N14(TTTC)3





DYS547
(CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4
(CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4
42
1485



(TCTC)1(TTTC)10N14(TTTC)3
(TCTC)1(TTTC)11N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4
29
1491



(TCTC)1(TTTC)13N14(TTTC)3
(TCTC)1(TTTC)13N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4
23
1510



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4
38
1524



(TCTC)1(TTTC)11N14(TTTC)3
(TCTC)1(TTTC)10N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)10N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)10N10(CCTT)4
36
1582



(TCTC)1((TTTC)17N14(TTTC)3
(TCTC)1(TTTC)16N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4
28
1640



(TCTC)1(TTTC)13N14(TTTC)3
(TCTC)1(TTTC)13N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)14N10(CCTT)4
22
1648



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4
37
1663



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4
(CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4
Unknown
1723



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4
54
1860



(TCTC)1(TTTC)12N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4
(CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4
53
1871



(TCTC)1(TTTC)13N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4
55
1910



(TCTC)1(TTTC)11N14(TTTC)3
(TCTC)1(TTTC)11N14(TTTC)3





DYS547
(CCTT)12T(CTTC)5N56(TTTC)14N10(CCTT)4
(CCTT)12T(CTTC)5N56(TTTC)14N10(CCTT)4
65
1920



(TCTC)1(TTTC)11N14(TTTC)3
(TCTC)1(TTTC)12N14(TTTC)3





DYS549

(GATA)
13


(GATA)
12

30
87





DYS549

(GATA)
13


(GATA)
12

47
113





DYS549

(GATA)
12


(GATA)
11

27
119





DYS549

(GATA)
12


(GATA)
13

38
336





DYS549

(GATA)
14


(GATA)
13

43
472





DYS549

(GATA)
12


(GATA)
11

25
517





DYS549

(GATA)
12


(GATA)
11

22
625





DYS551

(AGAT)
15N8(AGAC)3(AGGT)1(AGAT)4


(AGAT)
14N8(AGAC)3(AGGT)1(AGAT)4

21
436





DYS551

(AGAT)
14N8(AGAC)3(AGGT)1(AGAT)4


(AGAT)
13N8(AGAC)3(AGGT)1(AGAT)4

22
604





DYS551

(AGAT)
15N8(AGAC)3(AGGT)1(AGAT)4


(AGAT)
14N8(AGAC)3(AGGT)1(AGAT)4

41
862





DYS551

(AGAT)
14N8(AGAC)3(AGGT)1(AGAT)4


(AGAT)
13N8(AGAC)3(AGGT)1(AGAT)4

51
1212





DYS551

(AGAT)
13N8(AGAC)3(AGGT)1(AGAT)4


(AGAT)
14N8(AGAC)3(AGGT)1(AGAT)4

27
1671





DYS552
(TCTA)3(TCTG)1(TCTA)9N40(TCTA)15
(TCTA)3(TCTG)1(TCTA)7N40(TCTA)15
25
471





DYS552
(TCTA)3(TCTG)1(TCTA)10N40(TCTA)15
(TCTA)3(TCTG)1(TCTA)10N40(TCTA)16
59
846





DYS552
(TCTA)3(TCTG)1(TCTA)10N40(TCTA)14
(TCTA)3(TCTG)1(TCTA)10N40(TCTA)15
18
847





DYS552
(TCTA)3(TCTG)1(TCTA)11N40(TCTA)14
(TCTA)3(TCTG)1(TCTA)12N40(TCTA)14
31
1486





DYS554

(TAAA)
10


(TAAA)
11

37
1277





DYS556

(AAAT)
12


(AAAT)
11

30
1101





DYS556

(AAAT)
11


(AAAT)
12

21
1448





DYS557
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15
24
17





DYS557
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15
23
52





DYS557
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16
34
394





DYS557
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16
38
589





DYS557
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)17
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16
38
1494





DYS557
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15
(TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16
17
1517





DYS559

(TAAA)
9


(TAAA)
8

27
1357





DYS561

(GATA)
13(GACA)4


(GATA)
12(GACA)4

34
359





DYS565

(ATAA)
13


(ATAA)
12

34
101





DYS565

(ATAA)
13


(ATAA)
12

43
624





DYS565

(ATAA)
13


(ATAA)
14

27
1673





DYS568

(AAAT)
12


(AAAT)
13

35
1547





DYS569

(ATTT)
12


(ATTT)
11

31
598





DYS569

(ATTT)
12


(ATTT)
11

21
1053





DYS570

(TTTC)
17


(TTTC)
16

34
92





DYS570

(TTTC)
19


(TTTC)
20

39
112





DYS570

(TTTC)
19


(TTTC)
18

20
240





DYS570

(TTTC)
20


(TTTC)
19

37
293





DYS570

(TTTC)
17


(TTTC)
18

41
313





DYS570

(TTTC)
19


(TTTC)
17

16
316





DYS570

(TTTC)
19


(TTTC)
18

25
317





DYS570

(TTTC)
20


(TTTC)
21

32
614





DYS570

(TTTC)
20


(TTTC)
21

24
855





DYS570

(TTTC)
20


(TTTC)
19

30
867





DYS570
(TTTC)21

(TTTC)
22

22
922





DYS570

(TTTC)
18


(TTTC)
19

36
1061





DYS570

(TTTC)
19


(TTTC)
20

20
1253





DYS570

(TTTC)
16


(TTTC)
15

41
1256





DYS570

(TTTC)
21


(TTTC)
20

45
1364





DYS570

(TTTC)
17


(TTTC)
18

54
1895





DYS570

(TTTC)
19


(TTTC)
18

66
1901





DYS572

(AAAT)
11


(AAAT)
10

35
735





DYS572

(AAAT)
11


(AAAT)
10

24
1342





DYS572

(AAAT)
11


(AAAT)
10

28
1696





DYS574

(TTAT)
10


(TTAT)
9

43
1818





DYS576

(AAAG)
17


(AAAG)
18

28
153





DYS576

(AAAG)
19


(AAAG)
18

34
236





DYS576

(AAAG)
17


(AAAG)
18

34
243





DYS576

(AAAG)
18


(AAAG)
17

47
347





DYS576

(AAAG)
19


(AAAG)
18

17
635





DYS576

(AAAG)
19


(AAAG)
18

37
715





DYS576

(AAAG)
20


(AAAG)
21

23
716





DYS576

(AAAG)
18


(AAAG)
17

38
719





DYS576

(AAAG)
20


(AAAG)
21

29
789





DYS576

(AAAG)
20


(AAAG)
19

50
884





DYS576

(AAAG)
17


(AAAG)
18

42
1054





DYS576

(AAAG)
19


(AAAG)
18

36
1061





DYS576

(AAAG)
18


(AAAG)
19

Unknown
1200





DYS576

(AAAG)
18


(AAAG)
19

40
1204





DYS576

(AAAG)
18


(AAAG)
19

51
1212





DYS576

(AAAG)
18


(AAAG)
17

Unknown
1224





DYS576

(AAAG)
18


(AAAG)
19

Unknown
1265





DYS576

(AAAG)
18


(AAAG)
19

38
1278





DYS576

(AAAG)
17


(AAAG)
16

22
1403





DYS576

(AAAG)
19


(AAAG)
18

42
1411





DYS576

(AAAG)
18


(AAAG)
17

26
1440





DYS576

(AAAG)
18


(AAAG)
19

47
1675





DYS576

(AAAG)
18


(AAAG)
19

55
1844





DYS576

(AAAG)
20


(AAAG)
19

54
1939





DYS578

(AAAT)
8


(AAAT)
9

Unknown
1353





DYS585

(TTATG)
9


(TTATG)
10

35
794





DYS585

(TTATG)
9


(TTATG)
8

26
1105





DYS585

(TTATG)
9


(TTATG)
10

17
1109





DYS587

(CAATA)
11[(CAGTA)1(CAATA)1]3


(CAATA)
10[(CAGTA)1(CAATA)1]3

24
83





DYS587

(CAATA)
11[(CAGTA)1(CAATA)1]3


(CAATA)
12[(CAGTA)1(CAATA)1]3

59
152





DYS587

(CAATA)
12[(CAGTA)1(CAATA)1]3


(CAATA)
11[(CAGTA)1(CAATA)1]3

25
260





DYS587

(CAATA)
12[(CAGTA)1(CAATA)1]3


(CAATA)
13[(CAGTA)1(CAATA)1]3

63
917





DYS593
(AAAAC)4(AAAAT)8
(AAAAC)4(AAAAT)7
26
1082





DYS593
(AAAAC)4(AAAAT)8
(AAAAC)4(AAAAT)9
Unknown
1353





DYS594

(AAATA)
10


(AAATA)
11

31
1134





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
30
99



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)19N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)20N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
31
164



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)17N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
20
254



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)18N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
25
517



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)14N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
18
956



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)17N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)18N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
48
969



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
34
990



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
45
1171



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
21
1216



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)14N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
40
1281



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)17N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
30
1401



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)14N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS611
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
(TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15
53
1839



(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7



(TTC)3N9(TTC)4(TCC)1(TTC)19N23(TTC)4N4
(TTC)3N9(TTC)4(TCC)1(TTC)18N23(TTC)4N4



[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)27
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
25
4





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
34
124





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
33
127





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)27
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)28
31
141





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
49
161





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
26
248





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)27
34
258





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
21
593





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
53
659





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
19
696





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
32
770





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)22
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)21
36
830





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
35
875





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)27
24
933





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
27
1044





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)28
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)27
21
1053





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
Unknown
1224





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)27
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
49
1335





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
23
1359





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
20
1460





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)23
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
36
1582





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)23
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)24
Unknown
1613





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)27
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
41
1786





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)28
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)27
32
1792





DYS612
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)25
(CCT)5(CTT)1(TCT)4(CCT)1(TCT)26
51
1888





DYS614
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
22
219



(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4



[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5





DYS614
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
24
855



(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)20N8(CTT)4
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4



[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5





DYS614
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
19
916



(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)17N8(CTT)4



[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
[(CTC)1(CTT)1]3[(CTC)1(TTT)1](CTT)5





DYS614
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
45
1283



(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4



[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5





DYS614
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
27
1583



(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4



[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5





DYS614
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
19
1784



(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4



[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5





DYS614
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
(CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18
52
1965



(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)16N8(CTT)4



[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5





DYS616

(TAT)
14(CAT)1(TAT)3


(TAT)
15(CAT)1(TAT)3

25
40





DYS616

(TAT)
15(CAT)1(TAT)3


(TAT)
14(CAT)1(TAT)3

41
417





DYS622
(GAAA)6(AGAAG)1(GAAA)12
(GAAA)6(AGAAG)1(GAAA)13
33
187





DYS622
(GAAA)6(AGAAG)1(GAAA)14
(GAAA)6(AGAAG)1(GAAA)15
34
308





DYS622
(GAAA)6(AGAAG)1(GAAA)14
(GAAA)6(AGAAG)1(GAAA)13
30
842





DYS622
(GAAA)6(AGAAG)1(GAAA)11
(GAAA)6(AGAAG)1(GAAA)10
19
1006





DYS622
(GAAA)6(AGAAG)1(GAAA)13
(GAAA)6(AGAAG)1(GAAA)12
21
1436





DYS625
(CTTT)4(TTCT)1(CTTT)3(TTT)1(CTTT)4(TT)1(CTTT)3N47
(CTTT)4(TTCT)1(CTTT)3(TTT)1(CTTT)4(TT)1(CTTT)3N47
38
445




(CTTT)
4(CT)1(CTTT)4(CCTT)1(CTTT)3N10(CTTT)3


(CTTT)
3(CT)1(CTTT)4(CCTT)1(CTTT)3N10(CTTT)3






DYS626

(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
20N24(GAAA)3N6(GAAA)5(AAA)1

42
383



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
16N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
17N24(GAAA)3N6(GAAA)5(AAA)1

37
388



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
17N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
18N24(GAAA)3N6(GAAA)5(AAA)1

35
500



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
18N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
17N24(GAAA)3N6(GAAA)5(AAA)1

38
529



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
18N24(GAAA)3N6(GAAA)5(AAA)1

24
571



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
18N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1

40
612



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
17N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
18N24(GAAA)3N6(GAAA)5(AAA)1

29
650



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
20N24(GAAA)3N6(GAAA)5(AAA)1

36
733



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
18N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1

41
779



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
20N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1

29
901



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
20N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
21N24(GAAA)3N6(GAAA)5(AAA)1

27
953



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
20N24(GAAA)3N6(GAAA)5(AAA)1

39
1071



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
17N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
18N24(GAAA)3N6(GAAA)5(AAA)1

17
1109



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
20N24(GAAA)3N6(GAAA)5(AAA)1

33
1112



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
20N24(GAAA)3N6(GAAA)5(AAA)1

27
1389



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
18N24(GAAA)3N6(GAAA)5(AAA)1

25
1445



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
16N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
15N24(GAAA)3N6(GAAA)5(AAA)1

25
1514



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
18N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1

19
1530



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
19N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
20N24(GAAA)3N6(GAAA)5(AAA)1

59
1823



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS626

(GAAA)
22N24(GAAA)3N6(GAAA)5(AAA)1


(GAAA)
21N24(GAAA)3N6(GAAA)5(AAA)1

56
1907



(GAAA)2(GAAG)1(GAAA)3
(GAAA)2(GAAG)1(GAAA)3





DYS627
(AGAA)3N16(AGAG)3(AAAG)21N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
25
4





DYS627
(AGAA)3N16(AGAG)3(AAAG)22N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)21N81(AAGG)3
36
49





DYS627
(AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
29
82





DYS627
(AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
39
112





DYS627
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3
27
170





DYS627
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)21N81(AAGG)3
34
243





DYS627
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3
20
256





DYS627
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
21
328





DYS627
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
31
331





DYS627
(AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)17N81(AAGG)3
37
355





DYS627
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)21N81(AAGG)3
23
496





DYS627
(AGAA)3N16(AGAG)3(AAAG)23N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)22N81(AAGG)3
35
500





DYS627
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
36
619





DYS627
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
25
711





DYS627
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3
20
742





DYS627
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
29
789





DYS627
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
Unknown
1310





DYS627
(AGAA)3N16(AGAG)3(AAAG)15N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)16N81(AAGG)3
22
1323





DYS627
(AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
42
1407





DYS627
(AGAA)3N16(AGAG)3(AAAG)22N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)23N81(AAGG)3
17
1416





DYS627
(AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3
(AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3
54
1860





DYS629

(TATC)
9


(TATC)
10

29
609





DYS630
(AAAG)4(AGAG)3N18(AAAG)14
(AAAG)4(AGAG)3N18(AAAG)15
21
46





DYS630
(AAAG)4(AGAG)3N18(AAAG)15
(AAAG)4(AGAG)3N18(AAAG)14
33
53





DYS630
(AAAG)4(AGAG)3N18(AAAG)18
(AAAG)4(AGAG)3N18(AAAG)17
23
96





DYS630
(AAAG)4(AGAG)3N18(AAAG)16
(AAAG)4(AGAG)3N18(AAAG)15
40
255





DYS630
(AAAG)4(AGAG)3N18(AAAG)15
(AAAG)4(AGAG)3N18(AAAG)16
30
448





DYS630
(AAAG)4(AGAG)3N18(AAAG)13
(AAAG)4(AGAG)3N18(AAAG)14
21
478





DYS630
(AAAG)4(AGAG)3N18(AAAG)17
(AAAG)4(AGAG)3N18(AAAG)18
39
501





DYS630
(AAAG)4(AGAG)3N18(AAAG)14
(AAAG)4(AGAG)3N18(AAAG)15
36
665





DYS631
(AATA)4(CATA)1(AATA)11
(AATA)4(CATA)1(AATA)10
47
347





DYS635
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)11
53
35





DYS635
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)13,14
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)13
33
528





DYS635
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)13
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12
36
617





DYS635
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)11
26
800





DYS635
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)11
29
1674





DYS635
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)11
(TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12
52
1891





DYS637
(AAAT)4(ACAT)11
(AAAT)4(ACAT)10
25
950





DYS638

(TTTA)
11


(TTTA)
12

56
1677





DYS643

(AAAT)
11


(AAAT)
12

32
95





DYS643

(AAAT)
13


(AAAT)
14

19
1697





DYS644
(TTTTA)10(TTTTA)7
(TTTTA)10(TTTTA)8
22
487





DYS644
(TTTTA)10(TTTTA)6
(TTTTA)10(TTTTA)5
24
681





DYS644

(TTTTA)
10(TTTA)1(TTTTA)13


(TTTTA)
11(TTTA)1(TTTTA)13

21
1667





DYS644
(TTTTA)10(TTTTA)6
(TTTTA)10(TTTTA)7
19
1717





DYS644
(TTTTA)10(TTTTA)7
(TTTTA)10(TTTTA)6
50
1832





Y-GATA-A10

(ATCT)
13


(ATCT)
14

41
417





Y-GATA-A10

(ATCT)
14


(ATCT)
15

35
735





Y-GATA-A10

(ATCT)
13


(ATCT)
12

24
855





Y-GATA-A10

(ATCT)
13


(ATCT)
12

46
1252





Y-GATA-A10

(ATCT)
13


(ATCT)
14

40
1606





Y-GATA-H4
(TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4
(TAGA)3N12(TAGG)3(TAGA)11N22(TAGA)4
23
251





Y-GATA-H4
(TAGA)3N12(TAGG)3(TAGA)11N22(TAGA)4
(TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4
19
1004





Y-GATA-H4
(TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4
(TAGA)3N12(TAGG)3(TAGA)11N22(TAGA)4
29
1051





Y-GATA-H4
(TAGA)3N12(TAGG)3(TAGA)13N22(TAGA)4
(TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4
42
1411





Y-GATA-H4
(TAGA)3N12(TAGG)3(TAGA)13N22(TAGA)4
(TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4
53
1799



















Data 3. Ability of 13 rapidly-mutating RM Y-STRs and 17 YFiler


Y-STRs to differentiate between male relatives by one or more


mutations from analyzing 103 pairs from 80 male pedigrees,


according to the number of generations separating members


of the same pedigree.











Number of

RM




Meioses
RM Y-STR
Y-STR Locus
Yfiler
Yfiler Locus


Separating Pair
Mutations
Comparisons
Mutations
Comparisons














1
1
9
0
17


1
1
12
0
17


1
1
12
0
17


1
1
11
0
17


1
1
10
0
17


1
1
12
0
17


1
2
5
0
17


1
0
13
0
17


1
1
12
0
17


1
0
13
0
17


1
0
13
0
17


1
1
13
0
17


1
0
13
0
17


1
0
13
0
17


1
3
11
0
17


1
1
10
0
17


1
0
13
0
17


1
1
10
0
17


1
1
4
0
17


1
1
12
0
17


2
1
12
0
17


2
2
11
0
17


2
1
8
0
17


2
2
11
0
17


2
2
13
0
17


2
1
9
0
17


2
2
13
0
17


2
0
13
0
17


2
0
13
0
17


2
0
13
0
17


2
1
13
0
17


2
0
13
0
17


2
0
13
0
17


2
1
12
0
17


2
3
13
0
17


2
0
13
0
17


2
0
13
0
17


2
0
13
1
17


2
0
13
0
17


2
0
13
0
17


2
3
13
0
17


2
0
12
0
17


2
4
13
0
17


2
1
13
0
17


2
3
13
0
17


2
0
13
0
17


2
0
13
0
17


2
0
13
0
17


2
1
13
0
17


2
0
13
0
17


2
1
10
1
17


2
1
13
0
17


2
1
13
0
17


2
2
3
0
17


3
0
13
0
17


3
0
13
0
17


3
0
13
0
17


3
2
12
0
17


3
2
12
0
17


3
2
13
0
17


3
3
13
0
17


4
0
13
0
17


4
1
13
0
17


4
1
13
0
17


5
1
5
0
17


5
1
13
0
17


5
1
12
0
17


5
2
12
0
17


6
3
9
0
17


6
1
10
0
17


6
1
13
2
17


6
5
12
1
17


6
3
13
0
17


6
4
13
0
17


6
3
13
0
17


6
0
13
0
17


6
2
13
0
17


7
0
13
0
17


7
4
13
1
17


8
3
13
0
17


8
4
13
0
17


8
2
13
0
17


8
0
13
0
17


8
0
13
1
17


8
4
13
0
17


8
2
13
0
17


9
1
13
1
17


10 
1
13
0
17


10 
4
12
1
17


10 
2
13
0
17


10 
3
13
0
17


10 
3
13
1
17


10 
1
12
2
17


10 
0
12
1
17


11 
6
13
0
17


11 
6
13
0
17


11 
3
12
0
17


11 
4
13
2
17


11 
1
13
1
17


11 
3
13
0
17


13 
4
12
1
17


13 
5
13
0
17


20 
4
13
0
17


Total
158
1246
17
1751


Average
1.53
12.10
0.17
17








Claims
  • 1. A set of amplification primer pairs, comprising primers for the amplification of at least 2 Y-STR markers selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627.
  • 2. A set of primers according to claim 1, wherein the primers can be used to co-amplify at least 3-13 loci from the group.
  • 3. A set of primer according to claim 1, wherein the primers can be used to amplify all loci from the group.
  • 4. A method of identifying an individual, the method comprising determining the allele of at least 2 Y-STR markers selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627.
  • 5. The method of claim 4, wherein the allele is identified by PCR.
  • 6. The method of claim 5, wherein the PCR is multiplex PCR that co-amplifies the at least 3 of the markers.
  • 7. The method of claim 5, wherein the PCR uses primers that are labeled with a fluorescent dye.
  • 8. The method of claim 4, wherein the allele is identified by mass spectroscopy, capillary electrophoresis, or gel electrophoresis.
  • 9. The method of claim 4, wherein the PCR co-amplifies at least one the loci and an autosomal STR.
  • 10. The method of claim 9, wherein the autosomal STR is selected from the group consisting of D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, D16S539, THO1, TPDX, and CSF1 PO.
  • 11. A kit for identifying the allele of at least 2 Y chromosome SIRS markers, wherein the markers are selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627, the kit comprising primers for the amplification of at least 3 loci, and an allelic ladder representative of the selected markers.
  • 12. An allelic ladder size standard for calling one or more alleles of an STR from at least 2 of the Y-STR markers selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627.
  • 13. A set of amplification primer pairs, comprising at least one primer pair selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627.
  • 14. A set of amplification primer pairs of the identification of a male, comprising primers for the Y-STR markers consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627.
Parent Case Info

This application claims priority to U.S. Provisional Application No. 61/241,778, filed Sep. 11, 2009, U.S. Provisional Application No. 61/367,346 filed Jul. 23, 2010, and to U.S. Provisional Application No. 61/379,340 filed Sep. 1, 2010. Application Nos., Ser. Nos. 61/241,778, 61/367,346 and 61/379,340 are incorporated by reference herein in their entirety for any purpose.

Related Publications (1)
Number Date Country
20110263437 A1 Oct 2011 US
Provisional Applications (3)
Number Date Country
61241778 Sep 2009 US
61367346 Jul 2010 US
61379340 Sep 2010 US